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Abstract

Person re-identification (ReID) aims at finding the same per-
son in different cameras. Training such systems usually re-
quires a large amount of cross-camera pedestrians to be an-
notated from surveillance videos, which is labor-consuming
especially when the number of cameras is large. Differently,
this paper investigates ReID in an unexplored single-camera-
training (SCT) setting, where each person in the training set
appears in only one camera. To the best of our knowledge, this
setting was never studied before. SCT enjoys the advantage of
low-cost data collection and annotation, and thus eases ReID
systems to be trained in a brand new environment. However,
it raises major challenges due to the lack of cross-camera per-
son occurrences, which conventional approaches heavily rely
on to extract discriminative features. The key to dealing with
the challenges in the SCT setting lies in designing an effec-
tive mechanism to complement cross-camera annotation. We
start with a regular deep network for feature extraction, upon
which we propose a novel loss function named multi-camera
negative loss (MCNL). This is a metric learning loss moti-
vated by probability, suggesting that in a multi-camera sys-
tem, one image is more likely to be closer to the most simi-
lar negative sample in other cameras than to the most similar
negative sample in the same camera. In experiments, MCNL
significantly boosts ReID accuracy in the SCT setting, which
paves the way of fast deployment of ReID systems with good
performance on new target scenes.

1 Introduction

Person re-identification (ReID) aims to retrieve a certain per-
son appearing in a camera network. With increasing con-
cerns on public security, ReID has attracted more and more
research attention from both academia and industry. In the
past years, many algorithms (Sun et al. 2018; Wang et al.
2019; Suh et al. 2018; Zheng, Zheng, and Yang 2018) and
datasets (Zheng et al. 2015; Zheng, Zheng, and Yang 2017b;
Wei et al. 2018; Zheng, Karanam, and Radke 2018) have
been proposed, which significantly boosted the progress of
this research field. Despite the higher and higher accuracy
obtained by specifically designed approaches on standard
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Attributes
Setting FST UT SCT

(Ours)
Easy collection of training data? � �
No need of cross-camera persons? �
No need of cross-camera annotation? � �
Reliable target labels available? � �
Fast deployment? � �

Figure 1: The comparison between SCT and previous set-
tings in person ReID. Fully-supervised-training (FST) data
are composed of annotated pedestrians appearing in multiple
cameras. Unsupervised-training (UT) data have no identity
annotations. Under our single-camera-training (SCT) set-
ting, each pedestrian appears in only one camera and identity
labels are easy to obtain.

ReID benchmarks, many issues of this task remain unsolved.
As discussed in (Wei et al. 2018; Deng et al. 2018), a
ReID model trained on one dataset performs poorly on other
datasets due to dataset bias. Thus, to deploy a ReID system
to a new environment, labelers have to annotate a training
dataset from the target scene, which is often time-consuming
and even impractical in large-scale application scenarios. To
tackle this issue, researchers make a common assumption
is that there exist a number of available unlabeled images
in the target scene, based on which they design some unsu-
pervised learning (Lin et al. 2019) or domain adaptation ap-
proaches (Wang et al. 2018b) to improve ReID performance.
However, these methods depend on extra modules to pre-
dict the pseudo label of each image or generate fake images.
Therefore, it is not always reliable and reports less satisfying
performance compared to supervised learning methods.

Different from previous work, this paper investigates
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ReID under a novel single-camera-training (SCT) setting,
where each pedestrian appears in only one camera. We com-
pare our setting to previous ones in Fig. 1. Without the heavy
burden of annotating cross-camera pedestrians, training data
with labels are easy to obtain under SCT. For example, us-
ing off-the-shelf tracking techniques (Keuper et al. 2018;
Luo et al. 2019), researchers can quickly collect a large
number of tracklets under each camera at different time pe-
riods, and thus it is very likely that each of them corre-
sponds to a unique ID. Therefore, compared to the fully-
supervised-training (FST) setting, i.e., learning knowledge
from cross-camera annotations, SCT requires much fewer
efforts in preparing for training data. Compared to the
unsupervised-training (UT) setting, which requires frequent
cross-camera person occurrences, SCT makes a mild as-
sumption on camera-independence, so as to provide weak
but reliable supervision signals for learning. Therefore, SCT
has the potential of being deployed to a wider range of ap-
plication scenarios.

It remains an issue of how to make use of the camera-
independence assumption to learn discriminative features
for ReID. The most important one lies in camera isolation,
which implies that there are no cross-camera pedestrians in
the entire training set. Conventional methods heavily rely on
cross-camera annotations because this is the key supervision
that a model receives for metric learning. That is to say, by
pulling the images of the same person appearing in differ-
ent cameras close, conventional methods can learn camera-
unrelated features so that they perform well on the testing
set. With camera isolation in SCT, we must turn to other
types of supervision to achieve the goal of metric learning.

To this end, we propose a novel loss term named Multi-
Camera Negative Loss (MCNL). The design of MCNL is
inspired by a simple hypothesis, that given an arbitrary per-
son in a multi-camera network, it is more likely that the most
similar person is found in another camera, rather than in the
same camera, because there are simply more candidates in
other cameras. To verify this, we perform statistical anal-
ysis on several public datasets, and the results indeed sup-
port our assumption (please see Fig. 2). Based on the above
observation, our MCNL adjusts feature distributions and al-
leviates camera isolation problem by ranking the distances
of cross-camera negative pairs and within-camera negative
pairs. Extensive experiments show that MCNL can force the
backbone network to learn more person-related features but
ignore camera-unrelated representations, and then achieves
good performance under the SCT setting.

Our major contributions can be summarized as follows:

• To the best of our knowledge, this paper is the first to
present the SCT setting. Moreover, this paper analyzes
the advantages and challenges under the SCT setting com-
pared to existing settings in person ReID.

• To solve the issue of camera isolation under the SCT set-
ting, this paper proposes a simple yet effective loss term
named MCNL. Extensive experiments show that MCNL
significantly boosts the ReID performance under SCT,
and it is not sensitive to wrong annotations.

• Last but not least, by solving SCT, this paper sheds light

on fast deployment of ReID systems in new environments,
implying a wide range of real-world applications.

2 Related Work

Our work is proposed under the new single-camera-training
setting, which is relative to previous FST setting and UT
setting. In this section, we mainly summarize the existing
methods of these settings and then elaborate the differences
between these settings and our SCT.

2.1 Fully-Supervised-Training Setting

The FST setting implies that there are a large number of an-
notated cross-camera pedestrian images for training. In pre-
vious works under the FST setting, most of them formulated
person ReID as a classification task and trained a classifi-
cation model with the labeled training data (Zheng, Yang,
and Hauptmann 2016; Zheng, Zheng, and Yang 2017a;
Sun et al. 2017). With the advantages of large-scale train-
ing data and deep neural networks, these methods achieve
good results. In addition, some researchers designed com-
plex network architectures to extract more robust and dis-
criminative features (Wei et al. 2017; Zhang et al. 2017;
Liu et al. 2018). Differently, other researchers argue that
the surrogate loss for classification may not be suitable
when the number of identities increases (Hermans, Beyer,
and Leibe 2017). Therefore, end-to-end deep metric learn-
ing methods were proposed and widely used under the FST
setting (Wen et al. 2016; Hermans, Beyer, and Leibe 2017;
Chen et al. 2017). For example, Hermans et al. (Hermans,
Beyer, and Leibe 2017) demonstrated that the triplet loss is
more effective for person ReID task. Chen et al. (Chen et al.
2017) proposed a deep quadruplet network to improve the
ReID performance further. Although the performance has
been boosted significantly, the demand for annotating large-
scale training data hinders their real-world applications, e.g.,
the fast deployment of ReID systems in new target scenes is
almost impossible. This is because it is rather expensive to
collect this kind of training data for the FST setting. Dif-
ferent from the FST setting, the SCT setting requires much
less time in the training data collection process, since there
is no need to collect and annotate cross-camera pedestrian
images. Therefore, our SCT setting is more suitable for fast
deployment of ReID systems in new target scenes.

2.2 Unsupervised-Training Setting

Different from FST, the UT setting means there are no
labeled training data. Although hand-crafted features like
LOMO (Liao et al. 2015), BOW (Zheng et al. 2015)
and ELF (Gray and Tao 2008) can be used directly,
the ReID performance is relatively low. Therefore, some
researchers designed novel unsupervised learning meth-
ods to improve ReID performance under the UT setting.
Liang et al. (Liang et al. 2015) proposed a salience weighted
model. Lin et al. (Lin et al. 2019) adopted a bottom-up clus-
tering approach for purely unsupervised ReID. Without the
supervision of identity labels, the performance of their meth-
ods is still not satisfactory. To further boost ReID accuracy,
many unsupervised domain adaptation methods have been
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proposed. They conducted supervised learning on the source
domain and transferred to the target domain, thus can bene-
fit from FST and produce better results. The ways of trans-
ferring domain knowledge include image-image transla-
tion (Wei et al. 2018; Deng et al. 2018), attribute consistency
scheme (Wang et al. 2018b), and so on (Zhong et al. 2018;
Peng et al. 2016; Zhong et al. 2019b). These methods per-
form well when the target domain and the source domain
are very similar, but may not be suitable when the do-
main gap is large (Li, Zhu, and Gong 2018). Differently,
the problem does not exist in our proposed SCT setting be-
cause under SCT, ReID models are only trained with train-
ing data from the target scene. One-view learning (Zhong
et al. 2019a) is another direction for reducing annotation la-
bor, in which identities in only one specific camera are an-
notated. More recently, Li et al. (Li, Zhu, and Gong 2018)
built the cross-camera tracklet association to learn a robust
ReID model from automatically generated person tracklets.
This method (Li, Zhu, and Gong 2018) assumes that cross-
camera pedestrians are common, and thus camera relations
can be learned by matching person tracklets. However, in a
large-scale camera network, the average number of cameras
pedestrians pass through is quite small, e.g., one person ap-
pears in only five cameras from thousands of cameras. More-
over, the tracklet association method (Li, Zhu, and Gong
2018) is not so reliable to make sure each matched tracklets
belonging to the same person. The wrong matched track-
lets may cause the learned ReID model to perform poorly.
Inspired by the above discussion, we propose a more reli-
able setting, i.e.,single-camera-training, and further design
the multi-camera negative loss to improve the ReID perfor-
mance under this setting.

3 Problem: Single-Camera-Training
Researchers report major difficulty in collecting and anno-
tating data for person ReID, and such difficulty is posi-
tively related to the number of cameras in the network. We
take MSMT17 (Wei et al. 2018), a large-scale ReID dataset,
as an example. To construct it, researchers collected high-
resolution videos covering 180 hours from 15 cameras, af-
ter which three labelers worked on the data for two months
for cross-camera annotation. In another dataset named RPI-
field (Zheng, Karanam, and Radke 2018), there are two types
of pedestrians known as actors and distractors, respectively.
A small number of actors followed pre-defined paths to
walk in the camera network, and thus it is easy to associate
the images captured by different cameras. However, a large
number of distractors, without being controlled, are walk-
ing randomly, so that it is rather expensive to annotate these
pedestrians among cameras. This annotation process, from a
side view, verifies the difficulty of collecting and annotating
cross-camera pedestrians.

On the other hand, cross-camera information plays the
central role in person ReID, because for the conventional
approaches, this is the main source of supervision that the
same person appears differently in the camera network – this
is exactly what we hope to learn. We quantify how exist-
ing datasets provide cross-camera information by comput-
ing the average number of occurrences of each person in the

Table 1: The camera-per-person (CP) value of a few ReID
datasets. Ncam denotes the number of cameras.

Dataset Ncam CP CP/Ncam

MSMT17 15 3.81 0.254
DukeMTMC-reID 8 3.13 0.391
Market-1501 6 4.34 0.724
RPIfield (distractors) 12 1.25 0.104
RPIfield (actors) 12 6.99 0.583
RPIfield (total) 12 1.40 0.117

camera network, i.e., if a person appears in three cameras,
his/her number of occurrences is 3. We name it the camera-
per-person (CP) value and list a few examples in Tab. 1. We
desire a perfect dataset in which all persons are annotated in
all cameras, i.e., CP equals to the number of cameras, but
for a large camera network, this is often impossible, e.g.,
in MSMT17, the CP value is 3.81, far smaller than 15, the
number of cameras.

To alleviate the burden of data annotation, we propose to
consider the scenario that no cross-camera annotations are
available, i.e., CP equals to 1 regardless of the number of
cameras in the network. We name this setting to be single-
camera-training (SCT).This requirement can be achieved
by collecting data from different cameras in different time
periods (e.g., recording camera A from 8 am to 9 am while
camera B from 10 am to 11 am) – although this cannot guar-
antee our assumption, as we shall see in experiments, our
approach is robust to a small fraction of ‘outliers’, i.e., two
or more occurrences of the same person in different cameras
are assumed to be different identities.

This setting greatly eases the fast deployment of a ReID
system. With off-the-shelf person tracking algorithms (Keu-
per et al. 2018; Luo et al. 2019), we can easily extract a large
number of tracklets in videos, each of which forms an iden-
tity in the training set. However, such a training dataset is
less powerful than those specifically designed for the ReID
task, as it lacks supervision of how a person can appear dif-
ferently in different cameras. We call this challenge camera
isolation, and will elaborate on this point carefully in the
next section.

4 Our Approach

4.1 Baseline and Motivation

Existing ReID approaches often start with a backbone which
extracts a feature vector xk from an input image Ik. On top
of these features, there are mainly two types of loss func-
tions, and sometimes they are used together towards higher
accuracy. The first type is named the cross entropy (CE) loss,
which requires the model to perform a classification task in
which the same person in different cameras are categorized
into one class. The second type is named the triplet mar-
gin (TM) loss, which assumes that the largest distance be-
tween two appearances of the same person should be smaller
than the smallest distance between this person and another.
When built upon a ResNet-50 (He et al. 2016) backbone, CE
and TM achieve 78.9% and 79.0% rank-1 accuracy on the
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Figure 2: Curves of the probability produced by the triplet
margin loss, with respect to the number of elapsed training
epochs, of finding the most similar person (of a different ID)
in another camera. The figures on the left and right show
results on Market-1501 and DukeMTMC-reID, respectively.

DukeMTMC-reID dataset (Zheng, Zheng, and Yang 2017b),
respectively, without any bells and whistles.

However, in the SCT setting, both of them fail dramat-
ically due to camera isolation. From the DukeMTMC-reID
dataset, we sample 5,993 images from the training set which
satisfy the SCT setting, and the corresponding models, with
CE and TM losses, report 40.2% and 21.2%, respectively.
In comparison, we sample another training subset with the
same number of images but equipped with cross-camera
annotation, and these numbers become 69.3% and 75.8%,
which verifies our hypothesis.

To explain this dramatic accuracy drop, we first point out
that a ReID system needs to learn feature embedding which
is independent to cameras (i.e., camera-unrelated features),
which is to say, the learned feature distribution is approxi-
mately the same under different cameras. However, we point
out that both CE and TM losses cannot achieve this goal by
themselves – they heavily rely on cross-camera annotations.
Without such annotations, existing ReID systems often learn
camera-related features.

Here, we provide another metric to quantify the impact of
camera-related/unrelated features, which is the core obser-
vation that motivates our algorithm design. Intuitively, for
a set of camera-unrelated features, the feature distribution
over the entire camera network should be approximately the
same as the distribution over any single camera. In other
words, the expectation of similarity between two different
persons in the same camera should not be higher than that
between two different persons from two cameras. Therefore,
given an anchor image, the probability that the most similar
person appears in the same camera is only 1/Ncam, i.e., in
a multi-camera system, the most similar person mostly ap-
pears in another camera. Thus, we perform statistics during
the training process with the TM loss, under both SCT and
FST, and show results in Fig. 2. We can see that, under the
FST setting, this probability is mostly increasing during the
training process, and eventually reaches a plateau at around
0.8; while under the SCT setting, the curve is less stable and
the stabilized probability is much lower.

Thus, our motivation is to facilitate the learned features to
satisfy that the most similar person appears in another cam-

era. This is considered as the extra, weakly-supervised
cue to be explored in the SCT setting. This leads to a novel
loss function, the Multi-Camera Negative Loss (MCNL),
which is detailed in the next subsection.

4.2 Multi-Camera Negative Loss

Inspired by the analyses above, we design the Multi-Camera
Negative Loss (MCNL) to ensure that, given any anchor im-
age in one camera, the most similar negative image is more
likely to be found from other cameras, and the negative im-
age should be less similar to the anchor image, compared to
the most dissimilar positive image.

In a mini-batch with C cameras, P identities from each
camera and K images of each identity (i.e., the batch size is
C × P × K), given an anchor image Ic,pk , let fθ(I

c,p
k ) de-

note the feature mapping function learned by our network,
and ‖f1−f2‖ represent the Euclidean distance between two
feature vectors. The hardest positive distance of Ic,pk is de-
fined as:

distc,p,k+ = max
l=1...K,l �=k

‖fθ(Ic,pk )− fθ(I
c,p
l )‖. (1)

Then, we have the hardest negative distance in the same
camera:

distc,p,k−,same = min
l=1...K,

q=1...P,q �=p

‖fθ(Ic,pk )− fθ(I
c,q
l )‖, (2)

and the hardest negative distance in other cameras:

distc,p,k−,other = min
l=1...K,
q=1...P,

o=1...C,o �=c

‖(fθ(Ic,pk )− fθ(I
o,q
l )‖. (3)

With these terms, MCNL is formulated as follows:

LMCNL =

C∑
c=1

P∑
p=1

K∑
k=1

[m1 + distc,p,k+ − distc,p,k−,other]+

+ [m2 + distc,p,k−,other − distc,p,k−,same]+, (4)

where [z]+ = max(z, 0), and both of m1 and m2 denote the
values of margins.

As shown in Eq. (4), the second loss term is to ensure the
most similar negative image is found from other cameras,
and the first loss term is to force this negative image to be
less similar than the most dissimilar positive image. These
two parts together provide boundaries to restrict distc,p,k−,other

between distc,p,k+ and distc,p,k−,same, which meets the motiva-
tion described in the previous section.

Moreover, the proposed MCNL also ensures that the
learned feature is discriminative and camera-unrelated.
Given the most similar cross-camera negative image dif-
fers in camera factors, it is more likely that the similarity
lies in person appearance. By pulling the most similar cross-
camera negative pairs a little closer, MCNL encourages the
model to focus more on person appearance. For the most
similar within-camera negative pair, as camera factors are
shared with the anchors, pushing them away further reduces
the impact of cameras. In addition, MCNL also ensures pos-
itive pairs closer than cross-camera negative pairs, which
meets the basic correctness of metric learning.
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Table 2: Details of datasets used in our experiments.

Dataset #Train
IDs

#Train
Images

#Test
IDs

#Test
Images

With cross-
camera persons?

Market 751 12,936 750 15,913 True
Market-SCT 751 3,561 750 15,913 False
Duke 702 16,522 1,110 17,661 True
Duke-SCT 702 5,993 1,110 17,661 False

Differences from prior work. Previously, researchers
proposed many triplet-based or quadruplet-based loss func-
tions to improve ReID performance (Hermans, Beyer, and
Leibe 2017; Schroff, Kalenichenko, and Philbin 2015; Shi
et al. 2016). The largest difference between our approach
and theirs lies in that they pushed away the hardest negative
images from other cameras without constraints, while we do
not. In a dataset constructed under the SCT setting, these
methods tend to learn camera-related cues to separate nega-
tive images from another camera, which further aggravates
the camera isolation problem. Moreover, we evaluate several
state-of-the-art methods related to metric learning and ReID
under SCT. The experiment results demonstrate that existing
methods are not suitable for this new setting.

Advantages. Based on the above discussions, the advan-
tages of our proposed MCNL can be summarized as two
folds. (i) MCNL can alleviate the camera isolation prob-
lem. Through pulling the cross-camera negative pairs closer
and pushing the within-camera negative pairs away, MCNL
forces the feature extraction model to ignore the camera
clues. (ii) Same with previous metric learning approaches,
MCNL can force the feature extraction model to learn a
more discriminative representation by adding the constraint
that, the hardest positive image should be closer to the an-
chor image, compared with the negative images (both cross-
camera and within-camera negative images).

5 Experiments

5.1 Datasets

To evaluate the effectiveness of our proposed method,
we mainly conduct experiments on two large-scale person
ReID datasets, i.e., Market-1501 (Zheng et al. 2015) and
DukeMTMC-reID (Zheng, Zheng, and Yang 2017b). For
short, we refer to Market-1501 and DukeMTMC-reID as
Market and Duke, respectively.

Both Market and Duke are widely used person ReID
datasets. For each person in the training sets, there are mul-
tiple images from different cameras. To better evaluate our
method, we reconstruct these training sets for the SCT set-
ting. More specifically, we randomly choose one camera
for each person and take those images of the person under
the selected camera as training images. Finally, we sample
5,993 images from the training set of Duke and 3,561 im-
ages from the training set of Market. In this paper, we de-
note these sampled datasets as Duke-SCT and Market-SCT,
respectively. Note that, we still keep the original testing data
and strictly follow the standard testing protocols. The de-
tailed statistics of the datasets are shown in Tab. 2.

Table 3: ReID accuracy (%) produced by different loss
terms, among which MCNL reports the best results.

Methods Duke-SCT Market-SCT
Rank-1 mAP Rank-1 mAP

Triplet 21.2 11.3 39.7 18.2
Triplet-other 9.9 3.6 25.2 8.8
Triplet-same 54.6 35.9 51.3 28.0
MCNL 66.4 45.3 66.2 40.6

5.2 Implementation Details

We adopt ResNet-50 (He et al. 2016) which is pre-trained
on ImageNet (Deng et al. 2009) as our network backbone.
The final fully connected layers are removed, and we con-
duct global averaging pooling (GAP) to the output of the
fourth block of ResNet-50. The GAP feature is used for
metric learning. In each batch, we randomly select 8 cam-
eras, and sample 4 identities for each selected camera. Then,
we randomly sample 8 images for each identity, leading to
the batch size of 256 for Duke-SCT. For Market-SCT, there
are only 6 cameras in the training set. Hence, we sample 6
cameras, 5 identities for each camera, and 8 images for each
identity, thus the batch size is 240 for Market-SCT. We em-
pirically set m1 and m2 as 0.1, respectively. For baseline, we
implement the batch hard triplet loss (Hermans, Beyer, and
Leibe 2017), which is one of the most effective implementa-
tions of the TM loss. For short, we use Triplet to denote the
batch hard triplet loss in the following sections. The margin
of Triplet is set to be 0.3, as it achieves excellent perfor-
mance under the FST setting. The input images are resized
as 256×128, and Adam (Kingma and Ba 2014) optimizer is
adopted. Weight decay is set as 5×10−4. The learning rate ε
is initialized as 2×10−4 and exponentially decays following
the Eq. (5) proposed in (Hermans, Beyer, and Leibe 2017):

ε(t) =

{
ε0, t ≤ t0

ε0 × 0.001
t−t0
t1−t0 , t0 ≤ t ≤ t1.

(5)

For all datasets, we update the learning rate every epoch after
100 epochs and stop training when reaching 200 epochs, i.e.,
t0 = 100 and t1 = 200, respectively. All experiments are
conducted on two NVIDIA GTX 1080Ti GPUs.

5.3 Diagnostic Studies

The effectiveness of MCNL. MCNL is designed based on
Triplet (Hermans, Beyer, and Leibe 2017). To better demon-
strate the effectiveness of MCNL, we evaluate the perfor-
mance of Triplet and its two variations, Triplet-same and
Triplet-other. Triplet-same represents the hardest negative
image is selected from the same camera as the anchor im-
age, and Triplet-other means the hardest negative image is
found from other cameras. The performance of these meth-
ods is summarized in Tab. 3.

As shown in Tab. 3, MCNL achieves huge improvements
compared to Triplet and its two variations. For example,
MCNL outperforms Triplet with 45.2% performance gains
in Rank-1 accuracy on Duke and boosts the ReID perfor-
mance with 11.8% compared to Triplet-same. It is worth

12882



(a) Triplet (8.433) (b) Triplet-other (16.683)

(c) Triplet-same (0.404) (d) MCNL (0.255)

Figure 3: Visualization of feature distributions. Pseudo F
statistics are shown in parentheses. Each color indicates fea-
tures from a camera. This figure is best viewed in color.

noticing that, compared with Triplet, Triplet-same also im-
proves the ReID performance under the SCT setting. That
is because Triplet-same aims to maximize the distance of
the negative pair, of which the two images come from the
same camera. To achieve the above goal, Triplet-same forces
the feature extraction model to focus on foreground area
and extract more camera-unrelated features because camera-
related clues are very similar. It is obvious that Triplet-other
aims to push cross-camera negative pairs away. Therefore,
the model will focus more on background and get worse
performance. Similar to Triplet-same, MCNL also aims to
push within-camera negative pairs as far as possible. More-
over, by restricting the distance of the hardest cross-camera
negative pair smaller than the distance of the hardest within-
camera negative pair, the model further solves the camera
isolation problem and ignores camera-related features.

To better evaluate the above discussions, we utilize t-
SNE (Van Der Maaten 2014) to visualize the feature distri-
butions extracted by different methods. To achieve this, we
randomly sample 500 images from the testing set of Duke,
and then extract the features on these images through four
models trained with Triplet, Triplet-same, Triplet-other, and
MCNL, respectively. Moreover, we use the pseudo F statis-
tics (Caliński and Harabasz 1974) to evaluate the relations
of feature distributions of different cameras quantitatively.
A larger value of pseudo F indicates more distinct clusters,
which means the extracted features are more related to cam-
eras. In other words, a smaller value of pseudo F implies that
features are better learned.

As shown in Fig. 3, features extracted by Triplet and
Triplet-other are separable according to cameras, which is
bad for ReID systems. Differently, Triplet-same and MCNL
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Figure 4: Rank-1 accuracy (%) on Duke-SCT with ran-
domly selected cross-camera persons. MCNL shows great
robustness against outliers. Solid or dashed line: whether the
model receives accurate annotations.

both map images to a camera-unrelated feature space.
Stability analysis. Although the data collection process is

restricted, there are inevitably some persons appearing in not
only one camera. To evaluate the robustness of our MCNL
under this setting, we conduct experiments on Duke to show
how the accuracy changes with respect to the percentage
of people showing up in multiple cameras. As shown in
Fig. 4, when these people are annotated truly according to
their identities, Triplet loss benefits largely from ground-
truth cross-camera annotations. Nevertheless, with a consid-
erable portion (14%, 100 out of 702) of outliers, MCNL still
holds an advantage. On the other hand, when they are an-
notated under the SCT setting, i.e., the images of the same
person but different cameras are assigned with different la-
bels, MCNL is quite robust with a small accuracy drop.

This result further demonstrates that our proposed MCNL
improves the ReID accuracy under the SCT setting with
great robustness against outliers. In real-world applications,
it is easy to control the portion of outliers under a low ratio.

5.4 Comparison to Previous Work

Comparisons to FST methods. We evaluate a few popu-
lar FST methods under the SCT setting and compare our
method with other advanced metric learning algorithms. As
shown in Tab. 4, previous state-of-the-art methods for the
FST setting fail dramatically under the SCT setting while
MCNL shows great advantages. This is because, without
cross-camera annotations, these methods are unable to ex-
tract camera-unrelated features.

Comparisons to UT methods. Our motivation of the
SCT setting is for fast deployment of ReID systems on
new target scenes, which is the same as the motivation of
the UT setting. Thus, as shown in Tab. 5, we also com-
pare MCNL with previous unsupervised training methods,
including purely unsupervised methods, tracklet association
learning method, and domain adaptation methods.

Compared to the state-of-the-art purely unsupervised
methods (labels denoted as None), our proposed MCNL sig-
nificantly outperforms BUC (Lin et al. 2019) with 19.0%
performance gains in Rank-1 accuracy on Duke. In one-
view learning (Zhong et al. 2019a), labeled data are avail-
able in only one camera. Compared to one-view learning,
SCT makes full use of camera information towards better
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Table 4: Comparisons of ReID accuracy (%) when training with SCT datasets. MCNL reports the best performance on SCT
datasets while other methods undergo dramatic accuracy drop.

Methods Ref. Duke-SCT Market-SCT
Rank-1 mAP Rank-1 mAP

Center Loss (Wen et al. 2016) ECCV’16 38.7 23.2 40.3 18.5
A-Softmax (Liu et al. 2017) CVPR’17 34.8 22.9 41.9 23.2
ArcFace (Deng et al. 2019) CVPR’19 35.8 22.8 39.4 19.8
PCB (Sun et al. 2018) ECCV’18 32.7 22.2 43.5 23.5
Suh’s method (Suh et al. 2018) ECCV’18 38.5 25.4 48.0 27.3
MGN (Wang et al. 2018a) ACMMM’18 27.1 18.7 38.1 24.7
MCNL This paper 66.4 45.3 66.2 40.6

Table 5: ReID accuracy (%) comparisons to UT methods. None denotes purely unsupervised training without any labels. One-
view denotes identities in only one camera are labeled. Tracklet denotes using tracklet labels. Transfer denotes utilizing other
labeled source datasets and unlabeled target datasets.

Methods Ref. Labels Duke Market
Rank-1 mAP Rank-1 mAP

BOW (Zheng et al. 2015) ICCV’15 None 17.1 8.3 35.8 14.8
DECAMEL (Yu, Wu, and Zheng 2018) TPAMI’18 None - - 60.2 32.4
BUC (Lin et al. 2019) AAAI’19 None 47.4 27.5 66.2 38.3
CamStyle (Zhong et al. 2019a) TIP’19 One-view 48.7 25.7 57.6 29.6
TAUDL (Li, Zhu, and Gong 2018) ECCV’18 Tracklet 61.7 43.5 63.7 41.2
TJ-AIDL (Wang et al. 2018b) CVPR’18 Transfer 44.3 23.0 58.2 26.5
SPGAN (Deng et al. 2018) CVPR’18 Transfer 46.9 26.4 58.1 26.9
HHL (Zhong et al. 2018) ECCV’18 Transfer 46.9 27.2 62.2 31.4
MAR (Yu et al. 2019) CVPR’19 Transfer 67.1 48.0 67.7 40.0
ECN (Zhong et al. 2019b) CVPR’19 Transfer 63.3 40.4 75.1 43.0
MCNL This paper SCT 66.4 45.3 66.2 40.6
MCNL+MAR (Yu et al. 2019) This paper Transfer+SCT 71.4 53.3 72.3 48.0
MCNL+ECN (Zhong et al. 2019b) This paper Transfer+SCT 67.3 45.5 76.3 51.2

performance, e.g., a 17.7% advantage in Rank-1 accuracy
on Duke. As for TAUDL (Li, Zhu, and Gong 2018) that uses
Tracklet labels, the entire training sets are used to train the
models. Our method constructs SCT datasets for training,
and thus only a small portion of training data are used, but
still surpasses TAUDL in Rank-1 accuracy.

Recently, many domain adaptation methods that use other
labeled datasets for extra supervision obtain good ReID ac-
curacy. Our MCNL alone achieves competitive results com-
pared to them. Moreover, our method is also complemen-
tary to current domain adaptation methods and can be easily
combined by replacing the target datasets with SCT datasets.
Such combination instantly brings significant improvement.
We take MAR (Yu et al. 2019) and ECN (Zhong et al.
2019b), for example. After using SCT data and MCNL in
MAR, we boost 4.3% in Rank-1 accuracy and 5.3% in mAP
on Duke dataset; the combination of MCNL and ECN im-
proves mAP on Market by 8.2% compared to ECN only.
Taking the advantages of reliable target domain annotations
and extra transferred information, we achieve the best ReID
performance on Duke and Market, respectively.

Note that, our method achieves good performance with
much fewer training data. Because of giving up collecting
cross-camera pedestrian images under the SCT setting, the

above training data can be easily collected and annotated.
Therefore, compared with prior work, our method and pro-
posed SCT setting are more suitable for fast deployment of
ReID systems with good performance on new target scenes.

6 Conclusions

In this paper, we explore a new setting named single-camera-
training (SCT) for person ReID. With the advantage of low
costs in data collection and annotation, SCT lays the foun-
dation of fast deployment of ReID systems in new environ-
ments. To work under SCT, we propose a novel loss term
named multi-camera negative loss (MCNL). Experiments
demonstrate that under SCT, the proposed approach boosts
ReID performance of existing approaches by a large margin.

Our approach reveals the possibility of learning cross-
camera correspondence without cross-camera annotations.
In the future, we will explore more cues to leverage under
the SCT setting and consider the mixture of single-camera
and cross-camera annotations to improve ReID accuracy.
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