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Abstract

Instance segmentation of biological images is essential for
studying object behaviors and properties. The challenges,
such as clustering, occlusion, and adhesion problems of the
objects, make instance segmentation a non-trivial task. Cur-
rent box-free instance segmentation methods typically rely
on local pixel-level information. Due to a lack of global
object view, these methods are prone to over- or under-
segmentation. On the contrary, the box-based instance seg-
mentation methods incorporate object detection into the seg-
mentation, performing better in identifying the individual in-
stances. In this paper, we propose a new box-based instance
segmentation method. Mainly, we locate the object bound-
ing boxes from their center points. The object features are
subsequently reused in the segmentation branch as a guide to
separate the clustered instances within an RoI patch. Along
with the instance normalization, the model is able to recover
the target object distribution and suppress the distribution
of neighboring attached objects. Consequently, the proposed
model performs excellently in segmenting the clustered ob-
jects while retaining the target object details. The proposed
method achieves state-of-the-art performances on three bio-
logical datasets: cell nuclei, plant phenotyping dataset, and
neural cells.

Introduction

Instance segmentation is a task that assigns the instance la-
bels to every pixel of the input images. In biological images,
instance segmentation is a fundamental step in analyzing the
object behaviors and properties, such as cell interaction, nu-
clei treatment reaction, and plant phenotyping. Instance seg-
mentation of biological images is challenging due to the ob-
ject clustering, adhesion, and occlusion. Besides, the biolog-
ical tasks usually require capturing the fine details of the in-
stances, such as the leaf stalking and cell protrusions. A fast
and accurate instance segmentation tool will benefit a lot to
the biological society.

Existing methods of instance segmentation can be divided
into two types: box-free instance segmentation and box-
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based instance segmentation. Box-free instance segmenta-
tion methods segment the object instances by analyzing the
instance morphology properties (e.g., object contours, tex-
tures, and shapes) without the aid of object bounding boxes.
Box-free instance segmentation methods usually suffer from
separating the touching objects. For example, DCAN (Chen
et al. 2016) and Deep Watershed (Bai and Urtasun 2017) are
prone to over-segmentation in the scenarios of unclear ob-
ject boundaries. Cosine Embedding (Payer et al. 2018a) sep-
arates the touching objects through pixel embedding cluster-
ing, but it tends to generate fragmentary segmentation. Some
other methods, such as StarDist (Schmidt et al. 2018), try to
solve the clustering problem using object shape information,
yet their application is limited to convex-shape objects.

Box-based instance segmentation methods combine ob-
ject detection and segmentation. They locate the bounding
boxes of the objects from a global perspective and subse-
quently refine the instance segmentation within a cropped
region of interest (RoI) patch. An accurate object detec-
tor plays a crucial role in the box-based instance segmen-
tation methods. The current box-based instance segmenta-
tion methods (He et al. 2017; Yi et al. 2019c; 2019a) gen-
erally adopt the anchor box-based object detectors, which
spread the anchor boxes densely on the feature maps and
predict the offsets to the anchor boxes. However, the anchor
box-based object detector suffers from a severe imbalance
issue between the positive and negative anchor boxes, which
would result in slow training and sub-optimal detection per-
formances (Law and Deng 2018). Also, the RoIAlign-based
methods, such as Mask R-CNN (He et al. 2017), predict
coarse segmentation masks for objects within the fixed-size
RoI patches (e.g., 14 × 14), losing the fine details of the
objects. Keypoint Graph (Yi et al. 2019b) proposes to use
the keypoint-based object detector and a separate segmen-
tation branch to solve these issues. When achieving better
performance, it fails to localize the small objects where the
five keypoint circles of a bounding box would overlap. To
deal with this problem, several works (Ribera et al. 2019;
Zhou, Wang, and Krähenbühl 2019) suggest locating objects
through their center points. The center keypoint detection al-
lows more small objects to be localized. Besides, detecting
only one keypoint for each instance removes the complex

12677



0

1 2 3 4 5 4B B 3 2B

Heatmap

Width-Height

Offset

S 3 2S 1S S 0

(a) Object Detection Branch

(b) Object-Guided Segmentation Branch

Crop ROI Patches

B

S

Conv3x3 Conv1x1

Batch Norm

Instance Norm

Bounding Boxes

Bilinear Upsample

Figure 1: Object-guided instance segmentation framework. The encoder (layers1-5) is from a ResNet50 (He et al. 2016) net-
work. The framework contains two branches: (a) object detection branch and (b) object-guided segmentation branch. The B
and S represent the skip combination modules. The object detection branch predicts the center heatmaps, box properties (e.g.,
width and height), and center offsets. The predicted bounding boxes are flowed to the segmentation branch to crop RoI patches.
The object features are exploited as guidance for the model to separate the attached objects.

grouping process as in the Keypoint Graph, which makes
the model computationally efficient.

In this work, we propose a new keypoint-based instance
segmentation method. In particular, we localize the objects
through their center points. The bounding box properties
(e.g., width and height) are obtained from the center points.
The center object features are subsequently reused with in-
stance normalization to help the model focus on the target
objects. In this manner, our model is able to separate the tar-
get from its neighboring attached objects and preserve its
fine details. Our contributions are summarized as follows:
• We design a novel object-guided architecture for accurate

and fast instance segmentation of biological images.
• The proposed model reuses the center object features in

the segmentation branch to separate the attached objects.
• Along with the instance normalization, the proposed

model is able to suppress the distribution of neighbor ob-
jects and focus on the target.

• Experimental results demonstrate the superior perfor-
mance of the proposed model to the state-of-the-arts in
terms of accuracy and efficiency.

Related Work

In this section, we briefly review two main categories of
instance segmentation methods: box-free and box-based in-
stance segmentations.

Box-free Instance Segmentation

Box-free instance segmentation methods segment the ob-
jects by analyzing the local pixel-level features of the im-

ages. For example, DCAN (Chen et al. 2016) fuses the pre-
dicted contour map with the semantic segmentation map
to separate the connected objects at the cost of losing the
boundary pixels. Deep Watershed (Bai and Urtasun 2017)
learns the instance energy map and cuts the instances ac-
cording to an energy threshold. DCAN and Deep Watershed
are subject to the quality of object boundary features. Co-
sine Embedding (Payer et al. 2018a) embeds the image pix-
els to a high dimensional space. It then obtains the instance
masks by clustering the pixel embeddings. Due to the failure
of clustering, Cosine Embedding usually generates incom-
plete instance fragments. StarDist (Schmidt et al. 2018) uti-
lizes the star-convex polygons to describe the object shapes.
However, it applies only to objects with convex shapes.

Box-based Instance Segmentation

Box-based instance segmentation comprises both object de-
tection and object segmentation. It first localizes the objects
using bounding boxes and then segments the objects within
the cropped RoI patches. One representative work is Mask
R-CNN (He et al. 2017). It incorporates a mask branch into
the FPN (Lin et al. 2017a) network for instance segmenta-
tion. In addition, it proposes a RoIAlign method to extract
RoI patches with fixed size for simultaneous location regres-
sion, classification, and mask prediction. However, the fixed-
size of RoI patches can hardly capture the instance details,
such as the protrusion of neural cells. Besides, the imbal-
anced positive and negative anchor boxes would incur slow
training and sub-optimal detection performance. A good ob-
ject detector plays a key role in the box-based instance seg-
mentation. Most recently, keypoint-based object detectors,
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such as CornerNet (Law and Deng 2018) and ExtremeNet
(Zhou, Zhuo, and Krahenbuhl 2019), are developed to solve
the imbalance problem of anchor-box based detectors. In
the spirit of detecting keypoints, Keypoint Graph (Yi et al.
2019b) proposes to detect the four corners and the center
point of a bounding box. It identifies an instance by group-
ing the five keypoints according to a keypoint graph. One
weakness of this method is that, since each keypoint circle
has a fixed radius, the five keypoints tend to overlap for small
objects. Consequently, the Keypoint Graph suffers from the
failure of detecting small objects. In this work, we only de-
tect the center points of the objects, which are beneficial to
the localization of much smaller objects.

The Proposed Method

The framework of our method is illustrated in Fig. 1.
The object-guided instance segmentation comprises two
branches: object detection and object-guided segmentation.
The object detection branch aims to provide the bounding
boxes of instances. The detected bounding boxes are then
employed to crop the RoI patches from the input feature
maps of the segmentation branch. Instance segmentation is
subsequently performed on these RoI patches.

Object Detection Branch

Detecting objects with a grouping of keypoints would fail
for small objects since the box keypoints would overlap in
such scenarios. On the contrary, a single center point does
not require the keypoint grouping process and therefore is
more suitable for identifying small objects. In this paper, we
localize the objects directly through their center points. We
use conv1-5 layers from a ResNet50 (He et al. 2016) as an
encoder to extract features. The detection branch combines
the deep features with the shallow ones through a skip con-
nection (Ronneberger, Fischer, and Brox 2015). The output
of the object detection branch comprises three parts: a cen-
ter heatmap, a center offset map, and a width-height map.
Note that the object detection branch is not a mirrored ar-
chitecture because the model performed worse on mirrored
architecture from our experiments (∼2-3 points lower). The
reason would be that on a keypoint heatmap, the imbalance
issue between the foreground and background pixels gets
more severe on a full-size feature map as the number of pos-
itive objects is constant. Also, a downsized output can speed
up the network because the number of parameters is smaller
compared to a full-size output.

Center Heatmap. The center heatmap is a key module of
the object detection branch. For each object, there is only
one ground-truth positive location on the input image. Fol-
lowing the work of (Law and Deng 2018), instead of penaliz-
ing all the background pixels, we reduce the penalty around
a Gaussian circle of each ground-truth center point. We use
the variant focal loss to optimize the parameters:

Lhm = − 1

N

{
(1− pi)

α log(pi) if yi = 1

(1− yi)
β(pi)

α log(1− pi) otherwise
,

(1)

(a) Ours-objBranch (b) Ours-sepBranchIN (c) Ours-objBranchIN

Figure 2: Ablation studies of the segmentation branch on
plant phenotyping dataset. The symbol “obj” indicates the
segmentation branch with the object feature, “sep” denotes
the separated segmentation branch that has no object fea-
tures, “IN” refers to the instance normalization.

where i indexes the ith location in the predicted heatmap,
N is the total number of center points, y is the ground-
truth. We use α = 2, β = 4 (Lin et al. 2017b; Law and
Deng 2018) in this paper. The predicted center heatmaps are
refined through a non-maximum-suppression (NMS) opera-
tion. The operation employs a 3×3 max-pooling layer on the
center heatmaps. The center points are gathered according to
their local maximum probability.

Offset Map. As the center location does not rely on the
detailed morphology information, to reduce the computa-
tional cost, the keypoints are usually predicted in a down-
sized heatmap (Law and Deng 2018; Newell, Yang, and
Deng 2016). An offset map is necessary to map the center
locations back to the original image correctly. Suppose n is
the downsized factor, (x, y) is a location in the input image.
The offset map can be represented as:

oi = (
xi

n
− �xi

n
�, yi

n
− �yi

n
�), (2)

where i indexes the ith center point. In the training process,
we apply the L1 loss to regress the offset at the center points
as it is more resistant to outliers.

Width-Height Map. Different from anchor-box based de-
tectors, the proposed model directly regresses the width and
height of the bounding boxes from the center points. Similar
to the offset map, we use the L1 loss to regress the width and
height of the bounding boxes at the center points.

Object-Guided Segmentation Branch

Instance segmentation on cropped RoI patches is similar to
the semantic segmentation. One key challenge in this task
is to separate the clustered instances while keeping the fine
details of the targets. One approach (He et al. 2017) samples
a small size of pixels and uses a series of convolutional lay-
ers to remove the noise information. However, this method
loses the details of the object instance. Another approach (Yi
et al. 2019b) builds a separate segmentation branch next to
the detection branch. This method tends to make mistakes in
segmenting the object, which shares the same textures and
classes with the neighboring attached instances. As a con-
sequence, it can hardly separate the touching instances (see
Fig. 2b). To solve this problem, we propose to leverage the
object information from the detection branch and on this ba-
sis build an object-guided segmentation branch.
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As shown in Fig. 1, after obtaining the bounding boxes
from the object detection branch (Fig. 1a), we crop the RoI
feature patches from the encoder layers 0-1 (green feature
maps) and the object layers 2-4 (blue feature maps). Then
we develop a deep-to-shallow segmentation branch through
the skip combination module. Note that layer 5 is not con-
sidered because the objects are too small at this scale. As can
be seen from Fig. 1b, the shallow layers from encoder lay-
ers 0-1 contain rich morphology details such as leaf stalks.
While being beneficial to recovering the target fine details, it
also brings difficulty for the network to differentiate the tar-
get object. For this reason, we reuse the object features (lay-
ers 2-4) as guidance to help the model separate clustering
objects within an RoI patch. As can be seen from Fig. 2ab,
the object feature effectively helps the model separated con-
nected objects. However, it also leads to incomplete segmen-
tation masks. To handle this problem, we need an operation
that re-calibrates the features in each cropped RoI across the
spatial space and removes the unnecessary neighboring dis-
tributions. Besides, this operation should also be able to col-
lect the statistical information of the target instances and re-
cover the morphology details.

Instance normalization (Ulyanov, Vedaldi, and Lempitsky
2016) is a perfect choice for our task. On the one hand,
feature normalization operations, including batch, group, in-
stance normalization (Ioffe and Szegedy 2015; Wu and He
2018), are proved to enable stable training for large-batch or
small-batch training images. Also, instance normalization is
able to remove style statistics of instance for image genera-
tion (Ulyanov, Vedaldi, and Lempitsky 2016). For our task,
each cropped RoI patch is supposed to contain mainly one
target. Therefore, our problem can be formalized as remov-
ing the neighbor statistics for each RoI patch. For the pre-
dicted mask, as each RoI patch has only one channel, it is
naturally feasible to apply instance normalization. Given an
RoI patch x ∈ R

H×W , the instance normalization can be
written as:

x′
h,w = γ(

xh,w − μ

σ
) + β, (3)

where μ and σ are the mean and variance of the RoI patch,
respectively. γ and β are two learned scaling factors for the
network to control the extent of RoI patch normalization.

As can be seen from Fig. 2c, with the combination of ob-
ject feature and instance normalization, the proposed model
is able to remove the statistics of neighbor objects and re-
cover the morphology details of the target objects. We use
the binary cross-entropy loss to optimize the model parame-
ters for the segmentation task.

Experiments

Datasets

We evaluate our method on three datasets that pose different
challenges in instance segmentation of biological images.

DSB2018. The cell nuclei dataset DSB2018 is obtained
from the training dataset of 2018 Data Science Bowl. The
dataset varies in cell types, magnification, and imaging
modality as it was acquired under different conditions. We
randomly split the original 670 images with annotations into

training (402 images), validation (134 images), and testing
(134 images) datasets.

Plant Phenotyping. The plant phenotyping dataset (Min-
ervini et al. 2015b; 2015a) contains 473 top-down view plant
images with various image sizes. We use 284 images for
training, 95 images for validation, and 94 images for test-
ing.

Neural Cell. The neural cell dataset is sampled from a col-
lection of time-lapse microscopic videos of rat CNS stem
cells. It contains 644 gray-scale images with image size of
512×640. We randomly select 386 images for training, 129
images for validation, and 129 images for testing. The neural
cells have extremely irregular shapes.

Implementation Details

The training images are augmented using random cropping
and random horizontal/vertical flipping. We set 100 epochs
for training. We stop the network when the validation loss
does not significantly decrease. The input resolution of train-
ing and testing images is 512×512. The weights of the back-
bone network are pre-trained on ImageNet dataset. Other
weights of the network are initialized from a standard Gaus-
sian distribution. We use Adam with an initial learning rate
of 1.25e-4 to optimize the model weights. We implement the
model with PyTorch on NVIDIA M40 GPUs.

Evaluation Metrics

We use the Average Precision (AP) (Everingham and
Winn 2011) as a metric to evaluate both object detection
and instance segmentation performance. It summarizes the
precision-recall curve at an intersection-over-union (IoU)
threshold α. For object detection, we use APbox to indi-
cate the AP at a bounding box IoU between each pre-
dicted box and ground-truth box. For instance segmenta-
tion, we employ APmask to represent the AP at mask IoU
between each predicted segmentation mask and ground-
truth mask. Following the previous works (He et al. 2017;
Chen et al. 2019), we report the averaged AP across the box
or mask IoU thresholds from 0.5 to 0.95 with an interval of
0.05:

AP =
1

10

∑
α=0.5:0.05:0.95

APα. (4)

We also present the APmask at threshold α = 0.5 and 0.75,
following the work of (He et al. 2017). Besides, to show the
quality of the segmentation, we report the averaged mask
IoU AIoUmask

α at α = 0.5 and 0.75 :

AIoUmask
α =

1

N

N∑
i=1

IoUmaski
α , (5)

where i indexes the ith instance object that has a mask IoU
over threshold α, and N denotes the total number of such
instances.

Experimental Results

In this section, we compare our method with the follow-
ing four works: box-free instance segmentation methods
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Table 1: Quantitative instance segmentation results. APbox and APmask are the averaged AP at the box and mask IoU thresholds
from 0.5 to 0.95 with an interval of 0.05. In particular, the APmask at mask IoU threshold of 0.5 and 0.75 are listed. The averaged
mask IoU (AIoUmask) at thresholds of 0.5 and 0.75 are also presented to compare the quality of segmentation masks. Speed
(FPS: frame per second) is measured on a single NVIDIA GeForce GTX 1080 GPU. We calculate both the model inference
time and post-processing time. AP is measured using Pascal VOC2010 metric (Everingham and Winn 2011). The symbol “–”
denotes the very slow speed (>1min per image).

Method Datasets APbox APmask APmask
0.5 APmask

0.75 AIoUmask
0.5 AIoUmask

0.75 FPS
DCAN (Chen et al. 2016)

DSB2018

16.47 19.70 48.36 15.56 74.11 84.27 2.67
Mask R-CNN (He et al. 2017) 42.13 42.58 73.94 45.05 79.69 85.13 1.01
Cosine Embedding (Payer et al. 2018b) 2.25 3.36 14.96 0.24 63.65 80.27 –
Keypoint Graph (Yi et al. 2019b) 49.07 50.63 76.13 56.72 83.33 87.38 1.54
Ours-objBranch 49.34 57.90 80.15 62.00 81.29 91.50 3.42
Ours-sepBranchIN 45.35 60.51 85.64 64.52 86.33 91.02 3.24
Ours-objBranchIN 50.41 61.14 84.85 65.14 87.07 91.47 3.22
DCAN (Chen et al. 2016)

Plant

7.03 16.67 38.86 13.02 75.78 83.76 12.99
Mask R-CNN (He et al. 2017) 47.44 46.57 81.56 49.55 78.73 84.00 5.57
Cosine Embedding (Payer et al. 2018b) 5.04 6.68 20.20 3.24 70.29 82.86 –
Keypoint Graph (Yi et al. 2019b) 50.93 49.70 82.71 51.27 81.91 87.29 1.82
Ours-objBranch 54.92 70.42 90.97 76.56 88.41 92.09 5.71
Ours-sepBranchIN 55.85 74.43 93.72 79.48 88.83 92.42 5.41
Ours-objBranchIN 59.45 74.11 92.20 79.15 89.31 92.80 5.45
DCAN (Chen et al. 2016)

Neural Cell

1.70 10.98 44.82 1.00 64.54 79.15 4.87
Mask R-CNN (He et al. 2017) 19.73 21.43 57.65 9.84 69.59 80.56 1.13
Cosine Embedding (Payer et al. 2018b) 4.29 1.98 11.71 0.9 58.82 77.31 –
Keypoint Graph (Yi et al. 2019b) 43.68 42.77 85.11 35.94 76.23 81.55 1.86
Ours-objBranch 39.40 57.78 94.99 65.68 81.52 84.96 5.24
Ours-sepBranchIN 42.03 56.81 94.46 64.94 81.59 85.22 5.14
Ours-objBranchIN 44.34 58.26 94.33 67.24 82.08 85.59 5.11

(DCAN (Chen et al. 2016), Cosine Embedding (Payer et
al. 2018a)) and box-based instance segmentation methods
(Mask R-CNN (He et al. 2017), Keypoint Graph (Yi et al.
2019b)). In addition, we perform several ablation studies to
show the effectiveness of our object-guided segmentation
branch in extracting the target details and suppressing the
neighbor features.

Comparison with State-of-the-arts

The quantitative and qualitative instance segmentation re-
sults are shown in Table 1 and Fig. 3. In Table 1, APbox in-
dicates the averaged detection performance over the bound-
ing box IoU thresholds from 0.5 to 0.95 with an interval
of 0.05. APmask is the averaged instance segmentation per-
formance over the same mask IoU thresholds. We explic-
itly exhibit APmask at mask IoU threshold of 0.5 and 0.75.
AIoUmask is used as an auxiliary metric when APmask is
too close for the compared methods. In Table 1 it can be
seen that although DCAN runs faster compared to the other
baseline methods, its detection and instance segmentation
accuracy are poor. The reason can be found from Fig. 3c,
where DCAN fails to separate the touching instances due
to the unclear boundaries. Besides, by fusing the contours
with the semantic maps, the instances would lose details
such as the leaf stalks and cell protrusions. Cosine Embed-
ding performs even worse compared to DCAN in Table 1.
The reason would be that Cosine Embedding is likely to

generate the mask fragments that belong to the same ob-
ject (see Fig. 3e). Compared to box-free instance segmen-
tation methods, box-based instance segmentation methods
excel in identifying individual objects. However, as can be
seen from Fig. 3d, Mask R-CNN is weak at detecting the ob-
jects that are very close to each other. This phenomenon may
be caused by the sub-optimal training of the extremely im-
balanced anchor-boxes. Besides, Mask R-CNN cannot cor-
rectly capture the object details such as the protrusion of
cells and the leaf stalks due to the fixed-size of RoI patches.
Keypoint Graph exhibits better detection ability compared
to Mask R-CNN as it identifies the objects by grouping
of keypoints. Besides, it is able to capture the object de-
tails due to the separate segmentation branch. In Table 1,
we can see that the performance gap between Mask R-CNN
and Keypoint Graph is small (<10 points) on DSB2018 and
plant dataset. While on neural cell dataset with more slender
and long structures, the gap gets bigger (>20 points). How-
ever, Keypoint Graph can’t identify the small objects (see
Fig. 3f) due to the overlapping of the box keypoints. Also, it
is unable to suppress the neighboring instances effectively.
Compared to the methods mentioned above, the proposed
object-guided instance segmentation method performs the
best. From Fig. 3g, we can see that the proposed method
can identify small objects, retain object details, and sup-
press the neighbor noise features. Meanwhile, the proposed
model is computationally efficient (see Table 1). These fea-
tures demonstrate the superiority of the proposed method.
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(a) Input Images

(b) Ground-truth

(c) DCAN

(d) Mask R-CNN

(e) Cosine Embedding

(f) Keypoint Graph

(g) Ours-objBranchIN

Figure 3: Qualitative instance segmentation results. The ground-truth and predicted masks are overlayed on the input images.

Ablation Studies

We perform ablation studies to show the effectiveness of our
object-guided segmentation branch. The results are shown
in Fig. 2 and Fig. 4. The symbol “sep” represents the sepa-
rate segmentation without object features, “IN” refers to the
instance normalization, and “obj” denotes the branch that

has object features. As we can see from Fig. 2, the sepa-
rated segmentation branch (Ours sepBranchIN) can hardly
differentiate the clustered instances due to a lack of object
knowledge. In contrast, the segmentation branch with ob-
ject features (Ours objBranch) can effectively separate the
clustered objects. However, after the introduction of the ob-

12682



(a) DSB2018 (c) Neural Cell(b) Plant

Figure 4: Ablation studies of the segmentation branch for dataset DSB2018, plant phenotyping, and neural cells. The left axis
is the APmask along with the mask IoU thresholds ranging from 0.5 to 0.95 with an interval of 0.05. The right axis is the
AIoUmask. The solid lines indicate the APmask and the dashed lines represent the AIoUmask. The symbol “obj” indicates
the segmentation branch with the object feature, “sep” denotes the separated segmentation branch that has no object features,
and “IN” refers to the instance normalization. AIoUmask is working as a secondary metric when APmask is too close for the
compared methods.

ject features, the predicted masks become incomplete. The
reason would be that the object features are too coarse and
they would perturb the distribution of the target instance.
In addition, the neighboring features are not completely re-
moved. This fact indicates that the model lacks the ability
to filter out the neighbor information while retaining the
target instance. With the instance normalization, the model
(Ours objBranchIN) identifies the whole spatial information
and is able to remove the neighbor statistics. Besides, it de-
creases the domination of the object features, making the op-
timal convergence possible. As a result, the predicted mask
is intact and the neighbor noise features are suppressed.

Fig. 4 compares the performances of segmentation
branches at different mask IoU thresholds. For DSB2018
dataset (Fig. 4a), Ours objBranch performs the worst in
APmask. It would be caused by the fragmented neighbor-
ing instances and incomplete target segmentation (similar to
Fig. 2a). As a result, the number of unmatched pairs between
the predicted instance masks and the ground-truth masks is
increased. Ours sepBranchIN behaves better in APmask as
no object features are introduced to separate the neighbor in-
stances. However, due to over-segmentation, the AIoUmask

of Ours sepBranchIN is lower. Ours objBranchIN achieves
the best results in both APmask and AIoUmask. For the
plant phenotyping dataset (see Fig. 4b), we can see that the
Ours objBranch also performs the worst because of the same
reason we explained above. The phenomenon suggests that
the instance normalization is indispensable for the model
to recover the intact instance details. Ours sepBranchIN
and Ours objBranchIN performs close for APmask. At
this time, we can check the segmentation quality from
AIoUmask. As can be seen from Fig. 4b, the segmenta-
tion quality of Ours objBranchIN is consistently better than
Ours sepBranchIN. For the neural cell dataset (see Fig. 4c),
Ours objBranchIN exhibits great superiority compared to
Ours objBranch and Ours sepBranchIN. The reason would
be that the neural cells generally attach, and they have
long and slender protrusions, indicating Ours objBranchIN
is particularly good at dealing with clustered instances while

keeping the instance details.

Discussion for Multi-Modal Distribution

Within an RoI patch, the multi-modal appearance distribu-
tion is generally mapped to multi-channels of the feature
map. For some channels, the distribution of the target ob-
ject could be weighted as the dominant one compared to the
neighbors. In this paper, we first introduce the object feature
to the segmentation branch. As the model can learn to adjust
the instance normalization extent and the mapping weights
for each channel, the model is able to suppress the neighbor
distribution and highlight the target distribution under the
ground-truth supervision. As a result, the proposed is excel-
lent in separating the clustered objects and keeping the mor-
phology details of the target object. Note that the detected
bounding boxes in the instance segmentation are supposed to
be tight. That’s why object detection is crucial to box-based
instance segmentation. Under this assumption, the proposed
method is robust to recover the dominant distribution of the
target object, which is verified by the experimental results
and ablation studies. However, the proposed method would
fail for an over-sized bounding box that contains several ob-
jects with identical sizes. But for an over-estimated bound-
ing box contains only the target and background, the pro-
posed method is still robust as the output probability feature
contains classification information.

Conclusion

In this work, we propose a novel object-guided instance
segmentation method that has three merits: (1) identifying
small objects; (2) preserving the object details; (3) sepa-
rating the clustered objects. The evaluation results of our
method on the three biological datasets indicate that our
model is particularly excellent in separating attached in-
stances that need fine details. Compared to state-of-the-arts,
the proposed method achieves favorable results in terms of
both accuracy and speed on three biological datasets.
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