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Abstract

This paper addresses the problem of creating camouflage im-
ages. Such images typically contain one or more hidden ob-
jects embedded into a background image, so that viewers
are required to consciously focus to discover them. Previ-
ous methods basically rely on hand-crafted features and tex-
ture synthesis to create camouflage images. However, due to
lack of reliable understanding of what essentially makes an
object recognizable, they typically result in either complete
standout or complete invisible hidden objects. Moreover, they
may fail to produce seamless and natural images because of
the sensitivity to appearance differences. To overcome these
limitations, we present a novel neural style transfer approach
that adopts the visual perception mechanism to create camou-
flage images, which allows us to hide objects more effectively
while producing natural-looking results. In particular, we de-
sign an attention-aware camouflage loss to adaptively mask
out information that make the hidden objects visually stand-
out, and also leave subtle yet enough feature clues for viewers
to perceive the hidden objects. To remove the appearance dis-
continuities between the hidden objects and the background,
we formulate a naturalness regularization to constrain the hid-
den objects to maintain the manifold structure of the covered
background. Extensive experiments show the advantages of
our approach over existing camouflage methods and state-of-
the-art neural style transfer algorithms.

Introduction

Camouflage is a concept that stems from the biology. To sur-
vive in the wild, animals have developed an ability to hide
themselves from predators and preys by making colors and
textures on their bodies similar to those of their natural habi-
tats. Artists gain inspiration from this phenomenon and cre-
ate a new art form referred to as camouflage images. These
images usually contain one or more hidden figures or objects
that remain imperceptible to viewers for a while, unless un-
der a closer scrutiny (see Fig. 1 for examples).

Camouflage images are widely favored as detecting hid-
den objects from these images can be challenging and en-
tertaining. However, creating camouflage images is difficult,
even for skilled artists, since fooling eyes with hidden ob-
jects involves reliable interpretation of how human visual
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Figure 1: Two camouflage images produced by our ap-
proach. Please zoom in to see details and try to find the hid-
den objects. Answer keys are shown in Fig. 10.

perception works. Fortunately, the feature integration theory
proposed in (Treisman and Gelade 1980) provides a possi-
ble explanation. It suggests that the perception mechanism
of human vision system can be explained as a two-phase vi-
sual search process including feature search and conjunction
search (Treisman 1988; Wolfe 1994). Specifically, feature
search is an instant procedure in which we subconsciously
perceive the scene semantics by leveraging intuitive visual
features such as color and texture. While conjunction search
is a slow and delayed procedure, since it requires us to in-
tegrate scattered multiple features and perform inference to
achieve recognition. This theory explains why understand-
ing camouflage images takes effort. Concretely, the reason
is that camouflage images foil our feature search by decorat-
ing the hidden objects with colors and textures similar to the
background, and thus force our perception system to employ
the slow conjunction search for recognition.

Currently, there is a paucity of literature on creating cam-
ouflage images. Based on the feature integration theory, Chu
et al. (Chu et al. 2010) presented the first computational
approach for embedding 2D objects into an image, where
they designed an optimization consisting of two conflicting
terms corresponding to preventing feature search and allow-
ing conjunction search, respectively. Although this approach
produces promising results, it is sensitive to appearance dif-
ferences between the hidden objects and the background im-
age, and may fail due to lack of reliable understanding of
what makes an object recognizable. Unlike (Chu et al. 2010),
Owens et al. (Owens et al. 2014) introduced a method to
completely hide a 3D object from multiple viewpoints. De-
spite the success of this technique, it is inapplicable in cre-
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Figure 2: Overview of our approach. Given the input foreground and background images, we first recommend hiding region for
the foreground object, then a camouflage image generation step is implemented to seamlessly camouflage the object into the
background image to obtain the output camouflage image.

ating camouflage images that we discuss in this paper, since
valid camouflage images should leave enough subtle clues
for viewers to discover the hidden objects.

Unlike existing methods which depend on hand-crafted
features, we introduce the first deep-learning approach for
creating camouflage images. Our approach builds upon the
recent work on neural style transfer (Gatys, Ecker, and
Bethge 2016), which achieves impressive results by separat-
ing style from the content of an image using feature repre-
sentations learned by a neural network. However, as demon-
strated in Fig. 5, by transferring style of the background im-
age to the hidden objects while preserving a certain level
of the objects’ content using existing neural style transfer
algorithms has two limitations in creating camouflage im-
ages: (1) The hidden objects will be either complete stand-
out or complete invisible, even with a dedicated balance be-
tween the content and style. (2) There often exists obvious
appearance discontinuities between the hidden objects and
the background, making the results visually unnatural.
Contributions: (1) Distinct from existing work on neural
style transfer, we develop a novel loss function to generate
camouflage images that avoid the above two limitations. Par-
ticularly, we design an attention-aware camouflage loss to
more effectively foil our feature search and leave clues for
conjunction search. In addition, we formulate a naturalness
regularization to remove appearance discontinuities between
the hidden objects and the background by maintaining the
manifold structure of the covered background within the hid-
den objects. (2) To aid amateurs create camouflage images,
we present a simple yet effective method to automatically
recommend viable region to hide an object within the given
background image. (3) We conduct extensive experiments to
evaluate the proposed approach and compare it with various
methods. Results show that camouflage images generated by
our algorithm are more preferred by human subjects.

Related Work

Computational Camouflage. There have been some works
that address camouflage problems by computational meth-
ods. For example, Chu et al. (Chu et al. 2010) presented an
optimization for embedding 2D hidden objects into an im-
age based on the feature integration theory (Treisman and

Gelade 1980). While this approach produces impressive re-
sults, it may fail due to lack of reliable understanding of
objectness and the sensitivity to illumination differences.
Owens et al. (Owens et al. 2014) proposed to completely
hide a 3D object from multiple viewpoints, which differs
our work since we aim to hide 2D objects with remaining
clues to detect them. Some other works focus on break-
ing the camouflage by revealing the hidden patterns or ob-
jects (Tankus and Yeshurun 2001; Reynolds 2011).

Texture Synthesis. There are numerous works tackling the
texture synthesis problem (Heeger and Bergen 1995; Efros
and Freeman 2001; Gatys, Ecker, and Bethge 2015; Ulyanov
et al. 2016; Ulyanov, Vedaldi, and Lempitsky 2017; Li et
al. 2017b). These techniques provide a simple way to hide
objects within an image by dressing them with synthesized
background consistent textures. However, they fail to enable
control of the recognition difficulty of the hidden objects.
As a result, naively applying texture synthesis would yield
obvious-to-recognize camouflage images (see Fig. 4).

Neural Style Transfer. Style transfer has been brought to
a new era since the pioneer work of Gatys et al. (Gatys,
Ecker, and Bethge 2016), which proposed to separately ma-
nipulate the style and content of an image by leveraging the
feature maps of discriminatively trained deep convolutional
neural networks such as VGG-19 (Simonyan and Zisserman
2014). This work has been widely studied, and various sub-
sequent methods were developed (Li and Wand 2016; John-
son, Alahi, and Fei-Fei 2016; Huang and Belongie 2017;
Gatys et al. 2017; Luan et al. 2017; Chen et al. 2017;
Liao et al. 2017; Li et al. 2017a; 2018; Gu et al. 2018) (see
(Jing et al. 2019) for a review). However, a direct application
of them usually results in unsatisfactory camouflage images,
since they basically treat all features equally and thus may
either fail to foil our feature search or fail to leave sufficient
clues for conjunction search. Moreover, as claimed in (Luan
et al. 2018), these methods typically perform poorly on local
style transfer. A recent work on deep painterly harmoniza-
tion (Luan et al. 2018) allows seamlessly pasting an object
into a painting as if it is originally painted. Our work differs
it in two aspects. First, we focus on camouflaging rather than
compositing an object into an image. Second, our method
can handle various image types, not just paintings.
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Methodology

To simplify the description, we assume that there is only a
single object to be hidden, though our approach can work
with multiple hidden objects. Given a background image IB ,
a foreground image IF and its corresponding object mask
MF , our algorithm aims to camouflage the object in IF into
IB . The workflow of the proposed algorithm is illustrated
in Fig. 2. Overall, our approach is comprised of two steps,
including: (1) Hiding region recommendation and (2) Cam-
ouflage image generation. Specifically, it begins by recom-
mending a hiding region (indicated by mask MB) for the
given hidden object, and then generates the desired camou-
flage image IR. In the following subsections, we first de-
scribe the details of each of the two components in our ap-
proach, and then elaborate the implementation details.

Hiding Region Recommendation

We recommend hiding region (in IB) for the foreground ob-
ject in IF , since we found that the quality of hiding region
determines whether the object can be reasonably hidden, and
it is usually nontrivial for users to manually select the right
hiding region. Our hiding region recommendation is built
upon the following two observations: (1) Human perception
system is more sensitive to image contrast. (2) A busy back-
ground often makes it easier for us to misjudge objects in an
image. Formally, we formulate the following minimization
to obtain the recommended hiding region:

min
MB

(H(IF �MF , IB �MB)− γE(IB �MB)) , (1)

where MB denotes a mask that indicates the hiding re-
gion. � denotes the pixel-wise multiplication. The first
term H(IF � MF , IB � MB) measures the HOG (Dalal
and Triggs 2005) difference between the foreground ob-
ject and the covered background region. The second term
E(IB �MB) computes the information entropy of the hid-
ing region. γ is a weighting parameter set as 1 by default.
Intuitively, the first term enforces the selected hiding re-
gion to have similar distribution of gradient orientation as
the foreground object, so as to lower viewers’ sensitivity to
contrasts inside the object. On the other hand, the second
term encourages selecting hiding region with high entropy
to provide a busy background that is distracting and more
suitable for camouflaging. Note, our method may also work
well for other hiding regions that Eq. 1 is not satisfied (see
the supplementary material for examples).

The problem in Eq. 1 is non-convex and difficult to solve.
Hence, we employed a simple brute force search, which is
fast enough because a stride length of 8 was used in both
horizontal and vertical directions, instead of sliding the mask
pixel by pixel. The time cost is affected by the size of the
background image and the hidden object. Specifically, for a
700 × 435 background image and a foreground object with
34933 pixels, it takes about 1 second to find the solution.

Camouflage Image Generation

Background. We first summarize the neural style (NS) al-
gorithm (Gatys, Ecker, and Bethge 2016), since it inspires

the proposal of our camouflage image generation. This al-
gorithm transfers the style of a reference image IS onto an
input image I to produce a target image IT by minimizing
the following objective function within a neural network:

L = Lstyle + λLcontent, (2)

where Lstyle and Lcontent are the style loss and content loss,
which are separately defined as

Lstyle =

L∑
�=1

β�

2N2
�

N�∑
i=1

N�∑
j=1

(
G�

ij(IT )−G�
ij(IS)

)2

Lcontent =

L∑
�=1

α�

2N�D�

N�∑
i=1

D�∑
j=1

(
F �
ij(IT )− F �

ij(I)
)2

,

(3)

where L denotes the total number of convolutional layers in
the network and � indicates the �-th layer. N� refers to the
number of filters, and D� is the size of vectorized feature
map generated by each filter. F � ∈ RN�×D� is a feature
matrix that stores the filter responses, and F �

ij is the acti-
vation of the i-th filter at position j. G� ∈ RN�×N� is a
Gram matrix that describes the feature correlations, where
G�

ij =
∑

k F
�
ikF

�
jk is the inner product between feature

maps. α� and β� are weights controlling the influence of
each layer. λ is a weight that balances the two losses.
Our Approach. Inspired by the NS algorithm, we formulate
a loss function to generate the desired camouflage image IR
for the given background image IB (with mask MB) and the
foreground image IF (with mask MF ). Formally, the loss
function is defined as

L = Lstyle + λcamLcam + λregLreg + λtvLtv, (4)

where Lstyle, Lcam, Lreg and Ltv are the loss components.
Lstyle is the style loss in Eq. 2. λcam, λreg and λtv are
weights for the corresponding losses. Below we describe
Lcam, Lreg and Ltv in detail. Note, unless otherwise spec-
ified, we slightly abuse the notations IF as well as IB and
IR in the following illustration to indicate the image regions
corresponding to the masks MF and MB , respectively.
Attention-aware Camouflage Loss. According to the fea-
ture integration theory, the key to camouflaging an object
is to remove features that allow fast perception (feature
search), and also retain some subtle features for our percep-
tion system to reveal the hidden object in terms of conjunc-
tion search. Hence, we develop an attention-aware camou-
flage loss defined as

Lcam =

L∑
�=1

L�
leave + μ

L∑
�=1

L�
remove, (5)

where L�
leave and L�

remove are losses for leaving and remov-
ing features, which are responsible for enabling conjunction
search and preventing feature search, respectively. μ is a
weight, which is set as 0.5 by default. Specifically, we de-
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(a) Naive pasting (b) Lstyle + Lcontent (c) Lstyle + Lcam (d) Lstyle +Lcam +Lreg (e) Our full method

Figure 3: Ablation study that demonstrates the effectiveness of the three loss components Lcam, Lreg and Ltv in our loss
function. (a) Naive object pasting and the background image (top-left). (b) Camouflage image produced by the NS algorithm
(Eq. 2). (c)-(e) are our generated camouflage images with different loss combinations. Zoom in to compare results.

fine Lleave and Lremove as

L�
leave =

α1
�

2N�D�

∑
i,j

|XA(IR)−XA(IF )|

L�
remove =

α2
�

2N�D�

∑
i,j

(A′ � (F �
ij(IR)− F �

ij(IB))
)2

,

(6)
where X (·) computes the normalized cosine distance be-
tween feature vectors of an input image, which provides an
effective descriptor of the image structures (Kolkin, Salavon,
and Shakhnarovich 2019). We adopt this descriptor instead
of the content representation utilized in Eq. 2, since we
found that image structures are more appropriate features
to leave for conjunction search. A is a normalized atten-
tion map of the foreground object in IF , which indicates the
importance of different areas in making the object recog-
nizable. In general, large attention value means high impor-
tance. Specifically, XA(IR) is defined as

XA(IR) =
C(A� F �

ij(IR))∑
i C(A� F �

ij(IR))
, (7)

where C(A�F �
ij(IR))) denotes the pairwise cosine distance

matrix of all feature vectors in A� F �
ij(IR). XA(IF ) is de-

fined similarly. Our intention behind the loss L�
leave is to

only preserve the most foundamental (indicated by the at-
tention map A) structures of the foreground object in the
output camouflage image IR to allow conjunction search of
the hidden object. A′ = 1 − A is used to guide filling the
less important foreground object areas with the content of
the background image via the loss L�

remove, which helps pre-
vent our feature search. α1

� and α2
� are weighting parameters

of each convolutional layer. We describe how we compute
the attention map A in the implementation details.
Naturalness Regularization. Though the style loss is em-
ployed to transfer the style of the background to the fore-
ground object, we observed that camouflage images gener-
ated based on the style loss and camouflage loss may be vi-
sually unnatural due to the remaining appearance disconti-
nuities between the hidden object and the surrounding back-
ground (see Fig. 3(c)). There are two reasons for this prob-

lem. First, as analyzed in (Luan et al. 2018), the style loss
would be less effective when applied locally. Second, the
camouflage loss may incur discontinuities between the fore-
ground features and the newly filled background features. To
address this problem, we design a naturalness regularization.

Our regularization is inspired by (Chen et al. 2012), which
achieves manifold-preserved edit propagation by enforcing
each pixel to be the same linear combination of its neighbors
in the result. Specifically, we aim to remove the aforemen-
tioned appearance discontinuities by preserving the mani-
fold structure of the covered background region within the
hidden object. To this end, we first compute a set of weights
that can best reconstruct the feature at each covered back-
ground pixel from its spatially neighboring pixels in a K×K
window centered at it using the LLE method (Roweis and
Saul 2000). Note, the concatenation of the RGB color chan-
nels and the spatial coordinates is used as the feature at
each pixel (each dimension is normalized to [0,1]). By this
means, for a foreground object with N pixels, we construct
a N × N sparse weight matrix W that has K2 nonzero en-
tries in each column. Based on the weight matrix W , we
define the following regularization to maintain the manifold
structure formed by pixels in the covered background in the
output camouflage image IR:

Lreg =
∑

c∈{r,g,b}
Vc(IR)

T
(E −W )T (E −W )Vc(IR), (8)

where Vc(IR) is the vector representation of the color chan-
nel c of the output image IR. E is the identity matrix. To
maintain reliable manifold, we empirically set K = 7 in our
experiments. It is worth noting that we also tried the mat-
ting Laplacian based regularization introduced in (Luan et
al. 2017). However, we found that it is less effective, and
may incur artifacts such as color distortion and illumination
discontinuities within the hidden object (see the supplemen-
tary material for details).
Total Variational Loss. To ensure that the output camou-
flage image has smooth color and illumination transitions
within the hidden object, we employ a total variational (TV)
loss (Johnson, Alahi, and Fei-Fei 2016) defined as

Ltv =
∑
p

∑
c∈{r,g,b}

(∂xIR)
2
p,c + (∂yIR))

2
p,c , (9)
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(a) Naive pasting (b) AB (c) TT (d) PC (e) CAM (f) Ours

Figure 4: Comparison of our method against conventional computational camouflage methods. Zoom in to compare results.

(a) Naive pasting (b) NS (c) DPS (d) CFPS (e) DPH (f) Ours

Figure 5: Comparison of our method against recent neural style transfer algorithms. Zoom in to compare results.

where p indexes pixels. ∂x and ∂y are the partial derivatives
in the horizontal and vertical directions.

Implementation Details

Similar to (Gatys, Ecker, and Bethge 2016), our results are
generated based on the pre-trained VGG-19 (Simonyan and
Zisserman 2014). conv4 1 is used in the camouflage loss,
while conv1 1, conv2 1, conv3 1 and conv4 1 are chosen for
the style loss. α1

� = 1, α2
� = 1 and β� = 1.5 are set for

selected convolutional layers in the respective losses, and
are set as zeros for other unselected layers. The parameters
λcam = 10−6, λreg = 10−9 and λtv = 10−3 are used to
produce all our results, which works well for most cases.
Attention. Here we introduce how we estimate the static at-
tention map utilized in the camouflage loss. Our main idea
is to first predict coarse attention maps for the foreground
object in IF based on (Hou and Zhang 2007) by leveraging
feature representations characterized by the VGG-19, and
then combine them to produce the final fine-scale attention
map. Specifically, for a feature map F of the foreground ob-
ject, we compute an attention map by

AF =
∑
k

Φ−1 (log Φ(Fk)− G(log Φ(Fk))) , (10)

where k indexes the feature channels. Φ and Φ−1 denote the
Fourier Transform and Inverse Fourier Transform. G(·) de-
notes the Gaussian smoothing. Based on Eq. 10, we propose

to estimate a fine-scale attention map for the foreground ob-
ject by fusing coarse attention maps predicted from different
convolutional layers, which is expressed as

A =
1

5

(
1

4

4∑
i=1

A↓
F [conv3 i] +

4∑
i=1

AF [conv4 i]

)
, (11)

where F [·] refers to the feature map of a convolutional layer.
↓ denotes a downsampling operation, which allows us to
sum attention maps with different spatial resolutions. We do
not employ shallow convolutional layers (e.g. conv1 1 and
conv2 1), since they usually fail to provide reliable feature
representation. The 4-th level convolutional layers play more
important role, since we found that they typically character-
ize the desired discriminative features. The average attention
map of the 3-th level convolutional layers is also added to
avoid missing important middle-level features.
Boundary Concealment. To conceal the boundary of the
hidden object, we slightly dilate the foreground object mask
and include a small portion of surrounding background as
the actual hidden object, and then only obtain the result-
ing part indicated by the originally non-dilated object mask
to generate the camouflage image. In this way, we are able
to conceal the boundary, since the total variational loss to-
gether with the camouflage loss explicitly enforce smooth
transitions between the hidden object and the included back-
ground (see the supplementary material for validation).
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Figure 6: Rating distributions for our method and the compared conventional computational camouflage methods on the two
questions in the user study. The ordinate axis shows the rating frequency.
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Figure 7: Rating distributions for our method and the compared neural style transfer methods on the questions in the user study.

Our algorithm was implemented in PyTorch (Paszke et
al. 2017). All our experiments were conducted on a PC
with an NVIDIA 1080Ti GPU. We employ the L-BFGS
solver (Liu and Nocedal 1989) for image reconstruction. It
takes about 2-4 minutes to generate a 700 × 700 camou-
flage image. Our code will be made publicly available at
http://zhangqing-home.net/.

Experiments

In this section, we perform various experiments to validate
the effectiveness of the proposed approach. We first compare
our approach against existing methods. Then we conduct ab-
lation studies to evaluate the effectiveness of the loss compo-
nents and the attention in our algorithm. Finally, we present
more analysis of the proposed approach. Please also see the
supplementary material for more results and comparisons.

Comparison with Existing Methods

Our comparison to existing methods is twofold. First, we
compare our method with various related conventional com-
putational camouflage techniques, including alpha blending
(AB), Poisson cloning (Pérez, Gangnet, and Blake 2003)
(PC), texture transfer (TT) (Efros and Freeman 2001), and
CAM (Chu et al. 2010). Second, we compare our method
with state-of-the-art neural style transfer algorithms, includ-
ing NS (Gatys, Ecker, and Bethge 2016), DPS (Luan et al.
2017), CFPS (Li et al. 2018), and DPH (Luan et al. 2018).
For fair comparison, we produce the results of our competi-
tors using their publicly-available implementations and fine-
tune their parameters to select best visual results. We im-

plemented the algorithm of CAM (Chu et al. 2010) by our-
selves, since there is no available implementation.
Visual Comparison. Fig. 4 compares our method with con-
ventional computational camouflage methods. As shown, al-
pha blending, Poisson cloning and texture transfer fail to
camouflage the portrait and the lion. CAM (Chu et al. 2010)
successfully hides the two objects. However, the color and
texture on the hidden objects are less consistent to the back-
ground, making their results visually unnatural. In contrast,
our results look more satisfying, since our method better
camouflages the objects and avoids appearance discontinu-
ities. In Fig. 5, we further compare our method with recent
neural style transfer methods. We can see that the four com-
pared methods fail to hide the foreground objects though
they decorate them with the style of the background. More-
over, there also exists obvious color, texture, illumination
discontinuities in their results. Our method achieves much
better results than the others on the two cases, demonstrat-
ing its effectiveness and superiority.
User Study. Inspired by (Chu et al. 2010; Wang et al. 2019),
we also conducted a user study to evaluate our method
since judging camouflage images is a highly subjective pro-
cess. To this end, we first collected 28 background im-
ages that cover a broad range of scenes, subjects, and light-
ing conditions, and another 17 foreground objects. Then,
three participants were invited to selected one or more fore-
ground objects and their corresponding hiding regions for
each background image. Next, we camouflaged the selected
foreground objects into each background image using our
method and other compared methods, and invited other 50
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(a) Input (b) Without attention (c) With attention

Figure 8: Effect of the attention. (a) Naive object pasting and
the attention map for the foreground object (top-left). (b) and
(c) are results without and with attention.

participants via Amazon Mechanical Turk to rate each group
of results, which are presented in a random order to avoid
subjective bias. For each result, the participants were asked
to give a rating with a scale from 1 (worst) to 5 (best) on
two questions: “(1) Is it challenge you to detect the hidden
objects?” and “(2) Is it visually natural and entertaining?”.
Figs. 6 and 7 summarize the results, where each subfigure
shows five rating distributions of the evaluated methods on a
particular question. The rating distributions across methods
show that our results are more preferred by human subjects,
where our method receives more “red” and far less “blue”
ratings compared to the others.

Ablation Analysis

Effect of Loss Components. We perform ablation experi-
ments to evaluate the effectiveness of the loss components
in our loss function. Comparing Fig. 3(b) and (c), we ob-
serve better camouflage effect of the koala by using the pro-
posed camouflage loss instead of the content loss in Eq. 2.
In contrast, a naive application of the NS algorithm (i.e.
Lstyle + Lcontent) results in obvious-to-recognize hidden
object that most fine details (even the fur and hair) are well-
preserved. By further incorporating the naturalness regular-
ization, we successfully remove the disturbing black spots
on face of the koala and produce a visually more natural
camouflage image with background consistent hidden object
in Fig. 3(d). As can be observed by comparing Fig. 3(d) and
(e), we obtain better result with smooth boundary transitions
by incorporating the total variational loss.
Effect of the Attention. Fig. 8 demonstrates the effective-
ness of the attention. As shown, the attention map shows
that the eyes and nose are the parts making the lion dis-
criminative and recognizable. Hence, the result with atten-
tion in Fig. 8(c) only preserves these essential information
and masks out other less important parts, while the result
without attention in Fig. 8(b) retains most details (even the
fur and hair), and thus makes the lion easy to recognize.

More Analysis

Robustness to Varying Illumination. Different from previ-
ous methods that are sensitive to varying illumination, our
method is relatively robust to the illumination. We can see
that the background image (top-left) in Fig. 3(a) has com-
plex illumination on the hiding region, while our method

(a) Naive pasting (b) λcam = 1e− 5 (c) λcam = 1e− 6

Figure 9: Effect of varying λcam on the recognition difficulty
of the camouflage images. Zoom in to see details.

also produces satisfactory camouflage image. This advan-
tage benefits from the designed naturalness regularization
which enforces the hidden object to preserve the manifold
structure of the covered background region.
Effect of Varying Parameters. Fig. 9 evaluates how λcam

affects the recognition difficulty of the generated camou-
flage images. As shown, large λcam makes the horse easier
to recognize, since the essential parts indicated by the atten-
tion, e.g. the eye, nose, and the front legs, are more standout
in this situation. In contrast, small λcam yields result with
high recognition difficulty. This experiment shows that it is
easy for users to create camouflage images with our method
at controllable levels of difficulty by adjusting λcam.
Limitations. While our method produces satisfactory cam-
ouflage images for most of our testing images, it still has
limitations. First, it cannot camouflage objects into smooth
background due to lack of exploitable distracting image con-
tents. Second, when the hidden objects are placed across re-
gions with significantly different textures (e.g. across moun-
tain and sky), it may fail.

Conclusion

We have presented an approach for creating camouflage im-
ages. Unlike previous methods, we propose to generate cam-
ouflage images by minimizing a novel perception-driven
loss function within a neural network, which allows us to
take full advantage of the high-level image representations
learned by the network to achieve better camouflage effect.
Extensive experiments have been performed to validate the
effectiveness of the propose approach. We believe that our
approach can be an effective tool for amateurs to create cam-
ouflage images, and has great potential in advancing studies
in cognitive psychology on how humans perceive as well as
in other applications such as gaming and entertainment.

Figure 10: Answers keys for camouflage images in Fig. 1.
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