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Abstract

In this paper, we propose a fast unified image fusion network
based on proportional maintenance of gradient and intensity
(PMGI), which can end-to-end realize a variety of image fu-
sion tasks, including infrared and visible image fusion, multi-
exposure image fusion, medical image fusion, multi-focus
image fusion and pan-sharpening. We unify the image fusion
problem into the texture and intensity proportional mainte-
nance problem of the source images. On the one hand, the
network is divided into gradient path and intensity path for
information extraction. We perform feature reuse in the same
path to avoid loss of information due to convolution. At the
same time, we introduce the pathwise transfer block to ex-
change information between different paths, which can not
only pre-fuse the gradient information and intensity informa-
tion, but also enhance the information to be processed later.
On the other hand, we define a uniform form of loss function
based on these two kinds of information, which can adapt
to different fusion tasks. Experiments on publicly available
datasets demonstrate the superiority of our PMGI over the
state-of-the-art in terms of both visual effect and quantitative
metric in a variety of fusion tasks. In addition, our method is
faster compared with the state-of-the-art.

Introduction

Image fusion is to extract the most meaningful informa-
tion from images acquired by different sensors, and com-
bine the information to generate a single image, which con-
tains more abundant information and is more conducive to
subsequent applications. Common image fusions include in-
frared and visible image fusion, multi-exposure image fu-
sion, multi-focus image fusion, medical image fusion, and
remote sensing image fusion (also called pan-sharpening).
They are used in target detection, HDTV, medical diagno-
sis and other fields (Ma, Ma, and Li 2019; Ma et al. 2017;
Xing et al. 2018).

Existing fusion methods can be divided into two cate-
gories. i) Traditional methods. These methods usually use
the related mathematical transformation and manually de-
signed fusion rules to get fused images. Paul et al. (Paul,
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Sevcenco, and Agathoklis 2016) propose a general algo-
rithm for multi-focus and multi-exposure image fusion,
which is based on blending the gradients of the luminance
components of source images using the maximum gradi-
ent magnitude at each pixel location and then obtaining the
fused luminance using a Haar wavelet-based image recon-
struction technique. The pyramid methods achieve medical
image fusion by the diverse resolutions in the level and the
iteration of the images (Patil and Mudengudi 2011). Rah-
mani et al. (Rahmani et al. 2010) come up with an adaptive
IHS pan-sharpening Method, which produces images with
higher spectral resolution while maintaining the high-quality
spatial resolution of the original IHS. ii) Deep learning-
based methods. Due to the strong fitting ability of neural
networks, these methods can usually achieve better fused
results by designing objective functions. In multi-focus im-
age fusion, Liu et al. (Liu et al. 2017) used the convolu-
tional neural network to jointly generate activity level mea-
surement and fusion rules. Ma et al. (Ma et al. 2019a) pro-
posed an unsupervised network to generate the decision map
for fusion. In multi-exposure image fusion, Prabhakar et
al. (Ram Prabhakar, Sai Srikar, and Venkatesh Babu 2017)
proposed an unsupervised deep learning framework that uti-
lizes a no-reference quality metric MEF-SSIM (Ma, Zeng,
and Wang 2015) as the loss function and can produce sat-
isfactory fused results. In medical image fusion, PA-PCNN
proposed by Yin et al. (Yin et al. 2018) can realize the fu-
sion of different types of medical images, which is a novel
method in nonsubsampled shearlet transform (NSST) do-
main. Ma et al. (Ma et al. 2019b) proposed an end-to-end
model called FusionGAN, which generates a fused image
with dominant infrared intensities and additional visible gra-
dients on the basis of GAN. Subsequently, they proposed
to use a dual-discriminator to avoid loss of information in
source images (Xu et al. 2019). In addition, they also intro-
duced a detail loss and a target edge-enhancement loss based
on FusionGAN to further enhance the texture details in the
fused results (Ma et al. 2020).

Although existing methods can achieve good results in
corresponding fusion tasks, there are still several aspects to
be improved. First, existing methods usually need to manu-
ally design the activity level measurement and fusion rules.

12797



Considering the diversity of source images, it will become
more and more complex. Second, most methods are only
applicable for specific fusion tasks and not generalized. It is
significant to design a general method from the essence of
image fusion. Third, because of computational complexity
and large parameter quantities, existing fusion methods are
often less competitive in terms of time.

To address these challenges, we propose a fast unified im-
age fusion network based on proportional maintenance of
gradient and intensity (PMGI), which can end-to-end im-
plement various types of image fusion tasks with high ef-
ficiency. Firstly, PMGI is an end-to-end model with source
images as the input and the fused image as the output, with-
out any manual intervention in the middle. Secondly, we
transform the fusion problem as the maintenance of gradient
and intensity information. The intensity information gives
the fused image similar histogram distribution with source
images, while the gradient information gives finer texture
details. Accordingly, we define the loss function of a uni-
form form for multiple image fusion tasks. To make the net-
work adapt to different image fusion tasks, we can selective
more effective and interesting information to be preserved
in the fused result by adjusting the weight of each loss item.
Finally, we divide the network into the gradient path and
the intensity path to extract the corresponding information
in source images respectively. In order to minimize the in-
formation loss caused by convolution, features of each layer
in the same extraction path are reused. We also introduce
the pathwise transfer block between the two paths. On the
one hand, it can pre-fuse gradient and intensity information.
On the other hand, it can enhance the information to be pro-
cessed later. It is worth noting that due to the use of 1 × 1
convolution kernels and the control of the number of fea-
ture channels, the quantity of parameters in our network is
limited within a certain range. As a result, our method can
achieve fusion at a high speed.

The contributions of our work include the following three
aspects:

• We propose a new end-to-end image fusion network,
which can realize a variety of image fusion tasks uni-
formly. The proposed PMGI can fuse infrared and visible
images, multi-exposure images, medical images, multi-
focus images and remote sensing images well.

• We design a specific loss function, which is applicable to
almost all image fusion tasks and can achieve expected
results by adjusting the weight of each loss item.

• Our method can perform image fusion with higher effi-
ciency in multiple fusion tasks. The code is available at:
https://github.com/HaoZhang1018/PMGI AAAI2020.

Method

Problem Formulation

The essence of image fusion is to combine the most impor-
tant information in source images, and generate a single im-
age with richer information and better visual effects. In dif-
ferent image fusion tasks, there are great differences in the
properties of source images, and it is inappropriate to treat

them in the same way. However, in most cases, the two types
of source images maintain an underlying correlation, as they
characterize the same scene and the source images contain
the complementary information. So we try to solve different
kinds of fusion tasks in a unified manner through reasonable
design of network architecture and loss function.

As the most essential element of the image is the pixel, the
intensity of pixels can represent the histogram distribution of
the image, and the difference between the pixels constitutes
the gradient, which can represent the texture details in the
image. Thus, we characterize the whole image with infor-
mation from these two aspects: the gradient and the pixel
intensity. And it is reflected in both the network architecture
and the loss function.

We divide the network into two information extraction
paths: the gradient path and the intensity path. For the gra-
dient path, it is responsible for extracting texture informa-
tion, i.e., high-frequency features. Similarly, for the intensity
path, it is responsible for the extraction of intensity informa-
tion. Because both the gradient information and the inten-
sity information are needed to be extracted and preserved
from two types of source images at the same time, the input
of each information extraction path is composed of different
source images concatenated along the channel dimension for
remaining potentially relevant. We set the concatenating ra-
tio of these two source images as β. In addition, we also
perform feature reuse and information exchange operations.
First of all, loss of information is inevitable during the con-
volution process. Feature reuse can reduce information loss
to a certain extent and increase the feature utilization. The
exchange of different kinds of information between the in-
formation extraction paths can pre-fuse the gradient and the
intensity information, and is also an enhancement of the in-
formation before the next extraction.

In addition to the general network structure described
above, we also design a loss function with a uniform form
based on the nature of the image. We transform the image
fusion problem into the proportional maintenance problem
of the gradient and the intensity information. Our loss func-
tion consists of two types of loss terms: the gradient loss and
the intensity loss. They are both constructed for two source
images. Separately, the intensity constraint can provide a
rough pixel distribution, while the gradient constraint can
enhance the texture details. And the joint constraint of them
can achieve a satisfactory fused result with the reasonable
intensity distribution and rich texture details. Because the
fused image cannot preserve all the information of source
images, we have to trade-off between the intensity distribu-
tion and texture details to preserve more important gradi-
ent and intensity information. Therefore, we can adjust the
weight of each loss term to change the proportion of various
types of information, so that it can be adapted to different
image fusion tasks.

Network Architecture

The proposed PMGI is a very fast convolutional neural net-
work. As shown in Fig. 1, we divide the network into the
gradient and intensity path for corresponding information
extraction. Gradient and intensity information is communi-
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Figure 1: Network architecture of the proposed PMGI.

cated through the pathwise transfer block. It is worth noting
that after many trials, the concatenating ratio β of the two
source images in the inputs is determined to be 1 : 2.

In both paths, we use four convolutional layers for feature
extraction. Using the idea of DenseNet (Huang et al. 2017)
for reference, we carry on dense connection in the same path
to realize feature reuse. In addition, the pathwise transfer
block is used to communicate information across these two
paths, so the input of the third and fourth convolution layers
depends not only on the output of all the previous convolu-
tion layers, but also on the output of the convolution layer
in the other path. The first layer uses 5× 5 convolution ker-
nels and the latter three layers use 3× 3 convolution kernels
combined with batch normalization and leaky ReLU activa-
tion function. The structure of the pathwise transfer block is
also shown in the lower right corner in Fig. 1. It uses a 1× 1
convolution kernel combined with batch normalization and
leaky ReLU activation function.

Then, we use the strategies of concatenating and convo-
lution to fuse the features extracted from the two paths. We
concatenate the two feature maps along the channel. It is
worth noting that the idea of feature reuse is still used here.
Eight feature maps involved in the concatenating come from
a total of eight convolution layers of two paths. The kernel
size of the last convolutional layer is 1×1, and the activation
function is tanh. In all convolution layers, the padding is set
to SAME and stride is set to 1. As a result, none of these
convolutional layers change the size of the feature map.

Loss Function

The loss function determines the type of information ex-
tracted and the proportional relationship between various
types of information. The loss function of our network con-
sists of two types of loss terms, the intensity loss and the
gradient loss. The intensity loss constrains the fused im-
age to maintain a similar intensity distribution as the source
images, while the gradient loss forces the fused image to

contain rich texture details. It is important to note that we
construct these two types of losses for each source image.
Therefore, the loss function contains four terms, which are
expressed as:

LPMGI = λAintLAint +λAgradLAgrad +λBintLBint +λBgradLBgrad ,
(1)

where A and B refer to the two source images, L(·)int rep-
resents the intensity loss term for one source image and
L(·)grad means the corresponding gradient constraint. λ(·) is
the weight of each loss item.

The intensity loss is defined as:

LAint =
1

HW
‖Ifused − IA‖22,

LBint =
1

HW
‖Ifused − IB‖22,

(2)

where Ifused is the fused image generated by PMGI. IA and
IB are two source images. H and W are the height and width
of the image respectively.

Similarly, with ∇ denotes the gradient operator, definition
of gradient loss is as follows:

LAgrad =
1

HW
‖∇Ifused −∇IA‖22,

LBgrad =
1

HW
‖∇Ifused −∇IB‖22.

(3)

Note that λ(·) in Eq. (1) can be adjusted to change the
proportion of various types of information in the fused im-
age to adapt to different tasks. The parameter setting rules
corresponding to specific tasks are summarized below.

For infrared and visible image fusion, we expect that the
gradient information of visible images and the intensity in-
formation of infrared images are mainly preserved in the
fused results, while the intensity information of visible im-
ages and the gradient information of infrared images are of
secondary importance. Then the parameter λ(·) should meet
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the following setting rules:

λirint > λvisint , λirgrad < λvisgrad . (4)

For multi-exposure image fusion, both overexposed and
underexposed images contain equal texture details, but their
intensities are too strong or too weak. So we set the same
weights to balance them to get the appropriate intensity and
rich texture details, which can be formalized as:

λoverint = λunderint , λovergrad = λundergrad . (5)

For multi-focus image fusion, the two types of informa-
tion (gradient and intensity) of the two source images are
equally important. This is because we want to maintain the
intensity and texture information of the two source images
at the same time, and the defocused (blurred) regions can
be supplemented by the focused (clear) regions in the other
source image. Therefore, it is also necessary to set the cor-
responding parameters to remain the same:

λfocus1int = λfocus2int , λfocus1grad = λfocus2grad . (6)

Similarly, for medical image fusion, the structural medi-
cal image reflects the texture information of the organ, and
the functional medical image indicates the functional infor-
mation, such as the metabolic intensity. We use MRI and
PET images as the example of the structural image and the
functional image respectively. We obtain the main texture
information from the MRI image and the main intensity in-
formation from the PET image. However, considering that
the pixel intensity of the I component of the PET image is
much larger than the MRI, if the pixel intensity of the PET
image is mainly constrained, the excessive intensity of the
fused image masks the texture. So in order to balance the
texture and intensity, we make the pixel intensity of PET
and MRI equally constrained. So λ(·) should be set as:

λPETint = λMRIint , λPETgrad < λMRIgrad . (7)

Finally, for pan-sharpening, the panchromatic image has
a high spatial resolution (rich texture details), and the multi-
spectral image contains rich color information. The purpose
is to improve clarity while keeping the spectrum undistorted.
Therefore, we only constrain the texture information of the
panchromatic image without constraining the intensity to
avoid spectral distortion, which can be formalized as:

λPANint = 0, λPANgrad > λMSgrad . (8)

Experimental Results

Experimental Settings

Data We perform PMGI on five fusion tasks: 1) visible
and infrared image fusion; 2) multi-exposure image fusion;
3) medical image fusion; 4) multi-focus image fusion; 5)
pan-sharpening. The training and test sets are from publicly
available datasets: TNO1 dataset for task1; MEF dataset2 and

1http://figshare.com/articles/TNO Image Fusion Dataset/
1008029.

2https://drive.google.com/drive/folders/
0BzXT0LnoyRqlVjhtOEhiUzU5a2M

the dataset provided by (Cai, Gu, and Zhang 2018) for task2;
MRI and PET images from Harvard medical school web-
site3 for task3; the dataset provided by (Nejati, Samavi, and
Shirani 2015) and sametaymaz4 for task4; and the panchro-
matic and multi-spectral images generated by the Quickbird
satellite for task5.

For these five fusion tasks, we enter the entire image as
test data into the network. The number of image pairs used
for testing is 17, 19, 20, 18 and 50, respectively. In order
to obtain more training data, we adopt the expansion strat-
egy of tailoring and decomposition. In particular, we crop
each image into 120× 120 image patches in all tasks except
multi-focus image fusion. For the multi-focus image fusion
task, we expect that there is only one attribute (focused or
defocused) in each image patch. So we crop each image into
image patches with smaller size 60 × 60. The number of
patch pairs for training is 20036, 33961, 4698, 139001, and
210000, respectively.

Training Details Among these image fusion tasks, source
images and fused images in infrared and visible image fu-
sion and multi-focus image fusion tasks are grayscale im-
ages, while those in the other fusion tasks are color images.
In medical image fusion, the multi-spectral PET image with
RGB channels are firstly transformed to IHS channels. We
fuse the I component and the MRI image. Then the fused
result is concatenated with H and S components and trans-
formed to get the final RGB fused result. For multi-exposure
image fusion, we transform the images from RGB to YCbCr
color space. Because the Y channel (luminance channel) can
represent structural details and the brightness variation, we
just devote to fusing the Y channel values. And for Cb and
Cr channels (chrominance channels), we fuse them in a tra-
ditional way. Then, the fused components of these channels
are transferred to RGB color space to obtain the final re-
sult. In the pan-sharpening task, the multi-spectral image
contains four channels and the panchromatic image is one-
channel. The resolution ratio of them is 1 : 4. First, we use
the bicubic method to upsample the multi-spectral image to
the same size as the panchromatic image. Then, each chan-
nel of the multi-spectral image is fused with the panchro-
matic image separately to obtain four one-channel fused re-
sults. Finally, they are concatenated to obtain the final fused
image.

It is worth noting that all deep learning based methods run
on the same GPU RTX 2080Ti, while other methods run on
the same CPU i7-8750H.

Results on Infrared and Visible Image Fusion

In infrared and visible image fusion, we compare our PMGI
with five existing methods: LPP (Toet 1989), GTF (Ma et al.
2016), DDLatLRR (Li and Wu 2018a), LatLRR (Li and Wu
2018b) and FusionGAN (Ma et al. 2019b). Qualitative and
quantitative experimental results are shown below.

3http://www.med.harvard.edu/AANLIB/home.html
4https://github.com/sametaymaz/Multi-focus-Image-Fusion-

Dataset
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Figure 2: Qualitative Results of infrared and visible image
fusion. From left to right: infrared image, visible image, and
fused results of GTF, LatLRR, FusionGAN and our PMGI.

Figure 3: Quantitative results of infrared and visible image
fusion on six metrics.

Qualitative Comparisons Comparison results on three
typical image pairs qualitatively demonstrate the superiority
of our method, as shown in Fig. 2. According to the charac-
teristics of fused results, these methods can be divided into
two categories. In the first category, fused results are biased
towards visible images, which contain rich textures but lose
thermal radiation information, such as LatLRR. Results of
the other type of methods are closer to infrared images in
the respect of contrast, but the texture details are not rich
enough, such as GTF and FusionGAN. By comparison, our
method is more like a combination of these two categories.
First, our results can maintain thermal radiation information
by effectively highlighting the target, such as the lake in the
first row and the human in the third row. At the same time,
our results contain rich texture details, such as the grass in
the first row and the car in the third row, which are more in
line with human observation characteristics.

Quantitative Comparisons In order to validate more
comprehensively, we conduct quantitative comparisons on
seventeen image pairs. We used six objective metrics to eval-
uate the results: entropy (EN), sum of the correlations of dif-
ferences (SCD) (Aslantas and Bendes 2015), correlation co-
efficient (CC), Feature mutual information (FMI), standard
deviation (SD) and mutual information (MI).

The quantitative results are shown in Fig. 3. Our method
achieves the largest average values on four metrics including
EN, SCD, CC and SD. From these results, we can conclude
that our results contain the largest amount of information,
strong correlation with source images and significant con-
trast. In addition, our results contains comparable amount of

feature information transferred from source images, as our
method only ranks second behind DDLatLRR on FMI. Last
but not least, although GTF and FusionGAN have larger val-
ues on MI, our method achieves a better balance between the
information of two source images.

The average run time of LPP, GTF, DDLatLRR, LatLRR,
FusionGAN and our PMGI on the test data is about
0.1156, 4.5426, 49.4816, 133.2983, 0.2027 and 0.0831
(unit:second). Obviously, our PMGI is the fastest.

Results on Multi-exposure Image Fusion

To verify the effectiveness in multi-exposure image fusion,
we compare it with three existing methods: DSIFT (Hayat
and Imran 2019), EF (Mertens, Kautz, and Van Reeth 2007)
and AWPIGG (Lee, Park, and Cho 2018).

Qualitative Experiment We firstly perform qualitative
experiments on three typical image sequences. The fused
results are shown in Fig. 4. We analyze them from two as-
pects: the whole image and local details. As for the whole
image, compared with other methods, our results are more
suitable for human eye perception with more vivid colors
and more appropriate exposure. And in our results, there are
no strange shadows like those in the results of the compar-
ative methods, such as dark shadows in the clouds. As for
local details, our results have clearer and more realistic tex-
tures such as grasses and rocks highlighted in images. In
general, our method has great advantages over the compara-
tive methods.

Quantitative Experiment We still choose EN, SCD, CC,
FMI, SD and MI described above to evaluate fused results.
The comparison results on nineteen image pairs are shown
in Fig. 5. As for EN, SCD, CC, SD and MI, our results can
achieve the highest average values. From these results, we
can see that our fused results have the most information, the
strongest correlation with the source images, the most infor-
mation from the source images, and the best contrast. In ad-
dition, although our method follows behind DSIFT, EF and
AWPIGG on FMI, we can also see that our results get com-
parable feature information from source images, because the
values of all the methods are very close.

The average run time of DSIFT, EF, AWPIGG and PMGI
is 1.3307, 0.0053, 0.4887 and 0.0908 (unit: second). PMGI
is second only to EF, but still stay within 100 milliseconds.

Results on Medical Image Fusion

We employ three existing medical image fusion methods to
compare with our PMGI: DCHWT (Kumar 2013), ASR (Liu
and Wang 2014) and PCA (Naidu and Raol 2008).

Qualitative Experiment Three typical and intuitive re-
sults on three different transaxial sections of the brain-
hemispheric are exhibited in Fig. 6. Among them, the fused
results of PCA can retain the functional information (pre-
sented as color) of PET images, but lose much texture struc-
ture information (presented as texture details) of MRI im-
ages. On the contrary, the fused results of DCHWT have
significant structural information, but reduce the color in-
tensity in PET images. Results of ASR, DCHWT and our
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Figure 4: Qualitative results of multi-exposure image fusion.
From left to right: underexposed image, overexposed image,
and the results of DSIFT, EF, AWPIGG and our PMGI.

Figure 5: Quantitative results of multi-exposure image fu-
sion.

method not only have vivid color intensity, but also contain
rich texture structure. But by contrast, the texture details of
our results are more clear, as shown in the highlighted parts.

Quantitative Experiment Because of the particularity of
medical images, we need to strictly control the preservation
of edge information, which represents the shape and area of
the organ. So we add the metric QAB/F to measure the edge
information that is transferred from source images to the
fused image. In addition, spatial frequency (SF) and mean
gradient (MG) are added to evaluate the gradient informa-
tion in order to measure the degree of structural information
(texture details) retention of MRI images. Therefore, the six
objective metrics we select to evaluate medical fused images
are EN, FMI, MG, MI, SF and QAB/F .

The quantitative results on twenty image pairs are shown
in Fig. 7. As can be seen from the statistical results, our
PMGI can generate the largest average values on the five
metrics: EN, FMI, MG, SF and QAB/F . It demonstrates that
our results have the most information, the most abundant
texture details, and the most feature and edge information
from source images. As for MI, our method ranks second
only to PCA. It is due to the reason that our results are more
balanced between structural information and functional in-
formation compared with PCA.

The average run time of DCHWT, ASR, PCA and our
PMGI is about 0.8636, 23.6055, 0.0046, and 0.0150 (unit:
second). Our method is second to PCA, but is much faster
than the other two methods.

Figure 6: Qualitative results of medical image fusion. From
left to right: PET image, MRI image, and fused results of
DCHWT, ASR, PCA and our PMGI.

Figure 7: Quantitative results of medical image fusion.

Results on Multi-focus Image Fusion

Five multi-focus image fusion methods are selected to
compare with our PMGI: CNN (Liu et al. 2017), Dct-
Var (Haghighat, Aghagolzadeh, and Seyedarabi 2011),
DWTDE (Liu and Wang 2013), GD (Paul, Sevcenco, and
Agathoklis 2016) and QBMF (Bai et al. 2015).

Qualitative Experiment To give intuitive results, we se-
lect three typical image pairs for qualitative evaluation, as
shown in Fig. 8. It can be seen from the results that there are
some intensity distortions and unnatural black shadows in
the fused results of GD. The results of DWTDE have a good
visual effect, which can restore the details of far and near-
focused regions clearly. Although there is a slight of loss of
details of the far-focused regions in the results of QBMF and
our method, they can also achieve relatively satisfactory re-
sults. In addition, it should be noted that our method is a gen-
eral end-to-end fusion method. Considering the universality,
we do not perform multi-focus image fusion by detecting the
focused areas but extracting and fusing the texture and inten-
sity information of source images. Nevertheless, the qualita-
tive results still prove the effectiveness of our method.

Quantitative Experiment The essence of multi-focus im-
age fusion is the fusion of focused (clear) and defocused
(blurred) parts. Focused and defocused areas have similar
intensity distributions but large differences in sharp appear-
ance, so the key is the preservation of edge and texture
information. Therefore, we use the structural similarity in-
dex measure (SSIM) and QAB/F to evaluate the maintained
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Figure 8: Qualitative results of multi-focus image fusion.
The first two columns are source images with different fo-
cus. The last four columns are fused results of DWTDE, GD,
QBMF and our PMGI.

Figure 9: Quantitative results of multi-focus image fusion.

structure and the transferred edge information in the fused
results. To maintain consistency with other tasks, EN, FMI,
SCD and CC are also used. The experimental results on
eighteen image pairs are shown in Fig. 9.

Our PMGI can obtain the largest average values on SCD
and CC, and the second largest average values on EN and
SSIM. For QABF, the average value of our method is ranked
third behind GD and QBMF and ranked fifth on the FMI. It
can be seen that our results have the strongest correlation
with source images, a lot of information, and strong struc-
tural similarity with source images. However, our results are
not good enough in maintaining of the edge information and
the acquisition of the feature information, which also corre-
sponds to the fact that the details of our results are not rich
enough in far-focused regions.

The average run time of CNN, DctVar, DWTDE, GD,
QBMF and our PMGI on the testing data is 105.4371,
0.7388, 10.3615, 0.7905, 0.4313 and 0.0691(unit: second).
Obviously, our PMGI has a significant advantage in running
time, which is about one order of magnitude faster compared
with other five methods.

Results on Pan-sharpening

To demonstrate the versatility of our approach, we use PMGI
to perform pan-sharpening in remote sensing image fu-
sion tasks. We compare our method with classical meth-
ods PCA (Chavez et al. 1991), FISH (Tu et al. 2004) and
Brovey (Gillespie, Kahle, and Walker 1986). Some typical

Figure 10: Qualitative results of Pan-Sharpening. From left
to right: multi-spectral image, panchromatic image, and
fused results of PCA, FISH, Brovey and our PMGI.

qualitative results are shown in Fig. 10. It is obvious that
PMGI can accomplish the pan-sharpening task well, and the
fused results are color images with high resolution with a
good visual effect. First, because we only constrain the tex-
ture of the panchromatic image without constraining its in-
tensity, the fused results only maintain the color information
of the multi-spectral image without introducing large spec-
tral distortion like PCA. Second, the fused results have the
richest and high-quality texture details, which are almost as
good as those in the panchromatic image.

Conclusion

In this paper, we propose a fast unified image fusion network
based on proportional maintenance of gradient and intensity,
termed as PMGI. It is an end-to-end model which can per-
form a variety of different image fusion tasks well, includ-
ing infrared and visible image fusion, multi-exposure im-
age fusion, medical image fusion, multi-focus image fusion
and pan-sharpening. We divide the network into the gradient
path and the intensity path, which carry out feature reuse in
the same path and information exchange in different paths.
At the same time, we unify multiple image fusion tasks into
the maintaining problem of intensity and gradient informa-
tion, and define a specific loss function, which is composed
of the gradient loss and the intensity loss. The PMGI can
adapt to different image fusion tasks by adjusting the weight
of each loss item. Qualitative and quantitative experiments
show that our PMGI has advantages in various image fusion
tasks compared to existing methods, and it is also faster than
the competitors.

Acknowledgments

The authors gratefully acknowledge the financial supports
from the National Natural Science Foundation of China un-
der Grant nos. 61773295 and 61772512, and the Natural Sci-
ence Fund of Hubei Province under Grant no. 2019CFA037.

References

Aslantas, V., and Bendes, E. 2015. A new image quality met-
ric for image fusion: the sum of the correlations of differences.

12803



Aeu-International Journal of Electronics and Communications
69(12):1890–1896.
Bai, X.; Zhang, Y.; Zhou, F.; and Xue, B. 2015. Quadtree-based
multi-focus image fusion using a weighted focus-measure. Infor-
mation Fusion 22:105–118.
Cai, J.; Gu, S.; and Zhang, L. 2018. Learning a deep single image
contrast enhancer from multi-exposure images. IEEE Transactions
on Image Processing 27(4):2049–2062.
Chavez, P.; Sides, S. C.; Anderson, J. A.; et al. 1991. Compari-
son of three different methods to merge multiresolution and multi-
spectral data- landsat tm and spot panchromatic. Photogrammetric
Engineering and Remote Sensing 57(3):295–303.
Gillespie, A. R.; Kahle, A. B.; and Walker, R. E. 1986. Color
enhancement of highly correlated images. i. decorrelation and hsi
contrast stretches. Remote Sensing of Environment 20(3):209–235.
Haghighat, M. B. A.; Aghagolzadeh, A.; and Seyedarabi, H. 2011.
Multi-focus image fusion for visual sensor networks in dct domain.
Computers & Electrical Engineering 37(5):789–797.
Hayat, N., and Imran, M. 2019. Ghost-free multi exposure image
fusion technique using dense sift descriptor and guided filter. Jour-
nal of Visual Communication and Image Representation 62:295–
308.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q.
2017. Densely connected convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 4700–4708.
Kumar, B. S. 2013. Multifocus and multispectral image fusion
based on pixel significance using discrete cosine harmonic wavelet
transform. Signal, Image and Video Processing 7(6):1125–1143.
Lee, S.-h.; Park, J. S.; and Cho, N. I. 2018. A multi-exposure
image fusion based on the adaptive weights reflecting the relative
pixel intensity and global gradient. In Proceedings of the IEEE
International Conference on Image Processing, 1737–1741.
Li, H., and Wu, X.-J. 2018a. Infrared and visible image fu-
sion using a novel deep decomposition method. arXiv preprint
arXiv:1811.02291.
Li, H., and Wu, X.-J. 2018b. Infrared and visible im-
age fusion using latent low-rank representation. arXiv preprint
arXiv:1804.08992.
Liu, Y., and Wang, Z. 2013. Multi-focus image fusion based
on wavelet transform and adaptive block. Journal of Image and
Graphics 18(11):1435–1444.
Liu, Y., and Wang, Z. 2014. Simultaneous image fusion and de-
noising with adaptive sparse representation. IET Image Processing
9(5):347–357.
Liu, Y.; Chen, X.; Peng, H.; and Wang, Z. 2017. Multi-focus im-
age fusion with a deep convolutional neural network. Information
Fusion 36:191–207.
Ma, J.; Chen, C.; Li, C.; and Huang, J. 2016. Infrared and visible
image fusion via gradient transfer and total variation minimization.
Information Fusion 31:100–109.
Ma, K.; Li, H.; Yong, H.; Wang, Z.; Meng, D.; and Zhang, L.
2017. Robust multi-exposure image fusion: a structural patch de-
composition approach. IEEE Transactions on Image Processing
26(5):2519–2532.
Ma, B.; Ban, X.; Huang, H.; and Zhu, Y. 2019a. Sesf-fuse: An
unsupervised deep model for multi-focus image fusion. arXiv
preprint arXiv:1908.01703.
Ma, J.; Yu, W.; Liang, P.; Li, C.; and Jiang, J. 2019b. Fusiongan:

A generative adversarial network for infrared and visible image fu-
sion. Information Fusion 48:11–26.
Ma, J.; Liang, P.; Yu, W.; Chen, C.; Guo, X.; Wu, J.; and Jiang, J.
2020. Information fusion of passive sensors for detection of mov-
ing targets in dynamic environments. Information Fusion 54:85–
98.
Ma, J.; Ma, Y.; and Li, C. 2019. Infrared and visible image fusion
methods and applications: A survey. Information Fusion 45:153–
178.
Ma, K.; Zeng, K.; and Wang, Z. 2015. Perceptual quality assess-
ment for multi-exposure image fusion. IEEE Transactions on Im-
age Processing 24(11):3345–3356.
Mertens, T.; Kautz, J.; and Van Reeth, F. 2007. Exposure fusion. In
Proceedings of the Pacific Conference on Computer Graphics and
Applications, 382–390.
Naidu, V., and Raol, J. R. 2008. Pixel-level image fusion using
wavelets and principal component analysis. Defence Science Jour-
nal 58(3):338–352.
Nejati, M.; Samavi, S.; and Shirani, S. 2015. Multi-focus image
fusion using dictionary-based sparse representation. Information
Fusion 25:72–84.
Patil, U., and Mudengudi, U. 2011. Image fusion using hierarchi-
cal pca. In Proceedings of the International Conference on Image
Information Processing, 1–6.
Paul, S.; Sevcenco, I. S.; and Agathoklis, P. 2016. Multi-exposure
and multi-focus image fusion in gradient domain. Journal of Cir-
cuits, Systems and Computers 25(10):1650123.
Rahmani, S.; Strait, M.; Merkurjev, D.; Moeller, M.; and Wittman,
T. 2010. An adaptive ihs pan-sharpening method. IEEE Geosci.
Remote Sens. Lett. 7(4):746–750.
Ram Prabhakar, K.; Sai Srikar, V.; and Venkatesh Babu, R. 2017.
Deepfuse: a deep unsupervised approach for exposure fusion with
extreme exposure image pairs. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, 4724–4732.
Toet, A. 1989. Image fusion by a ratio of low-pass pyramid. Pattern
Recognition Letters 9(4):245–253.
Tu, T.-M.; Huang, P. S.; Hung, C.-L.; and Chang, C.-P. 2004. A fast
intensity-hue-saturation fusion technique with spectral adjustment
for ikonos imagery. IEEE Geoscience and Remote Sensing Letters
1(4):309–312.
Xing, L.; Cai, L.; Zeng, H.; Chen, J.; Zhu, J.; and Hou, J. 2018.
A multi-scale contrast-based image quality assessment model for
multi-exposure image fusion. Signal Processing 145:233–240.
Xu, H.; Liang, P.; Yu, W.; Jiang, J.; and Ma, J. 2019. Learning a
generative model for fusing infrared and visible images via condi-
tional generative adversarial network with dual discriminators. In
Proceedings of the International Joint Conference on Artificial In-
telligence, 3954–3960.
Yin, M.; Liu, X.; Liu, Y.; and Chen, X. 2018. Medical image fusion
with parameter-adaptive pulse coupled neural network in nonsub-
sampled shearlet transform domain. IEEE Transactions on Instru-
mentation and Measurement 68(1):49–64.

12804


