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Abstract

We present an unsupervised approach for factorizing object
appearance into highlight, shading, and albedo layers, trained
by multi-view real images. To do so, we construct a multi-
view dataset by collecting numerous customer product photos
online, which exhibit large illumination variations that make
them suitable for training of reflectance separation and can
facilitate object-level decomposition. The main contribution
of our approach is a proposed image representation based
on local color distributions that allows training to be insensi-
tive to the local misalignments of multi-view images. In addi-
tion, we present a new guidance cue for unsupervised training
that exploits synergy between highlight separation and intrin-
sic image decomposition. Over a broad range of objects, our
technique is shown to yield state-of-the-art results for both of
these tasks.

Introduction

Separating reflectance layers in an image is an essential step
for various image editing and scene understanding tasks.
One such layer is composed of highlights, which are mirror-
like reflections off the surface of objects. Extracting high-
lights from an image can be useful for problems such as
estimating scene illumination (Lombardi and Nishino 2016;
Yi et al. 2018) and reducing the oily appearance of faces (Li,
Zhou, and Lin 2015). The other two layers represent shading
and albedo. Their separation is commonly known as intrin-
sic image decomposition, which has been utilized in appli-
cations such as shading-based scene reconstruction (Yu et
al. 2013; Or-El et al. 2015) and texture replacement in im-
ages (Weiss 2001; Jeon et al. 2014).

Factorizing an image into the three reflectance layers is an
ill-posed problem that is best solved at present through ma-
chine learning. However, obtaining large-scale ground-truth
data for training deep neural networks remains a challenge,
and this has motivated recent work on developing unsuper-
vised schemes for the reflectance separation problem. The
unsupervised techniques that have been presented thus far all
take the same approach of training a network on image se-
quences of a fixed scene under changing illumination (Li and
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Snavely 2018b; Ma et al. 2018). With images from such a
sequence, these methods guide network training by exploit-
ing the albedo consistency that exists for each scene point
throughout the sequence.

A benefit of using image sequences of fixed scenes is that
the images are perfectly aligned, allowing scene point con-
sistency to be easily utilized. However, there exists an un-
tapped wealth of image data captured of objects from dif-
ferent viewpoints. A prominent example of such data is cus-
tomer product photos uploaded by consumers to show items
they bought. Some example customer photos are shown in
Figure 1. This source of imagery is valuable not just be-
cause of its vast quantity online, but also because it provides
object-centric data (different from the scene data compiled
in (Li and Snavely 2018b) from webcams) and can promote
robustness of factorizations to different object orientations.
These images also exhibit a larger variation in illumination
conditions and camera settings, which can potentially ben-
efit the trained network. An issue with using such images
though is that they are difficult to align accurately, as they
vary in viewpoint, lighting and imaging device. Misalign-
ment among the images of an object would lead to violations
of scene point consistency on which the existing unsuper-
vised methods are based.

In this paper, we present an unsupervised method for re-
flectance layer separation using multi-view image sets such
as customer product photos. To effectively learn from such
data, our system is designed so that its training is rel-
atively insensitive to misalignments. After approximately
aligning images with state-of-the-art correspondence esti-
mation techniques (Rocco, Arandjelovic, and Sivic 2018;
Ilg et al. 2017), the network transforms the images into a
proposed representation based on local color distributions.
An important property of this representation is its ability to
model detailed local content over an object in a manner that
discards fine-scale positional information. With this color
distribution based descriptor, unsupervised training becomes
possible using consistency constraints between multi-view
images of an object.

An additional contribution of this work is a method for
further guiding the unsupervised training via a relationship
between highlight separation and intrinsic decomposition of
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Figure 1: Selected product photos from the Customer Prod-
uct Photos Dataset. The products exhibit a wide range of
textures, shapes, shadings, and highlight patterns. The sec-
ond last row shows selected multiview images of the same
object, where the leftmost one is the segmented reference
image. The last row shows the roughly aligned images.

shading and albedo. We observe that shading separation be-
comes less reliable when highlights are present in its input
images, due to color distortions caused by different highlight
saturation and possibly different illumination color among
the images. Our system takes advantage of this through a
novel contrastive loss that is defined between shading sepa-
ration results computed with and without the inclusion of our
highlight extraction sub-network. We show that by maximiz-
ing this contrastive loss, the shading separation sub-network
provides supervision that improves the performance of the
highlight extraction sub-network.

With the presented approach, our system produces state-
of-the-art results on highlight separation, and yields intrin-
sic image decomposition accuracy at a level comparable to
leading methods.

Related work

Intrinsic image decomposition Previous to the deep-
learning approaches of recent years, intrinsic image decom-
position was primarily addressed as an optimization prob-
lem constrained by various prior assumptions about nat-
ural scenes. These priors have been used to classify im-
age derivatives as either albedo or shading change (Land
and McCann 1971; Funt, Drew, and Brockington 1992),
to prescribe texture coherence (Shen, Tan, and Lin 2008;
Zhao et al. 2012), and to enforce sparsity in the set of albe-
dos (Shen and Yeo 2011; Rother et al. 2011). Decomposi-
tion constraints have also been derived using additional in-
put data such as image sequences (Weiss 2001), depth mea-
surements (Lee et al. 2012), and user input (Bousseau, Paris,

and Durand 2009).
These earlier methods have been surpassed in perfor-

mance by deep neural networks which learn statistical pri-
ors from training data. Some of these networks are trained
with direct supervision, in which the ground-truth albedo
and shading components are provided for each training
image (Narihira, Maire, and Yu 2015b; Kim et al. 2016;
Shi et al. 2017; Baslamisli, Le, and Gevers 2018; Li and
Snavely 2018a). To obtain ground truth at a large scale for
training deep networks, these methods utilize synthetic ren-
derings, which can lead to poor generalization of the net-
works to real-world scenes. This issue is avoided in sev-
eral methods by training on sparse annotations of relative
reflectance intensity (Bell, Bala, and Snavely 2014) or rela-
tive shading (Kovacs et al. 2017) in real images (Zhou, Kra-
henbuhl, and Efros 2015; Narihira, Maire, and Yu 2015a;
Kovacs et al. 2017; Fan et al. 2018). However, these man-
ual labels provide only weak supervision, and the need for
supervision reduces the scalability of the training data.

Most recently, unsupervised methods have been presented
in which the training is performed on image sequences taken
from fixed-position, time-lapse video with varying illumina-
tion (Li and Snavely 2018b; Ma et al. 2018). In these net-
works, a major source of guidance for unsupervised training
is the temporal consistency of reflectance for static regions
within a sequence. The networks are configured so that they
can be applied to just a single input image at inference time.

Our proposed system also trains on multiple images in
an unsupervised manner and can be applied at test time
on single images. Different from the previous fixed-view
multi-image techniques (Li and Snavely 2018b; Ma et al.
2018), our network uses unconstrained multi-view images
and deals specifically with misalignment issues that arise in
this setting. Such image sequences from unconstrained ran-
dom views are much easier to obtain than fixed-view im-
ages. Moreover, our method additionally separates highlight
reflections and introduces a mechanism by which highlight
extraction and intrinsic decomposition can mutually benefit
each other in unsupervised training.

We note that multiview images have previously been used
for intrinsic image decomposition of outdoor scenes (Laf-
font, Bousseau, and Drettakis 2013; Duchêne et al. 2015).
The decomposition is solved by an inverse rendering ap-
proach, where shading is inferred from an approximate mul-
tiview stereo reconstruction and an illumination environ-
ment estimated given the known sun direction. The multi-
view images are required to be taken under the same light-
ing conditions. By contrast, we address a problem where no
knowledge about the illumination is given and the lighting
can differ from image to image.

Highlight separation Similar to intrinsic image decom-
position, separation of highlight reflections is an ill-posed
problem that has been made tractable through the use of
different priors. Among them are priors on piecewise con-
stancy of surface colors (Klinker, Shafer, and Kanade 1988),
smoothness of diffuse (Tan et al. 2003) or specular (Liu
et al. 2015) reflection, constancy in the maximum diffuse
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Figure 2: Network structure.

chromaticity (Tan and Ikeuchi 2005), diffuse texture coher-
ence (Tan, Lin, and Quan 2006), low diffuse intensity in a
color channel (Kim et al. 2013), sparsity of highlights (Guo,
Zhou, and Wang 2018), and a low-rank representation of dif-
fuse reflection (Guo, Zhou, and Wang 2018).

Instead of crafting priors for highlight extraction by hand,
they can be learned in a statistical fashion from images us-
ing neural networks. This was first investigated together with
intrinsic image decomposition through supervised learning
on a large collection of rendered images (Shi et al. 2017).
An unsupervised approach was later presented for the case
of human faces, where a set of images of the same face is
aligned using detected facial landmark points, and training
guidance is provided by a low-rank constraint on diffuse
chromaticity across the aligned images (Yi et al. 2018). In
(Yi et al. 2018), face images are easy to align because of
mature facial landmark detection techniques; however, their
method works poorly on random objects without such land-
marks. Thus, we design a much general method to deal with
such multi-view images of general objects which are dif-
ficult to align accurately. Since misaligned images violate
the low-rank property assumed in (Yi et al. 2018), we pro-
pose a technique that is robust to such local misalignments,
thus enabling unsupervised training over a much broader
range of objects. Thus, our method is the first unsupervised
method using unconstrained images under random illumina-
tion, background, and viewpoints.

Overview

We train an end-to-end deep neural network to separate a
single image into highlight, albedo/reflectance, and shading
layers using the Customer Product Photos Dataset. Com-
piled from online shopping websites, the dataset contains
numerous product photos provided in customer reviews. The
photos for a given product are captured under various view-
points, illumination conditions, and backgrounds. We in-
troduce this dataset in Section Customer Product Photos
Dataset.

As illustrated in Figure 2, our network consists of two
subnets: H-Net for decomposing an image into diffuse and
highlight layers, and S-Net for additionally decomposing
the diffuse layer into albedo and shading layers. Train-
ing consists of three phases. First, both H-Net and S-Net
are pretrained using a small set of synthetic data from
ShapeNet (Shi et al. 2017). Each subnet is then finetuned
in an unsupervised manner on the Customer Product Photos
Dataset using the proposed color distribution loss (Section
Misalignment-robust color distribution loss), which is ro-
bust to misalignments. In the last phase, a novel contrastive

loss is used to finetune the whole network end-to-end. The
training phases are presented in Section Our Network.

Customer Product Photos Dataset
Almost every popular online shopping website includes cus-
tomer reviews, where customers are often encouraged to up-
load product photos. For a given product, the customer pho-
tos capture it under a various viewpoints, illuminations, and
backgrounds. At the same time, the different products cover
a large variety of materials and shapes. Collectively, these
customer photos capture the complex interaction between
different 3D shapes, materials, and illumination, and form
a dataset that can be useful for computer vision tasks such
as intrinsic image decomposition and multi-view stereo.

Construction of the dataset involved a series of steps
consisting of product selection, photo downloading, rough
image alignment, and data filtering. Due to limited space,
please refer to the supplement1 for details.

The final Customer Product Photos Dataset consists of
228 products (some shown in Figure 1) with 10–520 pho-
tos for each product. In total, the dataset consists of 9,472
photos. For each product, there is one mask provided for the
reference image. The original and aligned images will be
made available online upon paper publication.

Our Network

Problem formulation

An input image I comprises an additive combination of a
highlight layer H and a diffuse layer Id, where the diffuse
layer Id is a pixelwise product of an albedo/reflectance layer
A and a shading layer S, i.e.,

I = H + Id = H +A · S. (1)
Our problem is to estimate H, Id, A, S from the input image
I . We note that this image model differs from the conven-
tional intrinsic image model, I = A · S, which omits the
additive effects of highlights and thus implicitly assumes ob-
ject surfaces to be matte (Shi et al. 2017).

Low-rank loss for unsupervised training

Most CNN-based methods (Janner et al. 2017; Shi et al.
2017; Narihira, Maire, and Yu 2015a) for intrinsic image
separation rely completely on ground truth separation re-
sults for supervised training. As it is difficult to obtain ref-
erence ground truth for highlight separation or intrinsic im-
age decomposition on real images, we propose to train our
network by unsupervised finetuning on real multiview im-
ages after an initial supervised pretraining step with syn-
thetic data from the ShapeNet dataset (Shi et al. 2017). This
pretraining uses 28,000 out of the 2,443,336 images in the
dataset, or about 1.1% of the total, and is intended to provide
the network with a good initialization. The finetuning is then
intended to adapt the network to the domain of real images,
for which ground truth is generally unavailable.

We first assume perfect image alignment in deriving the
low-rank loss for unsupervised training. This requirement
on alignment will be relaxed in the next subsection.

1https://arxiv.org/abs/1911.07262
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H-Net For training of highlight separation, our net-
work utilizes input consisting of multiple aligned images
I1, I2, I3, · · · of the same object under different lighting.
According to the image formation model, these images each
have a diffuse layer, denoted as Id1, Id2, Id3, · · · . These dif-
fuse layers can differ from each other due to changes in
shading that arise from different illumination conditions.
To discount this shading variation, we compute the chro-
maticity maps of these diffuse layers. A chromaticity map
(Chr, Chg) is an intensity-normalized image, where

Chr(p) =
R(p)

R(p) +G(p) +B(p)
,

Chg(p) =
G(p)

R(p) +G(p) +B(p)
,

at each pixel p, with R(p), G(p), B(p) denoting the color
values at p.

According to the dichromatic reflectance model (Shafer
1985), the chromaticity of diffuse layers is the chromatic-
ity of the surface albedo multiplied with that of the illumi-
nation. Assuming a constant illumination color across each
image, we discount the effect of illumination chromaticity
by matching the median chromaticity of each diffuse image
to that of the reference image in each batch. After these nor-
malizations, the set of chromaticity maps should be of low
rank if the images are accurately aligned.

The structure of H-Net is adopted from the encoder-
decoder network in (Narihira, Maire, and Yu 2015b) with an
added batch normalization layer after each convolution layer
to aid in network convergence. We also examined adding
skip connections between the encoder and decoder as done
in (Shi et al. 2017), but we found them not to be helpful in
our network.

S-Net Our S-Net for predicting the shading layer S uses
the same network structure as H-Net. The albedo layer A
is computed from S at each pixel p according to the image
formation model, as

A(p) = Id(p)/S(p), (2)

once the shading layer is fixed.
For multiple aligned diffuse images Id1, Id2, Id3, · · · of

the same object, their albedo layers A1, A2, A3, · · · should
be the same. Therefore, we can enforce a consistency loss
on these different albedo layers for unsupervised training of
S-Net.

Low-rank loss Our unsupervised training enforces consis-
tency among diffuse chromaticity layers and albedo layers
via a low-rank loss. For the case of albedo layers, the low-
rank loss can be defined as the second singular value of the
matrix M formed by reshaping each albedo image into a
vector and stacking the vectors of multiple images (Yi et al.
2018). Although consistency could alternatively be enforced
through minimizing L1 or L2 differences, e.g. minimizing
|A1 − A2|1,2, the lack of scale invariance of the L1 and L2

losses can lead to degenerate results where A1 and A2 ap-
proach zero. To avoid this problem, the loss function should
satisfy the following constraint,

L(A1, A2) = L(αA1, αA2),

where α is a global scale factor for the whole albedo image.
In order to make the low-rank loss scale-invariant, we use

the first singular value to approximate the scale and define a
scale-invariant low-rank loss (SILR) as

LSILR = σ2/σ1,

∂LSILR

∂Mi,j
=

σ1 ∗ (Ui,2 × V2,j)− σ2 ∗ (Ui,1 × V1,j)

σ2
1

.
(3)

where σ1 and σ2 are the first two singular value of M com-
puted by SVD decomposition. We apply this scale-invariant
low-rank loss (SILR) to train both H-Net and S-Net.

Misalignment-robust color distribution loss

We present a way to relax the requirement of pixel-to-
pixel correspondence in the low-rank loss, so that customer
photos can be effectively utilized for training. Our obser-
vation is that, though precise pixelwise alignment is gen-
erally difficult, the state-of-the-art alignment algorithms,
e.g. WeakAlign (Rocco, Arandjelovic, and Sivic 2018) and
FlowNet (Ilg et al. 2017; Dosovitskiy et al. 2015), are ma-
ture enough to establish a reasonable approximate align-
ment. Thus, though some pixels may be misaligned, their
correct correspondences are still within a small neighbor-
hood of their estimated locations. This motivates us to de-
velop a local distribution based representation for the low-
rank loss.

Suppose we have a predicted albedo layer A. We partition
it into a grid of N cells. Within each cell, we reorder the pix-
els by increasing intensity. This is done for each color chan-
nel individually, and all the cells for all the color channels
are reshaped and concatenated to form a new vector repre-
sentation for the image. The color distribution loss is then
computed as the SILR of these image vectors. In our imple-
mentation, we divided 320×320 images into 256 grid cells
for all training phases.

This vector representation of locally re-ordered pixel val-
ues is robust to slight misalignment for the following rea-
sons: (1) Since the dimensions of grid cells are much larger
than typical misalignment distances, the corresponding grid
cells of different images will largely overlap the same ob-
ject regions; (2) Products tend to have a sparse set of surface
colors, and the pixel reordering will help to align these col-
ors between the corresponding grid cells of different images,
which is sufficient for measuring color-based consistency;
(3) With this representation, the SILR loss is empirically
found to be more sensitive to the presence of highlights or
albedo distortions than to slight misalignment, as illustrated
in Figure 3 for diffuse chromaticity.

We note that a local color distribution could more directly
be modeled by a color histogram. However, color histograms
are not differentiable, and this motivated us to develop the
pixel reordering representation as a differentiable approxi-
mation to color histograms. Local regions that have similar
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Figure 3: Distances between color distributions are more
sensitive to the presence of highlights than to pixel-to-pixel
distance between misaligned images. The grid cells in the
top two images are spatially closer to each other, but have
greater difference in color distribution due to highlights.

color histograms will have similar pixel reordering represen-
tations, and vice versa.

Joint finetuning by contrastive loss

After training H-Net and S-Net individually, we adopt a
novel contrastive loss to finetune the entire network in an
end-to-end manner. Our approach is based on the observa-
tion that intrinsic image decomposition can be better per-
formed after highlights have been separated from input im-
ages. Related observations have been made in other recent
works. For example, Ma et al. (Ma et al. 2018) mention that
their method cannot handle specularity well, and this limita-
tion will be addressed in future work. Also, Shi et al. (Shi et
al. 2017) discuss that the multiplicative intrinsic image de-
composition model, Id = A · S, cannot adequately account
for additive highlight components.

Based on this observation, we define a contrastive loss. As
indicated in Figure 4, our low-rank loss on the albedo layers
of multiple images is L1 if highlights are removed from the
input images following the image formation model I = A ·
S +H . In another branch, we compute the low-rank loss on
albedo layers as L0, where the input images are decomposed
by S-Net directly following the image formation model I =
A · S. The contrastive loss is defined as:

Lct = L1 − L0. (4)

Intuitively, the contrastive loss is designed to maximize
the distance between L1 and L0 (where Lct is negative), so
as to force H-Net to improve its highlight separation and thus
decrease L1 relative to L0. Both subnets can be finetuned by
this loss. In our experiments, we found that using Lct alone
will lead to increases of both L1 and L0, as this increases
their difference as well. To avoid this degenerate case, we
add ωL1 as a regularization, such that the joint finetuning
loss becomes L = Lct+ωL1, where ω is set to 1.0 in our im-
plementation. This ensures that both L1 and the contrastive
loss are minimized together.

After these three training phases, our network shown in
Figure 2 is able to separate the highlight, diffuse, albedo,

II1…n DD1…nHH1…n SS1…n

AA1…n

-

/

Shared

S’S’1…n

A’A’1…n/ Loss0

Loss1

HH-H-Net SS-S-Net

SS-S-Net

Figure 4: Network structure for joint finetuning by con-
trastive loss.

and shading layers of a test image. Further implementation
details are given in the supplement1.

Experiments

Since previous works generally address highlight separa-
tion or intrinsic image estimation but not both, we eval-
uate our method on these two tasks separately on various
datasets. Due to limited space, many additional results and
analyses, including evaluations on the MIT intrinsic image
dataset (Grosse et al. 2009) and Intrinsic Images in the Wild
(IIW) (Bell, Bala, and Snavely 2014), highlight separation
on grayscale images (which cannot be handled by most pre-
vious techniques), and the inadequacy of structure-from-
motion for aligning our customer photos, are provided in the
supplement1.

Highlight separation

Synthetic dataset In Table 1 (top-left), we compare our
method to several leading techniques on highlight sepa-
ration using synthetic data from the ShapeNet Intrinsic
Dataset (Shi et al. 2017). From this dataset, we randomly
select 500 images covering a wide range of objects and ma-
terials to form the test set. The results are reported in terms
of MSE and DSSIM, which measure pixelwise difference
and structural dissimilarities, respectively.

Examples for visual comparison are shown in Figure 5.
Earlier methods (Tan, Nishino, and Ikeuchi 2004; Yang,
Wang, and Ahuja 2010; Shen and Zheng 2013) often as-
sume the illumination to be white and can estimate only
a grayscale highlight layer, even when the lighting is not
white. Moreover, they cannot deal well with saturated re-
gions, which generally have non-white highlight compo-
nents that result from subtracting (non-white) diffuse com-
ponents from saturated image values. A recent method (Guo,
Zhou, and Wang 2018) handles saturated highlight regions
better with a low-rank and sparse decomposition. However,
it still cannot recover correct diffuse color at saturated re-
gions where its assumed dichromatic model is violated, lead-
ing to artifacts in diffuse layers. The CNN-based method of
(Shi et al. 2017) can learn from various training data com-
posed of different surface materials, but it still does not han-
dle saturation well. By comparison, our method succeeds in
predicting highlight colors and generates reasonable diffuse
layers even for saturated regions.

Real dataset Since no standard real-image dataset exists
for evaluating highlight separation, we captured a dataset
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Input Ours GTGuo et al.Shi et al.Yang et al. Shen et al.Tan et al.

Figure 5: Visual comparisons of highlight separation on the
ShapeNet Intrinsic Dataset. For each example, the top row
shows the input image and separated diffuse layers, and the
bottom row exhibits the separated highlight layers. GT de-
notes ground truth.

Synthetic Real
Method MSE DSSIM MSE DSSIM

Tan et al. 0.0155 0.0616 0.0173 0.0368
Yang et al. 0.0053 0.0336 0.0043 0.0162
Shen et al. 0.0059 0.0338 0.0047 0.0163
Shi et al. 0.0063 0.0526 0.0063 0.0237
Guo et al. 0.0028* 0.0208* 0.0045 0.0145

Ours 0.0016 0.0159 0.0036 0.0139

No Finetuning 0.0015 0.0176 0.0045 0.0188
Pixel-to-pixel 0.0020 0.0166 0.0041 0.0149

Table 1: Highlight separation on the synthetic ShapeNet In-
trinsic Dataset and on a real-image dataset. Errors are for
diffuse layers. Top: Comparison to state of the art. Lowest
errors shown in bold and second lowest in italics. Guo(Guo,
Zhou, and Wang 2018) is tested on 50 of the 500 synthetic
data in total, with the results marked by *, since we needed
the authors to process our images. Bottom: Ablations.

consisting of 20 ordinary objects with ground truth obtained
by cross polarization in a laboratory environment. Table 1
(top-right) shows the MSE and DSSIM of different methods
on this dataset. Qualitative comparisons are shown in Fig-
ure A.6 and A.7 of the supplement1. Our method is found
to recover highlight and diffuse layers closest to the ground
truth, with highlights of correct color even in saturated re-
gions. While our technique successfully estimates the sur-
face colors in the diffuse layers, the other methods tend to
leave black artifacts at saturated regions. Additional quali-
tative results on real images under natural lighting can be
found in the supplement1 as well.

Ablations We conducted an ablation study to examine the
main novel elements of our system, with the results shown
in Table 1 (bottom). When the unsupervised finetuning is
removed from the system, the difference in performance be-

MSE(A) DSSIM(A) MSE(S) DSSIM(S)
SIRFS 0.0081 0.0636 0.0066 0.0785

DI 0.0086 0.0590 0.0047 0.0765
Shi et al. 0.0068 0.0565 0.0023 0.0691
Li et al. 0.0066 0.0541 0.0063 0.0812

Ours 0.0054 0.0436 0.0045 0.0686

No Finetuning 0.0108 0.0664 0.0096 0.0810
Pixel-to-pixel 0.0067 0.0460 0.0087 0.0774

Table 2: Intrinsic image decomposition on synthetic data
from the ShapeNet Intrinsic Dataset. The lowest errors are
in bold, and the second lowest are in italics.

comes more significant on real images than on synthetic im-
ages, since the finetuning provides training in the domain
of real images. On real images without finetuning, the per-
formance is at a level similar to the previous state of the
art, while our full system yields an approximate 20-25% im-
provement over this.

To examine the importance of our color distribution loss
in dealing with misalignment, we compare to the results of
our network when using a pixel-to-pixel low-rank loss in-
stead. Some moderate quantitative gain is observed, about
4-20% for synthetic images and 7-10% for real images.
We point readers to the qualitative comparisons shown in
Fig. A.1 of the supplement1, where the diffuse layers com-
puted without the color distribution loss contain severe ar-
tifacts around highlight regions. Later, it will be shown that
the color distribution loss has greater quantitative impact on
intrinsic image decomposition.

When the contrastive loss is removed from the system, the
solution often degenerates to a diffuse layer of all zeros, as
this allows H-Net to reach a minimum most quickly. Similar
to a generative adversarial network (GAN), the contrastive
loss creates a competition between losses that can steer the
learning toward better minima and/or away from degenerate
cases. By including the contrastive loss, the learning rate of
S-Net becomes twice that of H-Net, causing the training to
focus more on S-Net and thus avoiding degenerate solutions.

Intrinsic image decomposition

ShapeNet Intrinsic Dataset For intrinsic image decom-
position, we compare our network to SIRFS (Barron and
Malik 2015), DI (Narihira, Maire, and Yu 2015b), Shi et
al. (Shi et al. 2017), and Li et al. (Li and Snavely 2018b)
on the ShapeNet Intrinsic Dataset. Similar to the evaluation
of highlight separation, we use MSE and DSSIM to mea-
sure results. These results are summarized in Table 2 (top)
and show the relatively strong performance of our method.
Qualitative comparisons are shown in Figure A.13 and A.14
of the supplement1.

SIRFS (Barron and Malik 2015), which is based on scene
priors, fails on non-Lambertian objects. The learning-based
method DI (Narihira, Maire, and Yu 2015b) trained on syn-
thetic diffuse scenes exhibits similar problems. The method
by Shi et al. (Shi et al. 2017) performs better than previ-
ous methods on non-Lambertian objects. One reason is that,
like our method, it explicitly models highlights, in contrast
to other methods (Narihira, Maire, and Yu 2015b; Barron
and Malik 2015; Li and Snavely 2018b) which consequently
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MSE(S) DSSIM(S)
SIRFS(Barron and Malik 2015) 0.0097 0.0457

DI(Narihira, Maire, and Yu 2015b) 0.0061 0.0385
Shi(Shi et al. 2017) 0.0043 0.0331

Li(Li and Snavely 2018b) 0.0073 0.0401
CG(Li and Snavely 2018a) 0.0061 0.0413

Ours 0.0041 0.0316

Table 3: Evaluation of shading accuracy on the DiLiGenT
dataset. The lowest errors are in bold.

Shi OursLiDISIRFS GTInput CG

Figure 6: Shading layer comparisons on DiLiGenT dataset.
Please see Table 3 for the notations of previous methods.

have artifacts in the albedo layer on highlight regions. An-
other reason is because it is trained on the ShapeNet Intrinsic
training split with 80% of the whole dataset. In comparison,
our method is pretrained on a very small amount (1.1%) of
the ShapeNet dataset to obtain a good network initialization,
and is finetuned on a large amount of real data. Despite this,
it still performs well on synthetic ShapeNet images. Since
our S-Net solves for shading and then computes albedo us-
ing the image formation model Id = A ·S, it generates high
resolution albedo maps with texture details, whereas many
networks that directly solve for albedo will obtain blurred
results due to feature map downsampling in the network.

DiLiGenT dataset We also conduct experiments on real
images. Since there do not exist intrinsic image datasets
with ground truth for general real objects2, we evaluate
on ground-truth shading layers generated from the DiLi-
GenT photometric stereo dataset (Shi et al. 2019). As DiLi-
GenT provides ground-truth surface normals and lighting,
but no reflectance information, only the shading layers can
be reconstructed. The dataset contains images of 10 non-
Lambertian objects under 96 different lighting conditions.

Comparisons of our network are made to several leading
techniques. Qualitative and quantitative results are shown in
Figure 6 and Table 3. It is found that our network yields
the highest accuracy in this challenging case of real non-
Lambertian objects.

2The IIW dataset (Bell, Bala, and Snavely 2014) and SAW
dataset (Kovacs et al. 2017) are of real scenes, while the objects in
the MIT dataset (Grosse et al. 2009) are restricted to highly Lam-
bertian reflectance.

DiffuseInput Highlight Albedo Shading

Figure 7: Qualitative comparisons on real images. We com-
pare our end-to-end separation (odd rows) to the combina-
tion of Yang (Yang, Wang, and Ahuja 2010) for highlight
separation and Shi (Shi et al. 2017) for intrinsic image de-
composition (even rows).

Other datasets There exist other datasets that can be used
for intrinsic image evaluation, including the MIT intrinsic
image dataset (Grosse et al. 2009) and Intrinsic Images in
the Wild (IIW) (Bell, Bala, and Snavely 2014). Due to lim-
ited space, comparisons on these datasets, as well as qualita-
tive comparisons on more natural images collected from the
Internet, are presented in the supplement1. In addition, some
qualitative results of full end-to-end separations on real im-
ages are shown in Figure 7, with comparisons to a combi-
nation of two previous methods that exhibit state-of-the-art
performance in quantitative evaluations.

Ablations Ablation experiments were also conducted for
intrinsic image decomposition on ShapeNet, with the results
given in Table 2 (bottom). Even though ShapeNet consists of
synthetic images, significant gains were obtained by includ-
ing the unsupervised finetuning (15-50%) and by using the
color distribution loss instead of a pixel-to-pixel low rank
loss (5-48%). The difference is particularly large for shad-
ing, as also evidenced in the qualitative comparisons shown
in Figure A.1 of the supplement1 where the shading layers
are more indicative of surface shape. As with highlight sep-
aration, removal of the contrastive loss leads to degenerate
solutions where the diffuse layer is all zero.

Conclusion

We proposed an end-to-end network to solve highlight sepa-
ration and intrinsic image decomposition together. Our net-
work is able to leverage multi-view object-centric image
sets, such as our Customer Product Photos Dataset, for unsu-
pervised training via a proposed color distribution loss that
is robust to misaligned data. This loss can readily be adapted
for other tasks that are sensitive to misalignment.
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