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Abstract

Point cloud is a principal data structure adopted for 3D ge-
ometric information encoding. Unlike other conventional vi-
sual data, such as images and videos, these irregular points
describe the complex shape features of 3D objects, which
makes shape feature learning an essential component of point
cloud analysis. To this end, a shape-oriented message pass-
ing scheme dubbed ShapeConv is proposed to focus on the
representation learning of the underlying shape formed by
each local neighboring point. Despite this intra-shape re-
lationship learning, ShapeConv is also designed to incor-
porate the contextual effects from the inter-shape relation-
ship through capturing the long-ranged dependencies be-
tween local underlying shapes. This shape-oriented operator
is stacked into our hierarchical learning architecture, namely
Shape-Oriented Convolutional Neural Network (SOCNN),
developed for point cloud analysis. Extensive experiments
have been performed to evaluate its significance in the tasks
of point cloud classification and part segmentation.

Introduction

As a principal data structure adopted for 3D geometric in-
formation encoding, point cloud has been widely used in
several practical applications, such as self-driving cars and
computer graphics. Although geometrical and topological
information can be well-described as the raw point coordi-
nates in point cloud data, the further analysis step of these
irregular points can be quite challenging, as the local under-
lying shapes may not be modeled or recognized appropri-
ately. Following the significant success recently achieved by
Convolution Neural Networks (CNNs) on regular-formatted
visual data, such as images and videos, several attempts have
been made to transform raw point cloud data to either 3D
volumetric representations or a collection of 2D views, so
that it can be handled directly by the CNNs defined on reg-
ular grids.

However, these approaches all have their own drawbacks
and limitations. For the voxelization-based approaches, the
potential information loss occurred in the voxelization stage
may irrupt the object shapes by introducing quantization er-
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ror. For the view-based methods, although an accurate clas-
sification or a descent segmentation can be reached, it re-
quires a large number of view images collected from differ-
ent angles, to make sure the generated 2D projections con-
tain enough discriminative representations of the 3D objects
for further point cloud analysis. Thus, a more shape-oriented
geometric learning approach needs to be developed, which
is not only expected to be able to manipulate the point cloud
data directly, but is also designed to be capable of under-
standing the discriminative information of each local under-
lying shape, by modeling the shape-oriented contextual in-
formation encoded in the point cloud.

PointNet (Qi et al. 2017a) was the first deep learning
based approach to manipulate the point cloud data directly,
learning the pointwise features independently and outputting
a global shape signature from the symmetric aggregation
function applied to these pointwise features. Following the
PointNet, the entire community started to pay more attention
to local point cloud structure modeling, which was neglected
completely by PointNet. DGCNN (Wang et al. 2019) could
be seen as the next milestone, as they generally define Edge-
Conv as:

xk
i = �

j:(i,j)∈E
hΘ

(
xk−1
i ,xk−1

j

)
, (1)

where k is the network layer index, Xi and Xj indicate the
central point and the neighboring points, E denotes the lo-
cal graph dynamically constructed among these points, and
� is the feature aggregation function covering the entire lo-
cal neighbourhood. As one of their main contributions, the
EdgeConv proposed helps to reformulate the learning pro-
cess of the geometric information as the aggregation out-
comes from the edge features computed pairwisely. It indi-
cates that to update the pointwise feature Xi, the dynamic
local graphs are firstly constructed using k-nearest neigh-
bors searching technique, then centralized connections can
be built between the centroid point and its neighbours, and
the edge features hΘ(·, ·) are computed for the updating of
the pointwise feature for the centroid points. The definition
of EdgeConv reveals the idea that most of the authors claim
that the local underlying shapes can be learnt as the aggre-
gated pairwise interactions between the centroid point and
its neighbor points.

Unlike their approaches, we propose the shape-oriented
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convolution (ShapeConv) to link all points forming the local
shape to enhance their individual interactions and compute
the moment point of this densely-connected local graph. Af-
ter that, we show that the overall interaction between each
point and the local shape can be simplified as the pointwise
interaction placed between each point and the moment point.
Furthermore, we study the contextual information encoding,
via defining and modeling two shape-oriented relationships
for point clouds, namely the intra-shape relationship and the
inter-shape relationship. By incorporating this contextual in-
formation, our ShapeConv module proposed is capable of
performing several advanced point cloud analyses. To this
end, we stack ShapeConv into our shape-oriented convolu-
tion neural network (SOCNN) and evaluate its significance
in the tasks of point cloud classification and part segmenta-
tion.

Related Work
In this section, we will mainly review the previous works
performed toward point cloud analysis, from three perspec-
tives: the voxelization-based approaches, the view-based ap-
proaches, and the geometric learning approaches.

Voxelization-based Approaches Voxelization is a partic-
ular kind of transformation, which takes irregular point
cloud data as input and transforms them into several vol-
umetric objects represented under a regular 3D coordi-
nate system. Benefiting from the new volumetric repre-
sentations, point cloud data can thus be processed conve-
niently by the 3D Convolution operators defined on regu-
lar 3D grids. Hence, several advanced point cloud analy-
ses, such as the classification and segmentation tasks, could
be easily achieved by the CNN, whose discriminative ca-
pabilities have been broadly evaluated in the computer vi-
sion community (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016; Huang et al. 2017; Hu, Shen, and Sun
2018). However, the performance of these voxelization-
based approaches (Wu et al. 2015; Maturana and Scherer
2015) to point cloud analysis would be largely constrained
by the critical shape information loss during the quantiza-
tion step of the voxelization procedure. Although several
subvolume-related works have been proposed to alleviate
this spatial information loss (Klokov and Lempitsky 2017;
Wang et al. 2017; Riegler, Ulusoy, and Geiger 2017), their
resulting subdivision representations can still be suffering
from the potential quantization error, compared to other ap-
proaches modeling the local underlying shapes directly.

View-based Approaches Rather than representing point
cloud data from 3D regular grids, like the voxelization-based
approaches mentioned above, view-based approaches are fo-
cused on recognizing and analyzing the point cloud data,
from collections of 2D views. Due to the promising results
achieved by 2D CNNs, view-based approaches can achieve
excellent outcomes for point cloud analysis (Su et al. 2015;
Qi et al. 2016; Xie et al. 2016). However, their side effects
should be taken into consideration as well. That is, to reach
an accurate classification or a descent segmentation, it re-
quires a large number of views to be used for model training
process. Meanwhile, to ensure the information encoded in

the views are discriminative enough for the shape recogni-
tion, these views should be captured from as many different
angles as possible (Feng et al. 2018), which results in a long
rendering time needed for the data sampling stage.

Geometric Learning Approaches In contrast to the ap-
proaches above, geometric learning approaches have been
developed recently, with the aim of processing 3D point
cloud directly. PointNet (Qi et al. 2017a) and Point-
Net++ (Qi et al. 2017b) were the first to propose this man-
ner of direct point cloud data manipulation, which could
fundamentally solve the quantization error problem caused
by the voxelization-based approaches and requires signifi-
cantly less sampling data than the view-based approaches.
Among all geometric learning approaches developed (Qi et
al. 2017a; 2017b; Monti et al. 2017; Atzmon, Maron, and
Lipman 2018; Liu et al. 2019; Zhao et al. 2019; Hua, Tran,
and Yeung 2018), DGCNN (Wang et al. 2019) can be seen as
a domain milestone, due to their general definition of Edge-
Conv. As clearly illustrated in their work, most of the geo-
metric learning approaches, including PointNet and Point-
Net++, can be considered as special instances from the gen-
eral EdgeConv family. However, unlike these instances, we
revisit the geometric learning of point cloud data from a
shape-oriented level and, based on this, we define two shape-
oriented relationships occurring in point cloud data, which
encode the global context information and local context in-
formation respectively. The pointwise features can therefore
be updated by incorporating the contextual effects caused
by the intra-shape relationships and inter-shape relationships
captured for point cloud data.

Method

Let P = {P1, P2, ..., PN} and X = {X1, X2, ..., XN}
denote the point cloud to be analyzed and its pointwise fea-
tures, respectively, where N is the number of points sampled
and C is the number of channels of each point feature, such
that Xi ∈ R

C . For a given sampled point Pi, we represent
its neighborhood as N (Pi), and the local shape formed by
this neighbourhood area as SN (Pi).

ShapeConv: Shape-Orientated Convolution

We argue that the pointwise feature Xi should be capable of
encoding the characterization of local shape SN (Pi). Mean-
while, considering the global influences between each lo-
cal shape, Xi should also be designed to capture the long-
ranged dependencies between SN (Pi) and Sothers including
all other local shapes.

To this end, ShapeConv is proposed to model and ag-
gregate these two shape-oriented relationships contained in
point cloud, namely, intra-shape relationship and inter-shape
relationship. The output of ShapeConv for point Pi is thus
described as:

X ′
i = AS(LS(SN (Pi)), GS(SN (Pi), Sothers)), (2)

where Sothers = {SN (Pj)} for 1 ≤ j ≤ N and i �= j,
LS(·) and GS(·, ·) are learning functions of local intra-
shape relationship and global inter-shape relationship, and
AS(·, ·) is the aggregation function of these shape-oriented
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Figure 1: How the pointwise features are aggregated in a
local shape SN (Pi) for its intra-shape relationship learn-
ing, by modeling the pairwise interactions (including self-
interaction) between points Pj ∈ N (Pi) in different man-
ners: A. Only the pairwise interactions targeting at Pi are to
be considered, with potential loss of overall geometric in-
formation; B. All pairwise interactions will be taken into the
account via the dense connections built on N (Pi); C. One
possible simplified version of B, where the moment of shape
will be firstly computed as M [SN (Pi)] aggregating the over-
all geometric information, and the interactions between each
point and their moment are to be analyzed.

relationships. To keep it simple, elementwise-sum operation
is adopted as our AS(·) here. The other two shape-oriented
learning functions will be explained and formulated in the
following two sections, and their semantic diagrams are
shown as Fig. 1 and Fig. 2. The overall design of ShapeConv
is demonstrated in Fig. 3.

Intra-Shape Relationship As the local shape SN (Pi) is
formed by all neighbouring points Pj ∈ N (Pi), each neigh-
bouring point Pj is expected to contribute equally to the
generation of the complex geometric information locally en-
coded at SN (Pi). This expectation is consistent with the def-
inition of conventional convolution on regular grids, where
all pixels within a kernel placed would play the same role for
the computation of convolved value, in a “sum of product”
manner.

For this reason, we make Pj ∈ N (Pi) densely connected
to form SN (Pi) (shown in Fig. 1 B), rather than treating
any point uniquely, such as only building up the connections
centralized at Pi among N (Pi) like in most of the previous
works (shown as Fig. 1 A). That is, for any point Pa forming
our densely-connected shape SN (Pi), we can compute its ag-
gregated features Ea representing the pairwise interactions
centralized at Pa as:

Ea =
1

N
Σ

Pb∈N (Pi)
g(Xa, Xb), (3)

where g(·, ·) is a pairwise function and it can be upgraded
to represent the directed pairwise interactions targeting at
Pa with the subtraction implementation, which has been ex-
perimentally proven to be more efficient than other similar
implementations, such as sum and concatenation (Zhao et al.
2019). Interestingly, these aggregated features Ea can there-

Figure 2: Our ShapeConv proposed is also designed to learn
the inter-shape relationship, via capturing the long-ranged
dependencies between different local underlying shapes.

fore be simplified as:

Ea =
1

N
Σ

Pb∈N (Pi)
(Xa −Xb) = Xa −XM [SN(Pi)

], and

XM [SN(Pi)
] =

1

N
Σ

Pb∈N (Pi)
Xb, (4)

where M [·] geometrically denotes the moment point of lo-
cal shape and XM [SN(Pi)

] is the feature of this moment
point, which is computed as the averaged feature over Pj ∈
N (Pi). Therefore, Ea can be seen as an interaction between
Pa and the entire local shape SN (Pi), which is demonstrated
in Fig. 1 C. This formulation can also be seen as Context
Normalization (Moo Yi et al. 2018) performed on each dy-
namically constructed local shape, with the division step ex-
cluded.

Furthermore, the intra-shape relationship among SN (Pi)

can be defined as:

LS(SN (Pi)) = Aintra
Pa∈N (Pi)

(fintra(Ea)), (5)

where intra-shape aggregation function Aintra is supposed
to be a symmetry function to achieve the permutation in-
variance required by unordered point cloud data (Qi et al.
2017a), and fintra : RCin −→ R

Cout is a channel mapping
function.

Inter-Shape Relationship To learn the inter-shape rela-
tionship in point cloud, as demonstrated in Fig. 2, the long-
ranged context between each local underlying shape SN (Pi)

should be taken into the consideration. Inspired by Non-
Local Neural Networks (Wang et al. 2018), several attention-
involved modules (Zhang et al. 2019; Fu et al. 2019) have
been proposed to learn the long-ranged dependency in the
computer vision domain, which are mainly focused on the
conventional visual data, such as images and videos. Similar
to (Xie et al. 2018), we therefore modify and extend their
works to our pointwise version, namely, pointwise long-
ranged attentional context enhancement (PLACE) module.

As clearly illustrated in Fig. 4, we first obtain the moment
features of all local shapes and group them as a global shape
feature matrix MGlobal ∈ R

C×N . Then we implement g, θ,
φ, and α as four separate conv1d with kernel size = 1. Fi-
nally, we achieve the global feature enhancement by using
the PLACE module to model their long-ranged dependen-
cies, as:

M ′
Global = PLACEg,θ,φ,α(MGlobal). (6)
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Figure 3: ShapeConv operator proposed, modeling two shape-oriented relationships, which are the intra-shape relationship
and the inter-shape relationship. AS is the shape-oriented aggregation function of these two relationships, while fintra and
finter are the two channel mapping functions for the learning of these two relationships. � denotes the elementwise subtraction
between the features of each neighboring point Pj ∈ N (Pi) and that of the moment point of the local shape they formed as
SN (Pi). Aintra is the intra-shape aggregation function. The details of the PLACE module can be viewed in Fig. 4.

Our inter-shape relationship learning can thus be defined as:

GS(SN (Pi), Sothers) = finter(M
′
Global i), (7)

where M ′
Global i is the enhanced global shape feature for

SN (Pi) and finter : RCin −→ R
Cout is a channel mapping

function.

Design of ShapeConv Module. We dynamically select k-
nearest neighbors around a sampled point Pi to form its local
underlying shape SN (Pi), where k = 16 in our implementa-
tion. Then an average pooling is applied to compute the aver-
aged feature of the neighboring points Pj ∈ N (Pi), which
geometrically represents the moment point of local shape
SN (Pi). The pointwise interaction between each neighbor-
ing point and their moment point is calculated as the fea-

Figure 4: Our PLACE module for long-ranged dependency
modeling in point cloud, which is simplified from Non-
Local Block (Wang et al. 2018).

ture difference between Xj and XM [SN(Pi)
] and be further

taken as inputs to learn the intra-shape relationship. Mean-
while, the features of all moment points formed by the lo-
cal underlying shapes are grouped together and fed into
our proposed PLACE module for the learning of the inter-
shape relationship. Within our proposed ShapeConv mod-
ule, fintra and finter are two channel mapping functions
designed, which can be approximated by multi-layer per-
ceptron (MLP) (Hornik 1991). Max-pooling is chosen as the
symmetric intra-shape aggregation function for Aintra, and
AS is implemented using the elementwise sum operation to
incorporate the pointwise features from global context and
local context.

SOCNN: Shape-Oriented Convolutional Neural
Network

As illustrated in Fig. 5, there are three consecutive
ShapeConv modules stacked in our SOCNN architecture, to
capture the intra-shape relationship and inter-shape relation-
ship encoded in point cloud data. Then the multi-scale fea-
tures from these ShapeConv modules are combined through
the shortcut connections, while a global shape signature of
this point cloud object is further symmetrically aggregated
using max-pooling (Qi et al. 2017a). fhead and ftail are the
two channel-raising mapping functions, which are approxi-
mated by MLP.

The classification branch is implemented by another chan-
nel mapping function fclassification applied on the global
shape signature computed, while the segmentation branch
would output the per-point classifications, by taking both of
the learned multi-level representations and the global shape
signature into the consideration. The two extra channel map-
ping functions fclassification and fsegmentation are imple-
mented by MLP as well.

12776



Figure 5: Shape-Oriented Convolutional Neural Network proposed, containing the classification branch and the segmentation
branch. N is the number of sampled points. ShapeConv(m,n) represents the module demonstrated in Fig. 3, with Cin = m
and Cout = n. fhead, ftail, fclassification, and fsegmentation are the channel mapping functions applied.

Experiment

Implementation Details

We select Adam as the optimizer, with learning rate 0.001
and cosine annealing applied (Loshchilov and Hutter 2017).
Batch size is set to 32, and the corresponding momen-
tum is 0.9. The momentum of batch normalization is ini-
tially set as 0.9 and decays with a rate of 0.5 for every
30 epochs. BatchNorm and LeakyRelu are used in all lay-
ers and omitted in figures above for simplification pur-
pose. Dropout layers (with dropout rate = 0.5) are adopted
within fclassification. The overall training framework is
implemented on Pytorch with two NVIDIA GTX 1080Ti
GPUs, using a distributed training scheme with Synchro-
nized BatchNorm proposed (Zhang et al. 2018).

Shape Classification Task

We firstly evaluate our model on the ModelNet40
dataset (Wu et al. 2015) for point cloud classification task.
This dataset consists of 9843 training 3D models and 2468
testing models, which are collected for 40 shape categories.
We follow the same experimental setting used by (Qi et al.
2017a). For each raw 3D model from ModelNet40, we dis-
card the mesh data after generating their corresponding point
cloud data, by uniformly sampling 1024 points with (x, y,
z) coordinates as their initial pointwise features. During the
point sampling processing, the meshes data are discarded
and their (x, y, z) coordinates are normalized to re-scale the
3D objects into unit spheres. The classification branch of
our SOCNN is used for this shape classification task. Sim-
ple point cloud data augmentation techniques are adopted on
the raw point coordinates, which are random scaling, trans-
lation, and perturbing. Similar to (Qi et al. 2017a; 2017b;
Liu et al. 2019), ten voting tests are applied for each testing
instance and their averaged results are computed as the final
predictions.

Compared with other state-of-the-art approaches, our
SOCNN achieves comparably significant results for the task
of point cloud classification, which is demonstrated in Ta-
ble 1. To the best of our knowledge, among all the methods
manipulating point cloud data directly, SOCNN is the first

Table 1: Shape classification results (%) on ModelNet40
dataset. * denotes additional points sampled for the classi-
fication task.

Method #points Acc.
ECC (2017) 1k 87.4
PointNet (2017a) 1k 89.2
PointNet++ (2017b) 1k 90.7
PointNet++* (2017b) 5k 91.9
KD-Net (2017) 1k 90.6
KD-Net* (2017) 5k 91.8
SpiderCNN* (2018) 5k 92.4
SO-Net* (2018) 2k 90.9
PCNN (2018) 1k 92.3
DGCNN (2019) 1k 92.2
DGCNN* (2019) 2k 93.5
PointWeb (2019) 1k 92.3
RS-CNN (2019) 1k 93.6
RS-CNN* (2019) 2k 93.6
Proposed 1k 93.1
Proposed* 2k 93.6

method proposed to incorporate the global context and lo-
cal context, by modeling the two shape-oriented relation-
ships independently, i.e., the intra-shape relationship and
the inter-shape relationship. As one of the other top-ranked
methods, RS-CNN did not consider the global inference,
which is captured and processed by our inter-shape mod-
ule. Compared to PointWeb, which requires normal vectors
calculated from the object meshes and extensively modeled
pointwise interactions via a learning-based approach, our
design achieves a similar effect in encouraging the informa-
tion exchange within each local neighborhood, but in a more
efficient manner.

Shape Part Segmentation Task

We then further evaluate our model on the ShapeNet-Part
dataset (Yi et al. 2016) for the point cloud segmentation task.
This dataset consists of 16881 3D objects, covering 16 shape
categories. Most of the point cloud instances are annotated
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Table 2: Part segmentation results on ShapeNet-Part dataset. Metric is mIoU(%) on points.
mean aero bag cap car chair ear guitar knife lamp laptop motor mog pistol rocket skate table

phone board
# Shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet (2017a) 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ (2017b) 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
PointCNN (2018) 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
SpiderCNN (2018) 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
PCNN (2018) 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
KCNet (2018) 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
DGCNN (2019) 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
RS-CNN (2019) 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

Proposed 85.7 83.9 84.1 85.0 77.4 91.3 78.3 91.7 87.4 83.8 96.4 69.7 93.5 83.1 58.9 76.2 82.9

with less than six part labels, and there exist 50 parts labels
in total. We split dataset into 12137 training objects, 1870
validation objects, and 2874 testing objects, following the
official split policy announced by (Chang et al. 2015). For
each 3D shape object, its corresponding point cloud data is
generated by 2048 points sampled uniformly with (x, y, z)
coordinates as their initial pointwise features. The segmen-
tation branch of SOCNN is used for this point cloud seg-
mentation task.

Following the same evaluation metrics set by PointNet (Qi
et al. 2017a), we calculate the Intersection-over-Union (IoU)
of our point cloud part segmentation results. Specifically, the
comparisons are made in terms of per-object-category IoUs
and the mean IoU (mIoU). To make a fair comparison, we
evaluate our model with other state-of-the-arts approaches,
which were proposed to manipulate point cloud data di-
rectly and would sample 2048 points for each object for the
part segmentation task. The visual outputs generated by our
SOCNN proposed for the part segmentation task are shown
in Fig. 6. As presented in Table 2, the quantitative compar-
isons demonstrate that our model achieves state-of-the-art
performance on the part segmentation task of the CHAIR
objects and the LAPTOP objects.

Ablation Studies

We design and perform extensive ablation studies on Mod-
elNet40 dataset to analyze the significance of different com-
ponents proposed for the shape-oriented relationship mod-

Figure 6: Part segmentation examples on the ShapeNet-Part
dataset.

Table 3: Ablation studies designed for SOCNN (%). MP
denotes whether the model calculates moment points and
uses them for the relationship learning. INTRA and IN-
TER indicate whether the model contains intra-shape rela-
tionship modeling and inter-shape relationship modeling, re-
spectively.

model #points MP INTRA INTER Acc.
A 1k � 89.5
B 1k � 88.2
C 1k � � 90.9
D 1k � � 88.7
E 1k � � � 93.1
F 2k � � � 93.6

eling. The results of the ablation studies can be viewed in
Table 3. Models A and B are implemented by manipulat-
ing their pointwise features directly, rather than comput-
ing the feature difference between each point and the mo-
ment point of local shapes. To retain their number of pa-
rameters and thus make a fair comparison with other mod-
els, the neighbouring features and source feature from each
neighbourhood N (Pi) are selected for the intra- and inter-
shape relationship modeling for the formed SN (Pi), respec-
tively. It can be seen from the results that the modeling of
both the intra-shape relationship and inter-shape relation-
ship has positive influences towards the final classification.
Compared to the inter-shape relationship, the intra-shape re-
lationship may contribute more to the final recognition re-
sults. Notably, the calculation of moment points itself can
be understood as a quick and efficient operation to aggre-
gate the local context and global context, which enhances
the performance of models from C to E significantly.

Conclusion

In this paper, we firstly define two shape-oriented relation-
ships existing in point cloud data and reformulate their ge-
ometric representation learning as two modeling processes
for the global context information and the local context in-
formation. Unlike previous geometric information modeling
performed for point clouds, the shape-oriented convolution
(ShapeConv) module is proposed to incorporate the contex-
tual effects caused by the intra-shape relationship and inter-
shape relationship and aggregate these effects to update the
pointwise features. Notably, we experimentally observe that
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the computation of the moment point from a local underly-
ing shape can be seen as a simple but efficient way to com-
bine the contextual information captured at both the global
level and local level. Finally, we propose the shape-oriented
convolution neural network (SOCNN) for point cloud anal-
ysis and evaluate its significance in the point cloud tasks of
shape classification and shape part segmentation.
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