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Abstract

Regressing the illumination of a scene from the representa-
tions of object appearances is popularly adopted in compu-
tational color constancy. However, it’s still challenging due
to intrinsic appearance and label ambiguities caused by un-
known illuminants, diverse reflection properties of materi-
als and extrinsic imaging factors (such as different camera
sensors). In this paper, we introduce a novel algorithm –
Cascading Convolutional Color Constancy (in short, C4) to
improve robustness of regression learning and achieve sta-
ble generalization capability across datasets (different cam-
eras and scenes) in a unique framework. The proposed C4

method ensembles a series of dependent illumination hy-
potheses from each cascade stage via introducing a weighted
multiply-accumulate loss function, which can inherently cap-
ture different modes of illuminations and explicitly enforce
coarse-to-fine network optimization. Experimental results on
the public Color Checker and NUS 8-Camera benchmarks
demonstrate superior performance of the proposed algorithm
in comparison with the state-of-the-art methods, especially
for more difficult scenes.

Introduction
The colors present in images are biased by the illumina-
tion in addition to the intrinsic reflection properties of scene
objects and extrinsic spectral sensitivity across cameras,
but they appear to be relatively constant for human visual
perception system. Such a property, referred to as color
constancy, makes object appearance under diverse light-
ing sources independent of the casting illumination, which
is desired in a large number of high-level vision prob-
lems. The color constancy problem can typically be ad-
dressed via estimating the color of the illuminant of the
scene firstly, which then recovers the canonical colors of
scene objects. A large number of computational color con-
stancy algorithms (Qian et al. 2019; Chen et al. 2019;
Cheng et al. 2015; Bianco, Cusano, and Schettini 2017;
Shi, Loy, and Tang 2016; Hu, Wang, and Lin 2017) rely on
accurate and robust illumination predictions and then em-
ploy the simple yet effective von Kries model (von Kries
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Figure 1: Visualization of the proposed C4 method in a cas-
caded structure in the top row, while plots in the bottom row
show dependent illumination hypotheses of different cas-
cade stages in our C4 on an example from the Color Checker
dataset. Our C4 can significantly boost illumination estima-
tion performance in a coarse-to-fine refining manner. More
examples are given in the experiment section.

1902) for image correction. Estimating the illumination of
an image can be formulated into learning a regression map-
ping from the imagery representation to its corresponding
illumination label. Searching and identifying the best hy-
pothesis of the illumination is not trivial in view of ap-
pearance inconsistency and label ambiguity. In addition to
unknown surface reflection, the large appearance variation
of the captured scene objects can be caused by the sensor
sensitivity and also the illuminant spectrum. Specifically,
spectral responses of sensors in cameras for color imaging
are not consistent across camera models and brands, e.g.
in the NUS 8-camera dataset (Cheng, Prasad, and Brown
2014) one scene is captured with eight different cameras,
and they have visually varying colors for the identical object
surface. Consequently, a typical solution is to train camera-
specific estimators, which is less efficient and even imprac-
tical due to data-demanding characteristics. Very few algo-
rithms (Qian et al. 2019) focus on the challenging camera-
agnostic illumination estimation, achieving robust perfor-
mance. Therefore, the challenge still exits. Most of the ex-
isting algorithms (Bianco, Cusano, and Schettini 2017; Bar-
ron 2015; Shi, Loy, and Tang 2016; Barron and Tsai 2017;

12725



Hu, Wang, and Lin 2017) have been proposed to deal with
appearance inconsistency, while very few concern on the
challenge caused by the error-prone assumption in prac-
tice, i.e. one unique spectral illumination exists in the whole
scene of each image. In the procedure of label acquisition
for color constancy datasets, a Macbeth ColorChecker chart
is usually placed in the image, whose colors are recorded
as the ground truth illumination, breaking the guarantee: the
recorded “ground truth” represents the real global illumina-
tion. As a result, the gap between the label and the true scene
illumination over spatial regions makes learning a regres-
sion more challenging, especially considering data augmen-
tation via patch-based sampling widely adopted in state-of-
the-art deep methods (Bianco, Cusano, and Schettini 2017;
Shi, Loy, and Tang 2016; Hu, Wang, and Lin 2017). Ro-
bustness against object appearance inconsistency and la-
bel ambiguity are desired imagery representation proper-
ties to learn from imagery observations and illumination la-
bels. To achieve these, we introduce a multiply-accumulate
loss function for cascading convolutional color constancy
(e.g. FC4 (Hu, Wang, and Lin 2017) in the experiments) to
cope with both challenges simultaneously. In details, a se-
ries of dependent illumination hypotheses, reflecting differ-
ent modes of illuminations, are generated via the proposed
cascaded model, which are then combined in an ensemble
to enforce explicitly coarse-to-fine refinement on illumina-
tion hypotheses as Figure 1 shows. The contributions of this
paper are three-fold.

• This paper proposes a generic cascaded structure (i.e. the
multiply-accumulate cascade) on illumination estimation
to 1) ensemble multiple dependent illumination hypothe-
ses and 2) achieve coarse-to-fine refinement, via a novel
multiply-accumulate loss, which can be readily plugged
into other learning-based illumination estimators.

• The proposed C4 method increases model flexibility via
enriching abstract features in a deeper network struc-
ture and also discovers latent correlation in the hypoth-
esis space, which alleviates the suffering from ambiguous
training samples.

• Extensive experiments on two popular benchmarks show
that our C4 achieves significantly better performance than
the state-of-the-art, especially when coping with more dif-
ficult scenes.

Source codes and pre-trained models are available at
https://github.com/yhlscut/C4.

Related work
Color constancy has been investigated for decades and nu-
merous conventional algorithms are based on low-level im-
agery statistics, such as White-Patch (Brainard and Wandell
1986), Gray-World (Buchsbaum 1980), Gray-Edge (Van
De Weijer, Gevers, and Gijsenij 2007), Shades-of-Gray (Fin-
layson and Trezzi 2004), Bright Pixels (Joze et al. 2012),
Grey Pixel (Yang, Gao, and Li 2015) and Gray Index (Qian
et al. 2019). These algorithms are proposed to determine
the neutral white color with algorithm-specific assumptions,
which encourage direct application to testing images in a

learning-free fashion but can be sensitive in practice in con-
sideration of their dependency on statistical distribution of
pixel-wise colors, e.g. lack of gray pixels with using grey
pixels (Yang, Gao, and Li 2015) and state-of-the-art statisti-
cal grey index (Qian et al. 2019).

Learning-based methods are a powerful alternative for
generating constant colors under a scene illumination, which
can be categorized into two groups – gamut mapping
(Barnard 2000; Chakrabarti, Hirakawa, and Zickler 2011)
and regression learning (Funt and Xiong 2004; Cheng et al.
2015; Qian et al. 2017; Chen et al. 2019; Cardei and Funt
1999; Schaefer, Hordley, and Finlayson 2005; Bianco, Cu-
sano, and Schettini 2017; Barron 2015; Shi, Loy, and Tang
2016; Barron and Tsai 2017; Hu, Wang, and Lin 2017). The
former gamut mapping algorithms including edge-based
(Barnard 2000), intersection-based (Chakrabarti, Hirakawa,
and Zickler 2011) and pixels-based (Chakrabarti, Hirakawa,
and Zickler 2011) assume the size of colors under a given
illuminant is limited, but will have a variation on observed
colors when a deviation in the color of illuminants. Given
sufficient labeled training data, a model can be trained to
recognize the canonical illumination by mapping from a
gamut of a testing image under an unknown illuminant to
the canonical gamut, which can thus generate an estimation
of the scene illumination.

The latter regression learning-based algorithms aim to
learn a direct regression mapping from the imagery rep-
resentation to its corresponding illumination vector. These
methods focus on either designing robust regressors against
large feature variation, based on support vector regression
(Funt and Xiong 2004), regression trees (Cheng et al. 2015),
an ensemble of shallow regressors (Cardei and Funt 1999;
Schaefer, Hordley, and Finlayson 2005) or mining inter-
dimensional label correlation as structured-output regres-
sion (Qian et al. 2016; Chen et al. 2019). Inspired by the
recent success of convolutional neural networks on numer-
ous vision tasks, a number of works introduce the 2D con-
volutional feature encoding into color constancy. (Bianco,
Cusano, and Schettini 2017) is the first attempt of deep
color constancy, which copes with data sparsity problem de-
manded by fitting millions of network parameters via patch-
based sampling. Convolutional Color Constancy (CCC)
(Barron 2015) and Fast Fourier Color Constancy (FFCC)
(Barron and Tsai 2017) formulate the problem into a 2D
spatial localization task on a 2D log-chroma space, while
the difference of both methods lies in better performance
and acceleration of the latter benefiting from extra seman-
tic features and the BVM estimation in the frequency do-
main. In (Hu, Wang, and Lin 2017), a confidence-pooling
layer is introduced to automatically feature encoding and
discover the location of essential spatial regions for illumi-
nation estimation. Existing deep learning methods mainly
focus on designing network structure for robust feature en-
coding against the challenge of inconsistent appearance, but
omits to benefit from combining multiple illumination hy-
potheses in an ensemble to handle ambiguous samples.

Recent DS-Net (Shi, Loy, and Tang 2016) has two expert
branches for first generating two hypotheses and then auto-
matically selecting the better one. Similar to our C4 method,
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Figure 2: Pipeline of our three-stage C4 model based on the SqueezeNet backbone.

its motivation is to exploit multiple hypotheses of scene illu-
mination for robust color constancy. However, there are two
key differences. Firstly, the DS-Net conducts a discrimina-
tive selection instead of jointly learning to discover latent de-
pendency across multiple illumination hypotheses as our C4

model. Secondly, the DS-Net generates multiple indepen-
dent illumination hypotheses in parallel, while the proposed
C4 method in a cascading network structure generates de-
pendent hypotheses in serial to explicitly enforce coarse-to-
fine refinement. Experiment results in Tables 1 and 2 demon-
strate the superiority of our C4 model to the DS-Net and
other state-of-the-art methods.

C4: Cascading Convolutional Color Constancy
The problem definition of single illumination estimation
problem is to predict the illumination vector y ∈ R

3 from
the image X ∈ R

H×W×3. For learning-based illumination
estimation, the objective function can be written as the fol-
lowing:

min
θ

L(fθ(X),y), (1)

where fθ(·) ∈ R
3 is the mapping from the image X to illu-

mination vector y, and θ denotes the model parameters of f
to be optimized. L(·) denotes the loss function and the typ-
ical loss in illumination estimation is the angular loss (for-
mulated in Equation (3)). During testing, given an input, the
trained model fθ(·) infers the predicted illumination fθ(X),
which is used to generate the color-corrected image. In the
context of convolutional color constancy, fθ(·) is the out-
put of a deep network, while θ denotes the network weights.
This section will present an overview of the proposed C4

algorithm, a novel multiply-accumulate loss, image correc-
tion, and implementation details respectively.

Network Structure
The C4 network consists of multiple stages. Given training
pairs {X,y}i, i ∈ {1, 2, · · · , N}, in a cascaded structure,

fθ(·) can be decomposed into fl(·), l = 1, 2, . . . , L, where l
and L denote the cascade level and the total number of cas-
cade stages, respectively, with θ omitted for simplicity. We
define flfl−1(X) as a simpler notation for fl(X/fl−1(X))
(image correction, depicted in Equation (5)). Considering
the cascaded structure, now Equation (1) of the three-stage
C4, illustrated in Figure 2, can be written as the following:

min
θ

L(f3f2f1(X)),y; θ). (2)

In the light of its good performance in illumination es-
timation, we employ the state-of-the-art CNN model –
FC4 based on the AlexNet and SqueezeNet backbone in
(Hu, Wang, and Lin 2017). In details, the FC4 adopts
low-level convolutional layers of off-the-shelf AlexNet and
SqueezeNet pre-trained on the ImageNet (Deng et al. 2009),
and replaces the remaining layers with two more convolu-
tional layers. Specifically, the AlexNet-FC4 model keeps all
the layers up to the conv5 layer and replaces the rest fully-
connected layers with conv6 having 6×6×64 convolutional
filters and conv7 (1×1×4), while the detailed network struc-
ture of the SqueezeNet-FC4 is shown in Figure 2. For both
networks, every convolution layers are followed by a ReLU
non-linearity, and a dropout with probability 0.5 is added be-
fore the last convolutional layer. It is noted that a confidence-
weighted pooling layer is followed by the last conv layer
in original FC4 to improve robustness against color consis-
tency across spatial regions via suppressing less confident
predictions, while our FC4 model employs a much simpler
summation on the output of last conv layer to obtain global
illumination y (i.e., a red bar in the top row of Figure 2)
without hindering the performance.

A Novel Multiply-Accumulate Loss
As mentioned earlier, illumination predictions in different
cascade stages are approximate to ground truth illumination,
which can be viewed as its different nodes. Different from
the DS-Net (Shi, Loy, and Tang 2016) to design a selec-
tion mechanism via training another branch to determine the
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Table 1: Comparative evaluation on two popular benchmarks. All results reported in this table are in units of degrees.
Methods NUS 8-Camera (Cheng, Prasad, and Brown 2014) Color Checker (Shi 2000)

Mean Median Tri-mean Best 25% Worst 25% Mean Median Tri-mean Best 25% Worst 25%
Static Methods
White-Patch (Brainard and Wandell 1986) 10.62 10.58 10.49 1.86 19.45 7.55 5.68 6.35 1.45 16.12
Gray-World (Buchsbaum 1980) 4.14 3.20 3.39 0.90 9.00 6.36 6.28 6.28 2.33 10.58
1st-order Gray-Edge (Van De Weijer, Gevers, and Gijsenij 2007) 3.20 2.22 2.43 0.72 7.69 5.33 4.52 4.73 1.86 10.03
2nd-order Gray-Edge (Van De Weijer, Gevers, and Gijsenij 2007) 3.20 2.26 2.44 0.75 7.27 5.13 4.44 4.62 2.11 9.26
Shades-ofq-Gray (Finlayson and Trezzi 2004) 3.40 2.57 2.73 0.77 7.41 4.93 4.01 4.23 1.14 10.20
General-Gray-World (Barnard, Cardei, and Funt 2002) 3.21 2.38 2.53 0.71 7.10 4.66 3.48 3.81 1.00 10.09
Bright Pixels (Joze et al. 2012) 3.17 2.41 2.55 0.69 7.02 3.98 2.61 - - -
Cheng et al.2104 (Cheng, Prasad, and Brown 2014) 2.92 2.04 2.24 0.62 6.61 3.52 2.14 2.47 0.50 8.74
LSRS (Gao et al. 2014) 3.45 2.51 2.70 0.98 7.32 3.31 2.80 2.87 1.14 6.39
Grey Pixel (edge) (Yang, Gao, and Li 2015) 3.15 2.20 - - - 4.60 3.10 - - -
GI (Qian et al. 2019) 2.91 1.97 2.13 0.56 6.67 3.07 1.87 2.16 0.43 7.62
Learning-based Methods
Edge-based Gamut (Barnard 2000) 8.43 7.05 7.37 2.41 16.08 6.25 5.04 5.43 1.90 13.58
Bayesian (Gehler et al. 2008) 3.67 2.73 2.91 0.82 8.21 4.82 3.46 3.88 1.26 10.49
MvCA (Chen et al. 2019) - - - - - 4.10 2.60 - - -
Intersection-based Gamut (Chakrabarti, Hirakawa, and Zickler 2011) 7.20 5.96 6.28 2.20 13.61 4.20 2.39 2.93 0.51 10.70
Pixels-based Gamut (Chakrabarti, Hirakawa, and Zickler 2011) 7.70 6.71 6.90 2.51 14.05 4.20 2.33 2.91 0.50 10.72
Natural Images Statistics (Gijsenij and Gevers 2010) 3.71 2.60 2.84 0.79 8.47 4.19 3.13 3.45 1.00 9.22
Spatio-spectral (GenPrior) (Chakrabarti, Hirakawa, and Zickler 2011) 2.96 2.33 2.47 0.80 6.18 3.59 2.96 3.10 0.95 7.61
Corrected-Moment1 (19 Color) (Finlayson 2013) 3.05 1.90 2.13 0.65 7.41 2.96 2.15 2.37 0.64 6.69
Corrected-Moment1 (19 Edge) (Finlayson 2013) 3.03 2.11 2.25 0.68 7.08 3.12 2.38 2.59 0.90 6.46
Exemplar-based (Joze and Drew 2013) - - - - - 3.10 2.30 - - -
Chakrabarti et al. 2015 (Chakrabarti 2015) - - - - - 2.56 1.67 1.89 0.52 6.07
Regression Tree (Cheng et al. 2015) 2.36 1.59 1.74 0.49 5.54 2.42 1.65 1.75 0.38 5.87
CNN (Bianco, Cusano, and Schettini 2017) - - - - - 2.36 1.98 - - -
CCC (dist+ext) (Barron 2015) 2.38 1.48 1.69 0.45 5.85 1.95 1.22 1.38 0.35 4.76
DS-Net (HypNet+SeNet) (Shi, Loy, and Tang 2016) 2.24 1.46 1.68 0.48 6.08 1.90 1.12 1.33 0.31 4.84
FFCC (Barron and Tsai 2017) 1.99 1.31 1.43 0.35 4.75 1.78 0.96 1.14 0.29 4.62
AlexNet-FC4 (Hu, Wang, and Lin 2017) 2.12 1.53 1.67 0.48 4.78 1.77 1.11 1.29 0.34 4.29
SqueezeNet-FC4 (Hu, Wang, and Lin 2017) 2.23 1.57 1.72 0.47 5.15 1.65 1.18 1.27 0.38 3.78
C4

AlexNet-FC4 (ours) 2.07 1.47 1.63 0.48 4.63 1.49 1.03 1.13 0.29 3.52
C4

SqueezeNet-FC4 (ours) 1.96 1.42 1.53 0.48 4.40 1.35 0.88 0.99 0.28 3.21

better hypothesis, the proposed cascaded network aims to
exploit latent dependency across illumination hypotheses to
explicitly enforce coarse-to-fine refinement approaching the
ground truth. To this end, we introduce a combined multiply-
accumulate loss on all hypotheses to capture their latent cor-
relation to refine illumination hypotheses,which is depicted
as the following equation:

L =

L∑
l=1

L(l)(

l∏
i=1

fi(Xi),y) (3)

where L(l) represents the loss at the l-th cascade stage.
Moreover, the proposed loss can alleviate cumulative errors
via supervision on intermediate illumination predictions. We
also consider its simple weighted extension as

L =
L∑

l=1

wlL(l)(

l∏
i=1

fi(Xi),y) (4)

where wl denotes weights for the loss on illumination pre-
diction in the l-th stage and ground truth y. We compare the
variants of weights in Equation (4) and results are shown
in Table 3. The proposed losses are embedded into the
deep cascaded network in an end-to-end learning manner as
shown in Figure 2.

For large appearance variation and ambiguous labels, a
selection or an ensemble of a number of illumination es-
timators are verified its superior robustness, but it remains
challenging to capture latent correlation across illumination
hypotheses. The combined loss proposed in this paper is ex-
tremely simple yet effective, as the principle of our design
can be explained by enforcing each cascaded stage to learn a
specific correction pattern to suppress ambiguous hypothe-
ses in previous stages.

Image Correction
With an estimated illumination ŷ = [ŷr, ŷg, ŷb] ∈ R

3 for
a biased image X with the trained C4 model, the canonical
colors of scene objects in the image can be recovered un-
der the simplified assumption that each RGB channel can
be modified separately (von Kries 1902). In other words, we
can obtain the corrected image X̄ ∈ R

H×W×3 under the
canonical illumination as

X̄j = Xj/yj ∈ R
H×W , j ∈ {R,G,B}. (5)

Implementation Details
In data augmentation, we randomly crop patches from orig-
inal images with a side length of [0.1, 1] times the shorter
side of the original image which are randomly rotated be-
tween −30◦ and 30◦. These patches are then resized into
512 × 512 pixels and finally randomly horizontal flipped
with a probability of 0.5. To increase the diversity of lim-
ited training data, the illumination labels in each image are
scaled by three different random values within the range be-
tween 0.6 and 1.4, and pixel-wise scene colors present in the
original image are also biased by the randomly generated
ratios. We further apply gamma correction to convert linear
images into nonlinear images and normalize the values of
the images to [0, 1]. During training, the ADAM algorithm
(Kingma and Ba 2014) is employed to train the model with a
fixed batch size (i.e. 16 in our experiments), and the learning
rate is set to 3× 10−4 and 1× 10−4 for our C4 model based
on the SqueezeNet and AlexNet backbone respectively. For
computational efficiency and robust performance, we first
train the one-stage C4 for 2, 000 epochs, the learned weights
are loaded to each cascade sub-net as initial weights in our
three-stage C4 model for further fine-tuning jointly.
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Table 2: Camera-agnostic evaluation. All results are in units of degrees.
Training set NUS 8-Camera Color Checker
Testing set Color Checker NUS 8-Camera

Mean Median Tri-mean Best 25% Worst 25% Mean Median Tri-mean Best 25% Worst 25%
Static Methods
White-Path (Brainard and Wandell 1986) 7.55 5.68 6.35 1.45 16.12 9.91 7.44 8.78 1.44 21.27
Gray-World (Buchsbaum 1980) 6.36 6.28 6.28 2.33 10.58 4.59 3.46 3.81 1.16 9.85
1st-order Gray-Edge (Van De Weijer, Gevers, and Gijsenij 2007) 5.33 4.52 4.73 1.86 10.43 3.35 2.58 2.76 0.79 7.18
2nd-order Gray-Edge (Van De Weijer, Gevers, and Gijsenij 2007) 5.13 4.44 4.62 2.11 9.26 3.36 2.70 2.80 0.89 7.14
Shades-of-Gray (Finlayson and Trezzi 2004) 4.93 4.01 4.23 1.14 10.20 3.67 2.94 3.03 0.99 7.75
General-Gray-World (Barnard, Cardei, and Funt 2002) 4.66 3.48 3.81 1.00 10.09 3.20 2.56 2.68 0.85 6.68
Grey Pixel (edge) (Yang, Gao, and Li 2015) 4.60 3.10 - - - 3.15 2.20 - - -
Cheng et al. 2104 (Cheng, Prasad, and Brown 2014) 3.52 2.14 2.47 0.50 8.74 2.92 2.04 2.24 0.62 6.61
LSRS (Gao et al. 2014) 3.31 2.80 2.87 1.14 6.39 3.45 2.51 2.70 0.98 7.32
GI (Qian et al. 2019) 3.07 1.87 2.16 0.43 7.62 2.91 1.97 2.13 0.56 6.67
Learning-based Methods
Bayesian (Gehler et al. 2008) 4.75 3.11 3.50 1.04 11.28 3.65 3.08 3.16 1.03 7.33
Chakrabarti et al. 2015 (Chakrabarti 2015) 3.52 2.71 2.80 0.86 7.72 3.89 3.10 3.26 1.17 7.95
FFCC (Barron and Tsai 2017) 3.91 3.15 3.34 1.22 7.94 3.19 2.33 2.52 0.84 7.01
AlexNet-FC4 (Hu, Wang, and Lin 2017) 3.23 2.57 2.73 0.90 6.70 2.62 2.16 2.25 0.79 5.23
SqueezeNet-FC4 (Hu, Wang, and Lin 2017) 3.02 2.36 2.50 0.81 6.36 2.40 2.03 2.10 0.70 4.80
C4

AlexNet-FC4 (ours) 2.85 2.26 2.38 0.76 5.97 2.52 2.07 2.15 0.69 5.20
C4

SqueezeNet-FC4 (ours) 2.73 2.20 2.28 0.72 5.69 2.28 1.90 1.97 0.67 4.60

Experiments
Datasets and Settings
We conduct experimental evaluation on two public color
constancy benchmarks: the NUS 8-Camera dataset (Cheng,
Prasad, and Brown 2014) and the re-processed Color
Checker dataset (Shi 2000). The NUS 8-camera dataset is
composed of 1736 images from 8 commercial cameras,
while the Color Checker dataset contains 568 images includ-
ing indoor and outdoor scenes. All images in both bench-
marks are linear images in the RAW format of the acqui-
sition device, each with a Macbeth ColorChecker (MCC)
chart, which provides an estimation of illuminant colors.

To prevent the convolutional network from detecting and
utilizing MCCs as a visual cue, all images are masked with
provided locations of MCC during training and testing. Fol-
lowing (Chen et al. 2019; Qian et al. 2019; Barron 2015),
we adopt three-fold cross-validation on both datasets in all
experiments.

As suggested in (Hordley and Finlayson 2004) as well as
a number of recent works (Chen et al. 2019; Qian et al. 2019;
Barron 2015), we use the angular error ε between the RGB
triplet of estimated illuminant ŷ and the RGB triplet of the
measured ground truth illuminant y as the performance met-
ric denoted as :

ε(ŷ,y) = arccos

(
ŷ · y

‖ŷ‖‖y‖
)
; (6)

where · denotes the inner product between vectors, ‖ · ‖ is
the Euclidean norm. In our experiments, the mean, median,
tri-mean of all the angular errors, mean of the best 25% and
the worst 25% errors are reported.

Comparison to State-of-the-Art Methods
Table 1 compares the proposed C4 with the state-of-the-art
methods in terms of the Mean, Median, Tri-mean, the Best
25% and the Worst 25% of angular errors on two datasets.
The proposed method can beat most of color constancy al-
gorithms except the FFCC (Barron and Tsai 2017). On one
hand, on the Color Checker dataset, our method signifi-
cantly outperforms the FFCC on all five metrics, especially

18.18% and 15.10% improvement in the Mean and Worst
25% metrics. On the other hand, on the NUS 8-Camera
benchmark, although FFCC outperforms on some metrics,
our C4

SqueezeNet-FC4 is better than FFCC on the mean and
Worst 25% metrics. Performance gap on the NUS 8-Camera
can be explained by the limited size of scenes (i.e. each
scene generates 8 images with different cameras) leading
to less positive effects of data augmentation in our method.
More importantly, the C4 can consistently beat its direct
competitors – its backbone AlexNet-FC4 and SqueezeNet-
FC4 in all five metrics on both datasets, especially in the
more challenging scenes as illustrated in Figure 3. In view
of the identical network structure for feature encoding, per-
formance gains can only be explained by the design of the
cascaded network structure.

Evaluation on Camera-Agnostic Color Constancy
To verify the robustness of our model against appearance in-
consistency due to camera sensitivity, we take two disjoint
datasets, one for training and the other for testing. Specifi-
cally, we conduct an evaluation on the Color Checker dataset
with a model trained on the NUS 8-camera dataset and vice
versa, whose results are reported in Table 2. Compared to
the state-of-the-art statistical GI (Qian et al. 2019), the C4

achieves competitive performance and performs better in the
Worst 25% metric consistently and significantly. Moreover,
our C4 with different backbone CNNs achieve the best per-
formance again among learning-based illumination estima-
tion in all performance metrics on both datasets, which ver-
ifies that our model can mitigate negative effects of imaging
patterns across cameras owing to its strong generalization
capability via progressive refinement and data argumenta-
tion.

Discussion about Loss Combination
In our cascaded structure, the combination of loss functions
is something worth discussing. We further discuss the design
of our loss function with two strategies: a single multiplica-
tion loss and the weighted multiply-accumulate loss, with
the three-stage C4 model.
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Figure 3: Visualization of harder samples from the Color
Checker dataset. In the 1st and 3rd rows, the lower left parts
of images are corrected by our detected hypotheses and the
other parts are images corrected by the FC4’s predictions.
The numbers in the white rectangles of pictures are angle
errors (in degrees) between illumination predictions and la-
bels. The 2nd and 4th rows show the trajectories of predic-
tions towards ground truth labels.

• Single multiplication Loss – It only penalizes the final
illumination prediction. (e.g., in Equation (4), when L =
3, weights should be [w1, w2, w3] = [0, 0, 1])

• Weighted multiply-accumulate loss – It combines the
intermediate illumination prediction from each stage, and
penalizes these illumination hypotheses jointly. (e.g., in
Equation (4), when L = 3, weights satisfying w1 ×w2 ×
w3 �= 0)

Table 3 shows comparative results on combined strategies
of the loss function. The latter, the weighted multiply-
accumulate loss in Equation (4) is superior to its specific
case – single multiplication loss, which supports our moti-
vation to design the multiply-accumulate loss to exploit mul-
tiple illumination hypotheses. Moreover, among the settings
of weights, the equal weight can be slightly better than the
remaining, although the improvement is very marginal.

Discussion of Cascade Size
Another key insight of our C4 is to incrementally improve il-
lumination predictions in a cascaded structure. Performance
of such a cascaded structure depends on the size of cascade
stages. We demonstrate the validity of our cascaded structure
by comparing the performance at varying cascade levels. As
shown in Figure 5, angular errors in all metrics of two C4

Table 3: Statistics of angular errors (in degrees) obtained by
different loss combinations of the three-stage C4 model on
the Color Checker dataset.

w1 w2 w3 Mean Median Tri-mean Best Worst
25% 25%

Backbone-SqueezeNet-FC4

0.00 0.00 1.00 1.48 0.97 1.10 0.32 3.50
0.20 0.30 0.50 1.37 0.92 1.03 0.29 3.26
0.33 0.33 0.34 1.35 0.88 0.99 0.28 3.21
0.50 0.30 0.20 1.38 0.90 1.00 0.32 3.23
0.70 0.20 0.10 1.37 0.89 1.00 0.31 3.25
Backbone-AlexNet-FC4

0.00 0.00 1.00 1.57 1.09 1.22 0.32 3.60
0.20 0.30 0.50 1.52 1.07 1.17 0.32 3.48
0.33 0.33 0.34 1.49 1.03 1.13 0.29 3.52
0.50 0.30 0.20 1.50 1.01 1.14 0.33 3.50
0.70 0.20 0.10 1.50 1.02 1.14 0.32 3.50

variants decrease with cascade level increasing. In particu-
lar, the performance increases by a big margin from one-
stage C4 to two-stage variant, while a moderate improve-
ment from two-stage to three-stage, or even to four-stage.
However, as the number of cascades continues to increase,
the performance does not improve. We suppose that a deeper
network makes it harder to fit dramatically increasing size of
network parameters. Such a phenomenon encourages a rela-
tively large size of cascade stages for color constancy.

To further illustrate the effectiveness of the introduced
cascaded structure, we visualize some examples with inter-
mediate illumination predictions from each stage of the pro-
posed C4 cascade on the Color Checker dataset in Figure
4. Most corrected images in (c) and (d) are visually closer
to ground truth (GT) than those in (b), and we quantita-
tively measure predictions in the 1st, 2nd and 3rd stages of
three-level C4 model with ground truth of testing samples,
P (1, 2) = 69.72% and P (2, 3) = 60.21%, where P (l, l+1)
denotes the ratios of more accurate predictions of the (l+1)-
th stage in comparison with those of the l-th stage during
testing. It further verifies the rationale of the coarse-to-fine
cascaded structure.

Table 4: Comparison of network parameters on the Color
Checker dataset. The model labeled “1/3p” indicates the
backbone network parameters are reduced by one third. “3-
stage” means three-stages model. C4

B and C4
E mean our pro-

posed network with the model in B) and E) as the backbone
respectively. All results in this table are in units of degrees.

Method Mean Median Tri-mean Best Worst
25% 25%

A) AlexNet-FC4 1.77 1.11 1.29 0.34 4.29
B) AlexNet-FC4,1/3p 2.17 1.58 1.71 0.53 4.87
C) C4

B,3 stage 1.65 1.11 1.22 0.34 3.88
D) SqueezeNet-FC4 1.65 1.18 1.27 0.38 3.78
E) SqueezeNet-FC4,1/3p 1.94 1.40 1.52 0.49 4.31
F) C4

E,3-stage 1.47 0.97 1.09 0.31 3.49

Evaluation with Comparable Network Parameters
As aforementioned, the performance of such a cascaded
structure can be improved with increasing the size of the
cascade stages L (when L <= 4). However, the number
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Figure 4: Visualization of a number of examples from the Color Checker dataset. (a) In the CIE 1931 color space chromaticity
diagram, where the red, green and blue plus sign ’+’ represent the 1st stage, the 2nd stage and the 3rd stage illumination
predictions of our C4 given input images in (b), the black triangle is the corresponding illumination labels. (c) (d) and (e) are
corrected images by intermediate and final illumination hypotheses spotted by the C4. The angle errors (in degrees) between
illumination predictions and labels are highlighted in the white rectangles in the top-right of images.

Figure 5: Evaluation on effect of cascade size on the Color
Checker dataset. The x axis: the length of the cascade, while
the y axis: the angular error (in degrees).

of network parameters is proportional to the size of L. To
explore the real source of this improvement, we compress
our backbone (i.e., AlexNet-FC4 and SqueezeNet-FC4) by
decreasing the size of convolution kernels in every convo-

lutional layer. As shown in Table 4, network parameters in
method B) and E) are only one-third of those in original
backbone method A) and D) after compressing. When using
compressed backbone networks, we get new cascade mod-
els (i.e. three-stage C4 methods C) and F)), whose sizes of
network parameters are comparable to original FC4 models
in A) and D). Results in Table 4 show that superior perfor-
mance can be achieved by method C) and F) in comparison
with method A) and D), which reveal that performance gain
of our C4 can be credited to the cascade network structure
rather than the size of network parameters.

Conclusion
This paper designs a cascade of convolutional neural net-
works for color constancy, which consistently achieves the
best performance for more challenging samples (on the
Worst 25% metric) and more robust performance under the
camera-agnostic setting. Experiment results favor for a rela-
tively larger cascade size and verify the boosting benefits of
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combining multiple illumination hypotheses and the coarse-
to-fine refinement.
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