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Abstract

State-of-the-art deep learning based stereo matching ap-
proaches treat disparity estimation as a regression problem,
where loss function is directly defined on true disparities and
their estimated ones. However, disparity is just a byprod-
uct of a matching process modeled by cost volume, while
indirectly learning cost volume driven by disparity regres-
sion is prone to overfitting since the cost volume is under
constrained. In this paper, we propose to directly add con-
straints to the cost volume by filtering cost volume with uni-
modal distribution peaked at true disparities. In addition, vari-
ances of the unimodal distributions for each pixel are esti-
mated to explicitly model matching uncertainty under dif-
ferent contexts. The proposed architecture achieves state-of-
the-art performance on Scene Flow and two KITTI stereo
benchmarks. In particular, our method ranked the 1st place
of KITTI 2012 evaluation and the 4th place of KITTI 2015
evaluation (recorded on 2019.8.20). The codes of AcfNet are
available at: https://github.com/youmi-zym/AcfNet.

Introduction

Stereo matching is one of the core technologies in com-
puter vision, which recovers 3D structures of real world
from 2D images. It has been widely used in areas such
as autonomous driving (Sivaraman and Trivedi 2013), aug-
mented reality (Zenati and Zerhouni 2007) and robotics
navigation (Schmid et al. 2013; Luo, Yu, and Ren 2017;
Luo et al. 2019). Given a pair of rectified stereo images, the
goal of stereo matching is to compute the disparity d for
each pixel in the reference image (usually refers to the left
image), where disparity is defined as the horizontal displace-
ment between a pair of corresponding pixels in the left and
right images.

According to the seminar work (Scharstein and Szeliski
2002), a stereo matching algorithm typically consists of
four steps: matching cost computation, cost aggregation, dis-
parity regression and disparity refinement. Among them,
matching cost computation, i.e., obtaining cost volume, is
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Figure 1: An example of cost distribution along the dispar-
ity dimension of cost volume. The first row is the output of
PSMNet (Chang and Chen 2018) trained with soft argmin.
The third row is output of our model. For better visualiza-
tion, we also zoom into the disparity interval [25, 66] in the
second and fourth row, where Estimation and Ground Truth
are the estimated and the groundtruth disparity respectively.
Our method generates a more reasonable cost distribution
peaked at the true disparity.

arguably the most crucial first step. A cost volume is usually
denoted by a H × W × D tensor, where H , W , D are the
height, width and maximal disparity of the reference image.
In traditional methods, cost volume is computed by a pre-
defined cost function of manually designed image features,
e.g., squared or absolute difference of image patches.

In the deep learning era, both image feature and cost func-
tion are modeled as network layers (Kendall et al. 2017;
Chang and Chen 2018). To make all layers differentiable and
achieve sub-pixel estimation of disparity, soft argmin is used
to estimate disparity by softly weighting indices according
to their costs, which is in contrast to argmin that takes the in-
dex with minimal cost as estimated disparity. The loss func-
tion is defined on the estimated disparity and the ground
truth for end-to-end training. Benefit from large-scale train-
ing data and end-to-end training, deep learning based stereo
approaches achieve state-of-the-art performance.

In the deep learning models, the cost volume is indi-
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Figure 2: Architecture of the proposed end-to-end AcfNet. The input stereo images are fed to PSMNet (Chang and Chen 2018)
backbone with stacked hourglass architecture to get three cost volumes after aggregation. For each cost volume, we generate
the confidence map by a Confidence Estimation Network (CENet), and modulate the ground truth cost volume with confidence
values to generate pixel-wise unimodal distribution as training labels. The proposed Stereo Focal Loss is added to the cost
volume using the generated training labels. Finally, a sub-pixel disparity map is estimated by the soft argmin function followed
by regression loss as PSMNet.

rectly supervised as an intermediate layer, which leaves cost
volume less constrained since infinitely many cost distri-
butions can generate the same disparity, where only cost
distributions peaked at the true disparity are reasonable
ones. Accordingly, we propose to directly supervise cost
volume with unimodal ground truth distributions. To re-
veal network matching uncertainties (Kendall and Gal 2017;
Ilg et al. 2018) of different pixels, we design a confidence es-
timation network to estimate per-pixel confidence and con-
trol sharpness of the unimodal ground truth distributions ac-
cordingly. Figure 1 compares the cost distributions at the
same pixel by PSMNet and our method, where our method
generates the correct minimal cost around the true disparity,
while PSMNet generates two local minimal costs away from
the true disparity.

We evaluate the proposed Adaptive unimodal cost volume
filtering Network (AcfNet) on three stereo benchmarks in-
cluding Scene Flow, KITTI 2012 and KITTI 2015. Ablation
studies and detailed analysis on Scene Flow demonstrate the
effectiveness of AcfNet. We also submit our stereo match-
ing results to KITTI 2012 and 2015 evaluation server, and
ranked the 1st place on KITTI 2012 evaluation and the 4th

place on KITTI 2015 evaluation (recorded on 2019.8.20).

Related Work

Deep learning for stereo matching starts from learning im-
age features for classical methods (Zbontar and LeCun
2016; Luo, Schwing, and Urtasun 2016). DispNetC (Mayer
et al. 2016) is the first breakthrough for stereo matching
by proposing an end-to-end trainable network, where cost
function is predefined as a correlation layer in the network
to generate the cost volume, then a set of convolutional
layers are added to the cost volume to regress disparity
map. Based on DispNetC, stack refinement sub-networks
are proposed to improve the performance (Pang et al. 2017;
Liang et al. 2018), and the performance could be further im-

proved by using additional information such edges (Song
et al. 2018) and semantics (Yang et al. 2018). To add more
capacity for network to learn the cost function, (Guo et al.
2019) propose to use group-wise correlation layer and gen-
erate multiple cost volumes for latter aggregation.

GC-Net (Kendall et al. 2017) gives more flexibility for
network to learn cost function by using 3D convolutional
layers on concatenated feature volume, with cost volume
produced by the learned cost function, disparity is esti-
mated by soft argmin according to the cost distribution.
Follow-up works improve results by using better image fea-
tures (Chang and Chen 2018) and cost aggregation layers in-
spired by classical methods (Cheng, Wang, and Yang 2018;
Zhang et al. 2019). In these end-to-end stereo matching net-
works, cost volume is the output of an intermediate layer
without direct supervision, which leaves the possibilities to
learn unreasonable cost distributions as illustrated in Fig-
ure 1.

In this work, the proposed AcfNet directly adds super-
vision to the cost volume estimation using ground truth
cost distributions peaked at true disparities. In addition, the
sharpness of ground truth cost distribution is adjusted ac-
cording to matching confidence. Concurrent to our work,
sparse LiDAR points are used to enhance cost volume by
weighting estimated cost distribution with a Gaussian distri-
bution centered at the disparity provided by its correspond-
ing LiDAR point (Poggi et al. 2019), which serves as a
multi-sensor fusion method for disparity estimation. In con-
trast, our method only takes images as input during both
training and testing, and unimodal supervision is added to
each pixel in a dense and adaptive way.

AcfNet

Figure 2 illustrates the overall framework, where the pro-
posed adaptive unimodal cost volume filtering module is ap-
plied to the cost volume, and an additional loss is introduced
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to directly supervise the learning of cost volume towards de-
sired property. Here, we choose PSMNet (Chang and Chen
2018) as the basic network to calculate cost volume for its
state-of-the-art performance on stereo matching.

Overview

Given a pair of rectified images, for each pixel p = (x, y) in
the left image, stereo matching aims to find its correspond-
ing pixel in the right image, i.e., p′ = (x + d, y), d ∈ R

+,
where disparity d is often represented by a floating-point
number for sub-pixel matching. For both computation and
memory tractable, disparity is discrete into a set of possible
disparities, i.e., {0, 1, · · · , D − 1} to build an H ×W ×D
cost volume, where H , W and D are the image height, width
and maximum disparity respectively. To recover sub-pixel
matching, costs over disparities are used in a weighted inter-
polation. The whole process is implemented through a net-
work as illustrated in the left part of Figure 2.

Formally, the cost volume contains D costs for each pixel
denoted by {c0, c1, · · · , cD−1}, and the sub-pixel disparity
is estimated through soft argmin (Kendall et al. 2017)

d̂ =
D−1∑
d=0

d× P̂ (d), (1)

where P̂ (d) = exp (−cd)∑D−1

d
′
=0

exp (−c
d
′ )

, and disparities with

small cost contribute more during interpolation. Given the
groundtruth disparity dp for each pixel p, smooth L1 loss is
defined for training, i.e.,

Lregression =
1

|P|
∑
p∈P

smoothL1
(dp − d̂p), (2)

where

smoothL1
(x) =

{
0.5x2, if |x| < 1,
|x| − 0.5, otherwise. (3)

The whole process is differentiable by supervising with the
groundtruth disparity, while cost volume is indirectly su-
pervised through providing weights for disparity interpola-
tion. However, the supervision is underdetermined and there
could be infinitely possible sets of weights to achieve correct
interpolation results. The flexibility of cost volume is prone
to overfitting since many improperly learned cost volumes
could interpolate disparities close to ground truth (i.e., small
training loss).

To address this problem raised from indirectly supervising
cost volume with underdetermined loss function, we pro-
pose to directly supervise the cost volume according to its
unimodal property.

Unimodal distribution

Cost volume is defined to reflect the similarities between
candidate matching pixel pairs, where the true matched pair
should have the lowest cost (i.e., the highest similarity),
and the costs should increase with the distance to the truly
matched pixel. This property requires unimodal distribution
be peaked at the true disparity at each position in the cost

volume. Given the ground truth disparity dgt, the unimodal
distribution is defined as

P (d) = softmax(−|d− dgt|
σ

)

=
exp (−cgtd )∑D−1

d′=0
exp (−cgt

d′ )
,

(4)

where cgtd = |d−dgt|
σ , σ > 0 is the variance (a.k.a temper-

ature in literature) that controls the sharpness of the peak
around the true disparity.

The ground truth cost volume constructed from P (d) has
the same sharpness of peaks across different pixels, which
cannot reflect similarity distribution differences across dif-
ferent pixels. For example, a pixel on the table corner should
have a very sharp peak while pixels in uniform regions
should have relative flat peaks. To build such more reason-
able labels for cost volume, we add a confidence estimation
network to adaptively predict σp for each pixel.

Confidence estimation network

Considering matching properties are embedded in the esti-
mated cost volume (Fu and Fard 2018; Park and Yoon 2018;
Kim et al. 2018), then the confidence estimation network
takes the estimated cost volume as input, and uses a few
layers to determine the matching confidence of each pixel
by checking the matching states in a small neighborhood
around each pixel. Specifically, the network employs a 3×3
convolutional layer followed by batch normalization and
ReLU activation, and another 1× 1 convolutional layer fol-
lowed by sigmoid activation to produce a confidence map
f ∈ [0, 1]H×W , where a pixel p with large confidence fp
means a unique matching can be confidently found for this
pixel, while small confidence values denote there are match-
ing ambiguities. Then, σp for generating ground truth cost
distribution is scaled from the estimated confidence,

σp = s(1− fp) + ε, (5)

where s ≥ 0 is a scale factor that reflects the sensitivity of
σ to the change of confidence fp, ε > 0 defines the lower
bound for σ and avoids numerical issue of dividing 0. Ac-
cordingly, σp ∈ [ε, s + ε]. Our experiments show that two
kinds of pixels are likely to have large σ, i.e., texture-less
pixels and occluded pixels, where the texture-less pixels tend
to have multiple matches, while occluded pixels have no cor-
rect matches. With the per-pixel adpatively estimated σp, the
ground truth cost volume defined in Eq. (4) is modified ac-
cordingly.

Stereo focal loss

At pixel position p, we now have both estimated cost dis-
tribution P̂p(d) and the ground truth Pp(d). It is straightfor-
ward to define a distribution loss via cross entropy. However,
there is a severe sample imbalance problem since each pixel
has only one true disparity (positive) comparing with hun-
dreds of negative ones (Zbontar and LeCun 2016). Similar to
focal loss designed to solve the sample imbalance problem
in one-stage object detection (Lin et al. 2017), we design a

12928



stereo focal loss to focus on positive disparities to avoid the
total loss dominated by negative disparities,

LSF =
1

|P|
∑
p∈P

(
D−1∑
d=0

(1− Pp(d))
−α · (−Pp(d) · log P̂p(d)

))
,

(6)
where α ≥ 0 is a focusing parameter, and the loss is reduced
to cross entropy loss when α = 0, while α > 0 gives more
weights to positive disparities in proportion to their Pp(d).
Thus easy negative disparities are further suppressed explic-
itly with quite small weights and let the positive disparity
only compete with a few hard ones.

Total loss function

In sum, our final loss function contains three parts defined
as

L = LSF + λregressionLregression

+ λconfidenceLconfidence,
(7)

where λregression, λconfidence are two trade-off hyper-
parameters. LSF supervises the cost volume while
Lregression supervises the disparity. Lconfidence is added as
a regularizer to encourage more pixels to have high confi-
dence values,

Lconfidence =
1

|P|
∑
p∈P

− log fp. (8)

Experiments and Analysis

Implementation details

Our network is implemented using PyTorch (Paszke et al.
2017) framework, and all models are end-to-end trained us-
ing RMSprop with standard settings. Our data processing
is the same as PSMNet (Chang and Chen 2018). We train
our models from scratch using the Scene Flow dataset with
a constant learning rate of 0.001 for 10 epochs. For Scene
Flow, the trained model is directly used for testing. For
KITTI, we use the model trained with Scene Flow data after
fine-tuning on the KITTI training set for 600 epochs. The
learning rate of this fine-tuning begins at 0.001 and is de-
cayed by 1

3 at 100 and 300 epochs. For submission to the
KITTI test benchmark, we prolong the training process on
Scene Flow with a constant learning rate of 0.001 for 20
epochs to obtain a better pre-training model. The batch size
is set to 3 for training on 3 NVIDIA GTX 1080Ti GPUs.
All ground truth disparities out of range of [0, D − 1] are
excluded in our experiments, where D = 192.

Datasets

We evaluate AcfNet qualitatively and quantitatively on three
challenging stereo benchmarks, i.e., Scene Flow (Mayer et
al. 2016), KITTI 2012 (Geiger, Lenz, and Urtasun 2012) and
KITTI 2015 (Menze and Geiger 2015).
Scene Flow: Scene Flow is a large synthetic dataset con-
taining 35,454 training image pairs and 4,370 testing image
pairs, where the ground truth disparity maps are densely pro-
vided, which is large enough for directly training deep learn-
ing models. Following the setting as GC-Net (Kendall et al.
2017), we mainly use this dataset for ablation study.

KITTI: KITTI 2015 and KITTI 2012 are two real-world
datasets with street views captured from a driving car. KITTI
2015 contains 200 training stereo image pairs with sparse
groundtruth disparities obtained using LiDAR and 200 test-
ing image pairs with ground truth disparities held by eval-
uation server for submission evaluation only. KITTI 2012
contains 194 training image pairs with sparse ground truth
disparities and 195 testing image pairs with ground truth dis-
parities held by evaluation server for submission evaluation
only. These two datasets are challenging due their small size.
Metrics: The performance is measured using two standard
metrics: (1) 3-Pixel-Error (3PE), i.e., the percentage of pix-
els for which the predicted disparity is off the true one by
more than 3 pixels, and (2) End-Point-Error (EPE), i.e., the
average difference of the predicted disparities and their true
ones. 3PE is robust to outliers with large disparity errors,
while EPE measures errors to sub-pixel level.

To further evaluate the ability on handling occluded re-
gions, we divide the testing images of Scene Flow into
occluded region (OCC) and non-occluded regions (NOC)
through left-right consistency check. In total, there are 16%
occluded pixels in all pixels. The performance is measured
on all pixels if no prefix such as OCC, NOC and ALL are
added before 3PE or EPE.

Ablation studies

We conduct ablation studies on Scene Flow (Mayer et al.
2016) considering it has large enough training data for end-
to-end training from scratch. In all experiments, α is set to
5.0 in stereo focal loss to balance positive and negative sam-
ples. Considering disparities of most pixels are with sub-
pixel errors (i.e., error smaller than one pixel) while 3PE
cannot reveal errors within 3 pixels, we use EPE to study
the performance variance for different hyper-parameter set-
tings.

Table 1: Results of comparison between stereo focal loss and
cross entropy loss in our model AcfNet.

AcfNet + Cross Entropy Loss + Stereo Focal Loss

EPE [px] 0.965 0.920

The variance σ of unimodal distribution

The variance σ adjusts the shape of unimodal distribution,
which plays an important role in AcfNet. In our method, σ ∈
[ε, s+ ε] is bounded by s and ε.

Firstly, we study the case when the variance σ is fixed
for all pixels, i.e. s = 0, σ = ε. By grid search, we find
that σ = 1.2 achieves the best result, which indicates most
pixels favor σ = 1.2 for building unimodal distributions.
Thus, we set the lower bound ε of σ to 1.0 for adaptive vari-
ance study. Furthermore, we compare the stereo focal loss
with cross entropy loss under this condition, i.e. σ = 1.2.
As shown in Table 1, equipping AcfNet with stereo focal
loss get a significantly better result than cross entropy loss,
which demonstrates the effectiveness of stereo focal loss in
balancing losses from positive and negative disparities.
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Figure 3: Ablation study results for different hyper-parameters in our method, where s controls the upper bound of variance σ.
λconfidence and λregression are balance weights for confidence loss and disparity regression loss respectively.

Figure 4: Histogram distribution of variance σ on the whole
test dataset of Scene Flow after AcfNet has been converged.

Secondly, we study the sensitivity s which controls the
upper bound of σ. Figure 3(a) shows the performance by
varying s, where s = 1 performs best and the performance
is rather stable by varying s from 0.5 to 3.0. Figure 4 shows
the histogram of σ when s = 1 (i.e., σ ∈ [1.0, 2.0]), where
most pixels favor small variances, i.e., sharp distributions,
and a long tail of pixels require larger variances for flatten
distributions.

Loss balance weights

Hyperparameter λconfidence balances the total variance
and other losses. Figure. 3(b) shows the performance curve
by varying λconfidence, where both overconfident learn-
ing with large λconfidence and underconfident learning
with small λconfidence lead to inferior performance while
λconfidence = 8.0 performs the best.

Hyperparameter λregression balances the regression loss
that is widely used in recent state-of-the-art models, and
large value for λregression will eliminate effects of the other
two losses proposed in this paper. Figure 3(c) shows the per-
formance curve, it could be observed that regression loss can
be improved through proper tradeoff with the proposed two
losses.

Figure 5: Sparsification plot of our AcfNet on the Scene
Flow test dataset. The plot shows the normalized average
end-point-error (EPE) for each fraction of pixels with high-
est variances has been removed. The curve ‘AcfNet Oracle’
shows the ideal case by removing each fraction of pixels
ranked by the ground truth EPE. The curve ‘AcfNet Ran-
dom’ shows the worst case by removing each fraction of pix-
els randomly. Removing only 6.9% of the pixels by AcfNet
results in halving the average EPE.

Variance analysis

Variance estimation is an important component of our cost
filtering scheme, which automatically adjusts the flatness of
the unimodal distribution according to the matching uncer-
tainty. To assess the quality of the estimated variances, spar-
sification plot (Ilg et al. 2018) is adopted to reveal the rele-
vance of the estimated variances with the true errors through
plotting evaluation results by gradually removing pixels ac-
cording their variances. For comparison, we also plot the
curves of randomly assigned variances (AcfNet Random)
and variances assigned by EPE errors (AcfNet Oracle) in
Figure 5, where the estimated variances are highly relevant
to EPE errors and demonstrates the ability of AcfNet in ex-
plaining outlier pixels with estimated variances.

Figure 6 shows several per-pixel results from Scene Flow,
where hard regions mainly appear at occlusions (1a, 1c and
2a), repeated patterns (1b, 3a) and thin structures (3a). In
these hard regions, AcfNet provides high variances to flat-
ten the corresponding cost distributions. AcfNet can balance
the learning for different pixels, and pushes informative pix-
els towards high confidences (i.e, low variances), while al-
lows hard uninformative pixels with high variances to avoid
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Figure 6: Qualitative results on three samples from Scene Flow test set. Columns from left to right are: left stereo input image,
right stereo input image, disparity ground truth, disparity prediction, error map and confidence map. Cold colors in the error
map denote small prediction errors while warm colors denote large prediction errors. In confidence map, bright colors mean
small variances while dark colors denote high variances.

overfitting.

Table 2: Evaluation of adaptive unimodal cost vol-
ume filtering results, where PSMNet is re-implemented.
AcfNet(uniform) denotes setting a uniform unimodal dis-
tribution for all pixels, and AcfNet(adaptive) denotes adap-
tively adjust the per-pixel variances.

Method
Scene Flow

EPE [px] 3PE [%]
ALL OCC NOC ALL OCC NOC

PSMNet 1.101 3.507 0.637 4.56 17.64 2.12
AcfNet (uniform) 0.920 2.996 0.504 4.39 16.47 2.10
AcfNet (adaptive) 0.867 2.736 0.495 4.31 15.77 2.13

Adaptive unimodal cost volume filtering

AcfNet adds direct cost volume supervision to PSMNet.
Table 2 compares two versions of AcfNet with PSM-
Net, where uniform version of AcfNet is significantly bet-
ter than PSMNet and adaptive version of AcfNet fur-
ther improves the performance significantly. The results
demonstrate the effectiveness of unimodal supervision and
adaptive per-pixel variance estimation. Comparing with
AcfNet(uniform), AcfNet(adaptive) improves more on OCC
(i.e., occluded regions), which is consistent with conclusion
in variance analysis.

Table 3: Results of cost volume filtering comparison, where
all methods are trained on Scene Flow from scratch using
the same base model PSMNet, and directly test on KITTI
2012, 2015 training datasets. ∗ denotes disparities of sparse
LiDAR points are also used as model input when testing.

Method EPE[px] 3PE[%]
Scene Flow KITTI 2012 KITTI 2015

PSMNet 1.101 29.18 30.19
(Poggi et al. 2019) 0.991∗ - 23.13∗
AcfNet 0.867 17.54 19.45

Cost volume filtering comparisons

To further validate the superiority of the proposed cost vol-
ume filtering, experiments are designed to compare with
the concurrent work (Poggi et al. 2019). In contrast to our
work, (Poggi et al. 2019) uses disparities by sparse LiDAR
points to filter cost volume during both training and test-
ing. Both AcfNet and the method of (Poggi et al. 2019) are
trained on Scene Flow from scratch, and directly evaluated
on training sets of KITTI 2012 and 2015 since (Poggi et
al. 2019) requires sparse LiDAR points as inputs. Table 3
reports the comparison results, where AcfNet outperforms
(Poggi et al. 2019) on all performance metrics by large mar-
gins even without using LiDAR points as inputs. In addition,
comparing with PSMNet, AcfNet shows much better gen-
eralization performance from Scene Flow to KITTI, which
further proves the ability of AcfNet in preventing overfitting.

Comparisons with the state-of-the-art methods

To further validate the proposed AcfNet, Table 4 compares
AcfNet with state-of-the-art methods on both KITTI 2012
and 2015, where AcfNet outperforms others by notable mar-
gins on all evaluation metrics. To be noted, Scene Flow is
used for pretraining in all methods considering the small
size of KITTI training data. Figure 7 and 8 show sev-
eral exemplar results from KITTI 2015 and 2012 by com-
paring AcfNet with PSMNet (Chang and Chen 2018) and
PDS (Tulyakov, Ivanov, and Fleuret 2018), where signifi-
cantly improved regions are marked out with dash boxes. As
expected, most improvements of AcfNet come from chal-
lenging areas such as thin structures, sky boundaries and im-
age borders.

Conclusions

In this paper, we solve the under-constrain problem of cost
volume in existing deep learning based stereo matching ap-
proaches. The proposed AcfNet supervises the cost volume
with ground truth unimodal distributions peaked at true dis-
parities, and variances for per-pixel distributions are adap-
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Table 4: Results on Scene Flow and KITTI Benchmarks. Following standard setting, on KITTI 2012, percentages of erroneous
pixels for both Non-occluded (Out-Noc) and all (Out-All) pixels are reported, on KITTI 2015, percentages of disparity outliers
D1 averaged over all ground truth pixels (D1-all) for both Non-occluded and All pixels are reported. The outliers are defined
as those pixels whose disparity errors are larger than max(3px, 0.05dgt), where dgt is the ground-truth disparity.

Method
Scene Flow KITTI 2012 KITTI 2015

EPE 2px 3px 4px 5px ALL NOC
Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All D1-all D1-all

MC-CNN (Zbontar and LeCun 2016) 3.79 3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39 3.88 3.33
GC-Net (Kendall et al. 2017) 2.51 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 2.67 2.45
iResNet-i2 (Liang et al. 2018) 1.40 2.69 3.34 1.71 2.16 1.30 1.63 1.06 1.32 2.44 2.19
PSMNet (Chang and Chen 2018) 1.09 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 2.32 2.14
SegStereo (Yang et al. 2018) 1.45 2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21 2.25 2.08
PDS (Tulyakov, Ivanov, and Fleuret 2018) 1.12 3.82 4.65 1.92 2.53 1.38 1.85 1.12 1.51 2.58 2.36
GwcNet-gc (Guo et al. 2019) 0.77 2.16 2.71 1.32 1.70 0.99 1.27 0.80 1.03 2.21 1.92
HD3-Stereo (Yin, Darrell, and Yu 2019) 1.08 2.00 2.56 1.40 1.80 1.12 1.43 0.94 1.19 2.02 1.87
GA-Net (Zhang et al. 2019) 0.84 2.18 2.79 1.36 1.80 1.03 1.37 0.83 1.10 1.93 1.73
AcfNet 0.87 1.83 2.35 1.17 1.54 0.92 1.21 0.77 1.01 1.89 1.72

Left Image AcfNet PSMNet PDS

Figure 7: Visualization results on the KITTI 2015 dataset. Significantly improved regions are highlighted with dash boxes. For
each example, the first row shows the disparity map, and the second row shows the error map. Warmer color indicate larger
prediction errors.

Left Image AcfNet PSMNet PDS

Figure 8: Visualization results on the KITTI 2012 dataset. Significantly improved regions are highlighted with dash boxes. For
each example, the first row shows the disparity map, and the second row shows the error map, bright colors indicate inaccurate
predictions.

tively estimated to modulate the learning according the in- formativeness of each pixel. AcfNet shows better testing
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performance on the same dataset and even superior perfor-
mance on cross-dataset evaluation.
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Appendices

A. Effectiveness on different backbones

We evaluate the effectiveness of our adaptive unimodal
cost volume filtering scheme among different backbones,
namely, the stack-hourglass version of PSMNet (Chang and
Chen 2018) and GC-Net (Kendall et al. 2017). We re-
implement all methods with the training protocol detailed
in Implementation details. Specifically, the batch size of
GC-Net is set to 24 for training on 8 Tesla V100. Table 5
reports the results, our method delivers better performance
across different backbones.

Table 5: Evaluation our method among different stereo
matching models, where * denotes equipping the model with
our adaptive unimodal cost volume filtering scheme.

Method
Scene Flow

EPE [px] 3PE [%]
ALL OCC NOC ALL OCC NOC

GC-Net 0.871 2.916 0.452 3.89 15.63 1.65
GC-Net* 0.822 2.777 0.436 4.33 16.46 2.02

PSMNet 1.101 3.507 0.637 4.56 17.64 2.12
PSMNet* 0.867 2.736 0.495 4.31 15.77 2.13

B. Architecture details

Table 6 presents the details of the AcfNet which is used
in experiments to produce state-of-the-art accuracy on
Scene Flow dataset (Mayer et al. 2016) and KITTI bench-
marks (Geiger, Lenz, and Urtasun 2012; Menze and Geiger
2015). It is based on PSMNet with stacked hourglass archi-
tecture, which produces three cost volumes, and Confidence
Estimation network(CENet) is added to each of the cost vol-
ume.
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