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Abstract

Weakly supervised action recognition and localization for
untrimmed videos is a challenging problem with extensive
applications. The overwhelming irrelevant background con-
tents in untrimmed videos severely hamper effective iden-
tification of actions of interest. In this paper, we propose
a novel multi-instance multi-label modeling network based
on spatio-temporal pre-trimming to recognize actions and lo-
cate corresponding frames in untrimmed videos. Motivated
by the fact that person is the key factor in a human action,
we spatially and temporally segment each untrimmed video
into person-centric clips with pose estimation and tracking
techniques. Given the bag-of-instances structure associated
with video-level labels, action recognition is naturally formu-
lated as a multi-instance multi-label learning problem. The
network is optimized iteratively with selective coarse-to-fine
pre-trimming based on instance-label activation. After con-
vergence, temporal localization is further achieved with local-
global temporal class activation map. Extensive experiments
are conducted on two benchmark datasets, i.e. THUMOS14
and ActivityNet1.3, and experimental results clearly corrobo-
rate the efficacy of our method when compared with the state-
of-the-arts.

Introduction

Action recognition and localization is a heated research
topic with intensive attention for high-level video under-
standing. Compared with trimmed videos which are tem-
porally aligned with specific actions of interest, untrimmed
videos are typically flooded with irrelevant background con-
tents, and thus far more challenging to analyze. In the mean-
time, frame-level full supervision is accompanied with pro-
hibitive labeling effort, and apparently unfeasible for large
scale video sets. As a result, we focus on the more practical
weak supervision scenario, and aims to identify actions and
the corresponding temporal intervals in untrimmed videos
with video-level annotation.

∗These authors contributed equally to this study and share the
first authorship.

†Corresponding authors.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The workflow overview of PreTrimNet.

The overwhelming action-irrelevant contents in
untrimmed videos are formidable obstacles to effec-
tive action identification. Directly modeling the untrimmed
video as a whole can be quite misleading, and will in-
evitably result in deteriorated performance. As we know,
trimmed videos are noise-free high-quality data to develop
accurate action recognizers. Likewise, it is more reasonable
to “denoise” the untrimmed video by eliminating the
action-irrelevant contents and retaining segmented clips
that are dominated by potential actions. Traditional clip
generation methods (such as those with sliding windows,
pre-defined durations, flexible boundaries, etc.) are mostly
based on low-level features and only confined to temporal
segmentation, leaving the spatial contents unmodified.
This paper aims to explore spatio-temporal segmentation
of untrimmed videos, with more reliable evidence. As we
know, a human action is closely related to the person that is
engaged in the movement. By spatially and temporally lo-
cating the key persons, untrimmed videos can be segmented
into person-centric clips accordingly, based on which model
learning can be implemented in a more reliable way. Gener-
ally speaking, an untrimmed video corresponds to multiple
person-centric clips, each of which focuses on a certain
person performing a specific action. Taking the untrimmed
video as a bag and the multiple clips as instances in the
bag, action recognition can be conveniently formulated as
a multi-instance multi-label learning problem, which is
inherently proficient in discovering instance-label relation.

Motivated by the above considerations, in this paper,
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we propose a weakly supervised action recognition and
localization method based on multi-instance multi-label
modeling with spatio-temporal pre-trimming, referred to
as PreTrimNet for short, which is illustrated in Figure 1.
Untrimmed videos are represented as bags of clips corre-
sponding to specific persons via pre-trimming. In the train-
ing stage, the network learns from the given video-level la-
bels to construct action recognition model. In the testing
stage, the optimized network aims to estimate both the ac-
tions of interest and their temporal intervals with unlabeled
input. The main contributions of our work are summarized
as follows.

• To the best of our knowledge, PreTrimNet is the first to
present spatio-temporal pre-trimming based on pose esti-
mation and tracking to generate person-centric clips from
untrimmed videos for action recognition and localization
with weak supervision, which updates in a coarse-to-fine
fashion with the iteration of learning model.

• Under the multi-instance multi-label learning mechanism,
PreTrimNet is carefully designed to discover the underly-
ing relevance between input patterns and semantic labels
via integration of three-stream features, based on which
temporal localization is further achieved from a local-
global perspective.

• Extensive experiments on two challenging untrimmed
video datasets, i.e. THUMOS14 (Jiang et al. 2014) and
ActivityNet1.3 (Heilbron et al. 2015), show promising re-
sults of PreTrimNet over the existing state-of-the-art com-
petitors. Note that we focus on human actions in this pa-
per. However, PreTrimNet can be easily generalized to
non-human actions.

Related Work

Action Recognition and Localization

Action recognition is conventionally formulated as a clas-
sification problem which aims to determine the categories
of human actions in a video. Before the prevalence of deep
learning, hand-crafted features, such as the improved dense
trajectories (iDT) (Wang and Schmid 2013), have obtained
outstanding performance on benchmark datasets. During the
last few years, deep architectures have been successfully ap-
plied to video-based action analysis. Two-stream (Simonyan
and Zisserman 2014) and C3D (Tran et al. 2015) networks
are recent mainstreams to learn discriminative features. The
inception 3D (I3D) (Carreira and Zisserman 2017) is ex-
ploited to use a two-stream network based on a 3D version
of Inception network (Ioffe and Szegedy 2015).

Temporal action localization aims to identify the tempo-
ral intervals which contain target actions. S-CNN (Shou,
Wang, and Chang 2016) utilizes a multi-stage CNN to
learn robust feature representation. Boundary Sensitive Net-
work (BSN) (Lin et al. 2018) generates temporal proposals
by probability estimation. Recently, action localization in
weakly supervised fashion has gained increasing attention.
UntrimmedNet (Wang et al. 2017) is trained end-to-end for
single-label action recogniton and localization. Hide-and-
seek (Singh and Lee 2017) enforces the model to see differ-

ent parts of the image and focuses on multiple relevant parts
of the object by randomly masking different regions of train-
ing images. STPN (Nguyen et al. 2018) adopts an attention
module to identify a sparse subset of key segments associ-
ated with actions. AutoLoc (Shou et al. 2018) directly pre-
dicts the temporal boundary of each action instance with an
outer-inner-contrastive loss. W-TALC (Paul, Roy, and Roy-
Chowdhury 2018) learns the specific network weights by op-
timizing co-activity similarity and multiple instance learning
loss. TSRNet (Zhang et al. 2019) integrated transfer learning
by leveraging knowledge from external trimmed videos.

Pose Estimation and Tracking

Pose estimation tasks can be divided into single person and
multiple person scenarios. Single person pose estimation at-
tempts to estimate the pose of a single person. Conventional
methods adopt pictorial structure models, such as tree mod-
els (Sapp, Toshev, and Taskar 2010; Wang and Li 2013)
and random forest models (Sun, Kohli, and Shotton 2012).
Representative deep learning based single person pose es-
timation methods include DeepPose (Toshev and Szegedy
2014) and CNN based methods (Belagiannis and Zisserman
2017). Multi-person pose estimation is a lot more challeng-
ing. Part-based framework investigates local regions to de-
tect human body parts. Chen et al. (2015) propose to use
graphical model to model humans as flexible compositions
of body parts. Pishchulin et al. (2016) propose DeepCut to
first detect all body parts and then label and assemble these
parts via integral linear programming. Two-step framework
has achieved further improvement. Fang et al. (2017) pro-
pose to use a CNN based SPPE method to estimate poses
namely AlphaPose. Pishchulin et al. (2012) use conventional
pictorial structure models for pose estimation. Insafutdinov
et al. (2016) propose a two-step pipeline which uses the
Faster R-CNN as their human detector and a unary Deep-
erCut as their pose estimator.

Multi-instance Multi-label learning

In many real-world applications, the objects of interest are
typically with multiple labels, and can be represented as a
bag of multiple instances. Many successful multi-instance
multi-label (MIML) learning algorithms have been pro-
posed. Huang et al. (2014) propose a fast MIML algorithm
by exploiting label relations with shared space and discover-
ing sub-concepts for complicated labels. Pham et al. (2015)
use a discriminative probabilistic model to discover novel
class instances in a MIML setting. Recently, deep learning
based MIML algorithms have achieved great success in var-
ious tasks, such as multi-label image classification (Wang et
al. 2016a), object detection (Ge, Yang, and Yu 2018). Specif-
ically, Simonyan et al. (2015) utilize MIML to classify im-
ages based on deep covolutional neural networks. Kiros et
al. (2015) use a pre-trained skip-thought model in an off-
the-shelf encoder to produce high quality sentence repre-
sentations. Feng et al. (2017) propose DeepMIML network
which exploits deep neural network formation for MIML,
and exhibits robust instance-label relation discovery ability.
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Figure 2: The detailed framework of PreTrimNet (better viewed in color).

Proposed Method

In this section, we present the proposed PreTrimNet in de-
tail, whose methodological framework is illustrated in Fig-
ure 2. The model starts with spatio-temporal pre-trimming
based on pose estimation and tracking. Accordingly, an
untrimmed video is segmented into multiple clips corre-
sponding to specific persons. After resizing, the fixed-sized
clips are fed into feature extraction and self-attentive repre-
sentation modules to obtain compact feature vectors, which
are subsequently concatenated into a feature matrix. Multi-
instance multi-label learning is used to formulate and train
the action recognition model given video-level labels. Based
on the instance-label activation, coarse-to-fine pre-trimming
is implemented and the model is updated in an iterative way.
Finally, after convergence, PreTrimNet is capable of predict-
ing actions in unlabeled videos, as well as identifying the
corresponding time intervals via a two-stage temporal class
activation map.

Spatio-Temporal Pre-trimming

In order to effectively identify the actions of interest in an
untrimmed video, it is essential to eliminate the irrelevant
backgrounds and only retain the informative parts. Tempo-
rally, the untrimmed video should be segmented according
to time intervals corresponding to potential actions, which
is similar to the process of acquiring trimmed videos. Apart
from that, we further trim the video spatially so as to high-
light region of the specific action in each frame.

As discussed above, pose is a strong clue to identify hu-
man actions. Based on multi-person pose estimation and
tracking techniques, we devise the spatio-temporal pre-
trimming module to generate person-centric clips of an
untrimmed video. The duration of each pose sequence asso-
ciated with a person can be leveraged to determine the clip’s
time interval. Within each frame of the clip, the pose bound-

ing box in which the person dominates the visual content
is extracted, with the rest removed. Due to camera zoom-
ing, we arrive at a set of variable-sized clips, among which
the less important persons whose poses last less than a pre-
set period of time are filtered out. For the sake of computa-
tional efficiency, we also delete clips of static persons, such
as audiences, which contain little motion information. Fi-
nally, all the clips are uniformly resized so that they can
conveniently go through unified posterior processing. Let
V = {vi|Mi=1} denote the set of clips extract from a given
untrimmed video V , where M is the number of clips in V .
With spatio-temporal pre-trimming, the untrimmed video is
divided into high-quality clips which are closely related to
actions of interest.

Three-Stream Feature Extraction

To fully capture both visual and motional information from
the pre-trimmed video clips, it has been a standard prac-
tice to utilize the two-stream architecture to derive spatial
and temporal descriptions. As the name suggests, video fea-
tures are extracted via two separately trained networks cor-
responding to RGB and optical flow, respectively. As for the
feature extractor, we employ the I3D network pre-trained on
Kinetics for both streams, and receive frame-level clip fea-
tures. To be specific, the input are non-overlapping frame
chunks, and the output is passed through a 3D average pool-
ing layer to obtain d-dimensional features. The I3D block
captures the short-range temporal patterns within the vicin-
ity of adjacent frames. To further depict the long-range de-
pendencies, the two-stream features are fed subsequently
into the TCN (Temporal Convolutional Networks), which is
comprised of a hierarchy of temporal convolutions.

Besides the traditional two-stream features, we further
make full use of the pose sequences derived from pose esti-
mation and tracking. Since each clip is pre-trimmed to con-
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tain only one person, single-person skeleton sequence rep-
resentation learning model, such as GCNN, is leveraged to
extract pose feature. Compared with RGB and optical flow,
pose conveys higher-level information of the video contents,
and thus offers a new perspective for video description and
understanding.

Formally, given a clip vi ∈ V , the feature from one of the
three streams is denoted as a d∗-by-t∗ dimensional matrix
X∗

i , where ∗ ∈ {RGB,FLOW,POSE} indicates the spe-
cific feature stream, d∗ is the feature dimension, and t∗ is
dependent on the feature extraction procedure and propor-
tional to the number of frames in vi.

Compact Representation via Self-Attention

The variable lengths of extracted clips bring about variable-
sized feature matrices, which are extremely inconvenient
to process. In order to get fixed-sized compact representa-
tions for the clips, we leverage the self-attention mechanism
to integrate the frame-level descriptions. The self-attention
block consists of four parts, i.e. two fully connected (FC)
layers, a tanh activation layer between the two FC layers,
and a softmax activation layer to ensure each set of gener-
ated weights sum up to 1. By modeling the global depen-
dency of the frame sequence in a clip vi regardless of the
inter-frame distances, a linear combination of column vec-
tors in the feature matrix X∗

i is learned as f∗i = X∗
i a

∗
i , where

f∗i ∈ R
d∗×1 is the compact vector representation for clip vi,

and a∗i ∈ R
t∗×1 is the corresponding attention weight vector

calculated as:

a∗i = (softmax(w2tanh(W1X
∗
i )))

� (1)

where W1 ∈ R
b×d and w2 ∈ R

1×b are intermediate param-
eters to be learned, and b is a hyperparameter set empirically.

To ensure robustness of the self-attentive representations,
we impose adjacency smoothness constraint on attention
weights to follow the vicinity resemblance property of vid-
eo frames, which takes on the following form:

Lsmoothness =
∑

vi∈V

t−1∑

j=1

|a∗i,j − a∗i,j+1|2 (2)

Specifically, when the input is the entire untrimmed video
rather pre-trimmed clips, we should further impose sparsity
constraint to enforce the insignificant weights to be 0 so that
the negative impact of irrelevant background contents can be
naturally eliminated. As will be discussed in the next sub-
section, we use the untrimmed video itself as the (M+1)-th
clip, and thus the additional sparsity constraint is designed
as:

Lsparsity = ||a∗M+1||2,1 (3)
After self-attentive representation learning, three-stream

feature vectors can be stacked together to generate a com-
prehensive feature vector hi = [fRGB

i ; fFLOW
i ; fPOSE

i ] ∈
R

d×1, where d = dRGB + dFLOW + dPOSE.

Multi-instance Multi-label Action Recognition

So far, for each untrimmed video, we have got a set of
person-centric clips as well as a set of class labels on the

video level. Taking the untrimmed video as a bag and the
spatio-temporal pre-trimmed clips as instances in the bag,
action recognition can be naturally formulated as a multi-
instance multi-label (MIML) learning problem. We design
our MIML action recognition module based on the Deep-
MIML network, which has proven effective for tasks in var-
ious domains.

By concatenating the fixed-sized self-attentive represen-
tations of clips in an untrimmed video, we obtain a matrix
description for the bag of instances. Note that, except for
the pre-trimmed clips, we further incorporate the original
untrimmed video as a special instance for two considera-
tions.

• On one hand, by definition, multi-instance learning re-
quires that a bag is positive for a label if at least one in-
stance in it is positive. However, if the pre-trimming is
unreliable, it is possible that none of the segmented clips
contains the video-level actions. In this case, the addi-
tional instance corresponding to the untrimmed video will
guarantee the legitimacy of the MIML algorithm.

• On the other hand, since the untrimmed video contains all
the original frames, its class-agnostic attention weights as
well as class-specific activation scores can serve as a sup-
plementary global indicator to the local information from
clips. With the help of the unified global evaluation on the
additional instance, pre-trimming can be further refined
and frame-level prediction can be further augmented.

Therefore, the input corresponding to untrimmed video
V is a d-by-(M + 1) dimensional feature matrix H =
[h1, ...,hM ,hM+1]. Here we assume each untrimmed video
has equal number of clips; for those with different number
of clips, zero paddings may be applied.

Matrix H is fed into a fully connected 3D sub-concept
layer of size S × C × M , where S and C are the number
of sub-concepts and action categories, respectively. The ac-
tivation of the (s, c, i)-th class represents the matching score
of the s-th sub-concept of the c-th class for the i-th clip vi
in untrimmed video V . Formally, the (s, c, i)-th node has the
following form of activation:

σs,c,i = f(ws,chi + bs,c) (4)

where f(·) is the activation function, which is ReLU (Recti-
fied Linear Unit) in this paper.

The 3D sub-concept layer is followed by two pooling op-
erations. Concretely, we first conduct max-pooling along
the sub-concept dimension, and arrive at a 2-dimensional
instance-label scoring layer of size C×M . The activation of
the (c, i)-th node represents the matching score for clip hi

on label c, based on which we can conveniently discover the
relation between input low-level patterns and output high-
level semantics.

After that, a second max-pooling along the instance di-
mension is implemented and produce a 1-dimensional pre-
diction layer of size C × 1. This can be interpreted as the
matching scores for labels on video level.

Finally, given a training set T of untrimmed videos with
video-level labels, classification model can be trained by
minimizing the classification loss LCLS, which is computed
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with the standard multi-label cross-entropy loss. Based on
(2), (3) and Lclass, we arrive the overall loss as follows:

L =
∑

V∈T
(LCLS + ε(Lsmoothness + Lsparsity)) (5)

where ε is the trade-off parameter.

Iterative Coarse-to-Fine Pre-trimming

Using the MIML action recognition predictions as instruc-
tive hints, we can further refine the pre-trimming of some
clips selectively. To be specific, based on activations in the
instance-label scoring layer, we can locate the key clips that
trigger the video-level label. The pre-trimming quality of
these key clips will mostly account for the model’s over-
all performance. As a result, we focus on the key clips,
and find their outer boundary based on the global class-
specific activation scores of hM+1. Then pose estimation
and tracking are implemented on the expanded clips in-
stead of the untrimmed videos to obtain finer-grained pose
sequences which consequently bring about finer-grained
spatio-temporal pre-trimming. Afterwards, for the sake of
efficiency, we will only carry out pre-trimming when new
key clips emerge.

Temporal Action Localization

Based on action recognition, the video-level labels are re-
vealed. To further identify the time intervals in untrimmed
videos corresponding to the actions of interest, the frame-
level class-specific relevance should be investigated. As in-
troduced in the MIML action recognition module, the pre-
dictive label for clip vi is determined by maxsσs,c,i.

max
s

σs,c,i ∝ max
s

ws,chi

= max
s

∑

∗∈{RGB,FLOW,POSE}
w∗

s,cf
∗
i

(6)

where w∗
s,c is the weight vector in ws,c corresponding to

feature stream ∗. We define the class-specific score gc,i:

g∗c,i =w∗
s̃,cf

∗
i

=w∗
s̃,cX

∗
i a

∗
i

=[w∗
s̃,cx

∗
i,1, ...,w

∗
s̃,cx

∗
i,t]a

∗
i

(7)

where s̃ = argmax
s

σs,c,i, and x∗
i,k is feature of the k-th

frame (1 ≤ k ≤ t). Based on T-CAM (Temporal Class Ac-
tivation Map), the relevance between the k-th frame of the
i-th clip with the c-th class can be evaluated with p∗c,i,k =
w∗

s̃,cx
∗
i,k.

To be specific, we propose the local-global T-CAM for
temporal localization. Given an untrimmed video V =
{vi|Mi=1}, since the clips segmented with pose information
is most likely to contain actions of interest, we firstly con-
duct local-evaluation for the frame-class relevance within
M clips. Then using the predictive score of the additional
(M + 1)-th instance, which corresponds to the entire video,
global-evaluation is made to identify potentially missed ac-
tions from backgrounds, filter out false actions in the less

Table 1: Classification accuracy (%) on the THUMOS14
dataset for action recognition.

Method RGB Optical Pose FusionFlow
(Wang and Schmid 2013) - - - 63.1
(Wang et al. 2016b) - - - 78.5
(Wang et al. 2017) - - - 82.2
(Zhang et al. 2019) 74.4 79.6 - 87.1

PreTrimNet 81.1 83.7 76.2 89.2

Table 2: Classification accuracy (%) on the ActivityNet1.3
dataset for action recognition.

Method RGB Optical Pose FusionFlow
(Zhang et al. 2019) 79.7 84.3 - 91.2
PreTrimNet 85.1 87.4 81.7 93.3

important clips, and further refine the action boundaries.
Finally, temporal localization is achieved via NMS (Non-
Maximum Suppression).

Experiments

In this section, we report the experimental evaluation of the
proposed PreTrimNet on action recognition and localiza-
tion tasks, in comparison with other state-of-the-art methods
based on both fully and weakly supervised learning.

Datasets

We evaluate different methods on two benchmark datasets,
i.e. THUMOS14 and ActivityNet1.3. Both datasets contain
large numbers of untrimmed videos attached with tempo-
ral annotations of actions. Note that, as a weakly supervised
model, PreTrimNet only has access to the video-level labels
in the training stage.

THUMOS14. The THUMOS14 dataset contains a valida-
tion set of 1,010 videos and a testing set of 1,574 videos,
which fall into 101 action classes. Among these videos, we
focus on the temporally annotated 20-class subset. We train
the model on the validation set of 200 videos, and evaluate it
with the testing set of 213 videos. THUMOS14 is challeng-
ing in that it contains videos with multiple actions.

ActivityNet1.3. The ActivityNet1.3 dataset is originally
comprised of 200 activity classes, with 10,024 videos for
training, 4,926 for validation, and 5,044 for testing. Since the
ground-truth labels for the original testing set are withheld,
we adopt the training set for model training and the valida-
tion set for testing. ActivityNet1.3 contains a large number
of natural videos that involve various human activities.

Implementation and Evaluation Details

We utilize the two-stream I3D networks pre-trained on Ki-
netics dataset to extract the traditional two-stream features.
For the RGB stream, we perform the center crop of size 224
× 224. For the optical flow stream, we apply the TV-L1 op-
tical flow algorithm. The input to the I3D models are stacks
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Table 3: Comparison of action localization results on THUMOS14. (Methods in the upper and lower parts are with full and
weak supervision, respectively.)

Method mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(Shou, Wang, and Chang 2016) 47.7 43.5 36.3 28.7 19.0 10.3 5.3 - -
(Yeung et al. 2016) 48.9 44.0 36.0 26.4 17.1 - - - -
(Yuan et al. 2016) 51.4 42.6 33.6 26.1 18.8 - - - -
(Xu and Das 2017) 54.5 51.5 44.8 35.6 28.9 - - - -
(Zhao et al. 2017) 66.0 59.4 51.9 41.0 29.8 - - - -
(Lin et al. 2018) - - 53.5 45.0 36.9 28.4 20.0 - -
(Chao et al. 2018) 59.8 57.1 53.2 48.5 42.8 33.8 20.8 - -
(Singh and Lee 2017) 36.4 27.8 19.5 12.7 6.8 - - - -
(Wang et al. 2017) 44.4 37.7 28.2 21.1 13.7 - - - -
(Nguyen et al. 2018) 45.3 38.8 31.1 23.5 16.2 9.8 5.1 2.0 0.3
(Nguyen et al. 2018) 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1
(Shou et al. 2018) - - 35.8 29.0 21.2 13.4 5.8 - -
(Paul, Roy, and Roy-Chowdhury 2018) 55.2 49.6 40.1 31.1 22.8 - 7.6 - -
(Su, Zhao, and Lin 2018) 47.1 41.6 32.8 24.7 16.1 10.1 5.5 - -
(Zhang et al. 2019) 55.9 46.9 38.3 28.1 18.6 11.0 5.59 2.19 0.29
PreTrimNet 57.49 50.73 41.40 32.05 23.09 14.16 7.69 2.33 0.39

Table 4: Comparison of action localization results on the Ac-
tivityNet1.3. (Methods in the upper and lower parts are with
full and weak supervision, respectively.)

Method mAP@IoU (%)
0.5 0.75 0.95 Average

(Xu and Das 2017) 26.8 - - -
(Heilbron et al. 2017) 40.0 17.9 4.7 21.7
(Shou et al. 2017) 45.3 26.0 0.2 23.8
(Zhao et al. 2017) 39.12 23.48 5.49 23.98
(Lin et al. 2018) 52.50 33.53 8.85 33.72

(Nguyen et al. 2018) 29.3 16.9 2.6 -
(Zhang et al. 2019) 33.1 18.7 3.32 21.78
PreTrimNet 34.8 20.9 5.3 22.5

of 16 (RGB or flow) frames sampled at 16 frames per sec-
ond. Graph based method is used to extract pose features
from skeleton sequences. Feature dimensions for RGB, op-
tical flow, and pose are 1,024, 1,024, and 512, respectively.
The model parameters are optimized with the mini-batch
stochastic gradient descent with Adam optimizer. The learn-
ing rate is set to 0.0001 for the RGB and pose stream and
decreases every 3,000 iterations by a factor of 10. For the op-
tical flow stream, we set the learning rate to 0.0005, which is
decreased every 5,000 iterations by a factor of 10. We also
utilize the dropout operations with ratios to 0.5 and com-
mon augmentation techniques including horizontal flipping,
cropping augmentation, et al. Our algorithm is implemented
in PyTorch.

We follow the standard evaluation metric, which is based
on the values of mean average precision (mAP) under dif-
ferent levels of intersection over union (IoU) thresholds.

Table 5: Ablation study results on THUMOS14 of temporal
action localization.

Method Avg(0.1:0.5)
PreTrimNet w/o MIML, Pre-trimming 29.26
PreTrimNet w/o Pre-trimming 32.40
PreTrimNet w/o MIML 36.31
PreTrimNet 40.95

Results

Action Recognition. We compare the action recognition
performance of PreTrimNet with the state-of-the-art meth-
ods on THUMOS14 (Table 1) and ActivityNet1.3 (Table 2).
As shown in the Tables, PreTrimNet remarkably outper-
forms its competitors in term of classification accuracy.
Specifically, PreTrimNet with each single stream receives
satisfactory results. When the three streams are fused, the
accuracy can be further improved by integrating different as-
pects of the video contents. Considering that (to the best of
our knowledge) we are the first to extract pose features for
untrimmed video analysis, we report our results based on
pose stream as a baseline for future reference.

Action Localization. We evaluate PreTrimNet for tempo-
ral action localization on THUMOS14 (Table 3) and Ac-
tivityNet1.3 (Table 4), in comparison with both fully and
weakly supervised methods. It is observed that PreTrim-
Net significantly surpasses its weakly supervised counter-
parts. It is especially encouraging to see that PreTrimNet
even achieves comparable results with some fully supervised
methods.

To validate the effectiveness of key components in Pre-
TrimNet, we perform a set of ablation studies, comparing
the full implementation of PreTrimNet with its abridged ver-
sions without one or both of pre-trimming and MIML clas-
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(a) An example of CricketBowling (top) and CricketShot (down) actions.

(b) An example of LongJump action.

(c) An example of Playing ice hockey action.

Figure 3: Qualitative results on THUMOS14, numbered (a) and (b), and ActivityNet1.3, numbered (c). The horizontal axis
denotes the timestamps. The red and yellow bars denote the time intervals detected with local and global T-CAM, respectively.

sification module. Table 5 summarize the action localization
results on THUMOS14. We observe that each component is
indispensable and makes its contribution to the localization
performance.

We further illustrate examples of temporal localization on
THUMOS14 and ActivityNet1.3, as shown in Figure 3, in-
cluding (a) a video containing two action classes, (b) short-
lasting action, and (c) long-lasting action. As we can see,
the proposed local-global T-CAM is an effective indicator
that is capable of locating actions of interest in untrimmed
videos under different circumstances. It is noted that pose is
a strong clue for human actions. The clips segmented based
on pose successfully detect most frame-level actions with lo-
cal T-CAM. Using global T-CAM as refiner, the localization
performance can be further improved.

Conclusion
In this paper, we have proposed a novel framework, i.e.
PreTrimNet, for effective action recognition and localiza-
tion in untrimmed videos with video-level weak supervi-
sion. Using pose as an instructive guidance, person-centric
clips that potentially contain actions of interest are extracted
from untrimmed videos via spatio-temporal pre-trimming.
The normalized pose sequences also serve as an additional

stream to develop augmented feature representations. Un-
der the multi-instance multi-label learning mechanism, the
proposed method is capable of revealing the latent instance-
label relation, which facilitates accurate identification of ac-
tions and the corresponding time intervals in untrimmed
videos. As demonstrated on two challenging untrimmed
video datasets, PreTrimNet achieves superior performance
over the state-of-the-art weakly supervised methods, and
is even comparable to some fully-supervised methods that
leverage temporal annotations during training. In the future,
inspired by the most recent advances in action recognition
and localization, we will consider improving our framework
by explicitly modeling backgrounds (Liu, Jiang, and Wang
2019), and further leveraging external sources (Nguyen, Ra-
manan, and Fowlkes 2019).
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