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Abstract

In this paper, we propose a fully convolutional network-based
dense map from voxels to invertible pair of displacement vec-
tor fields regarding a template grid for the consistent voxel-
wise correspondence. We parameterize the volumetric map-
ping using a convolutional network and train it in an unsu-
pervised way by leveraging the spatial transformer to mini-
mize the gap between the warped volumetric image and the
template grid. Instead of learning the unidirectional map, we
learn the nonlinear mapping functions for both forward and
backward transformations. We introduce the combinational
inverse constraints for the volumetric one-to-one maps, where
the pairwise and triple constraints are utilized to learn the
cycle-consistent correspondence maps between volumes. Ex-
periments on both synthetic and clinically captured volumet-
ric cone-beam CT (CBCT) images show that the proposed
framework is effective and competitive against state-of-the-
art deformable registration techniques.

1 Introduction

To find the dense voxel-wise correspondence of a volume
pair is an essential task of a variety of applications in
medical images analysis (Sotiras, Davatzikos, and Paragios
2013), such as statistical shape analysis (Lombaert, Arcaro,
and Ayache 2015) and the label propagation of predefined
landmarks and segmentation (Kanavati et al. 2017). The
dense correspondence can be used in the studies of the pre-
and post-treatment assessments to find the structure progres-
sion due to longitudinal operations and growths, especially
for adolescent patients.

The traditional deformable registration techniques rely
on online non-linear iterative optimization to minimize the
voxel-wise appearance difference, together with a regular-
ization term to maintain the smoothness of the displace-
ment vector fields (DVFs). Concerning the large set of pa-
rameters to be solved in the volumetric image registration,
the optimization solving is computationally intensive and
prone to be stunned in a local minimum (Pluim, Maintz, and
Viergever 2003).
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Recent works on the deformable registration (Rohé et al.
2017; Yang et al. 2017; Sokooti et al. 2017; Krebs et al.
2017; Balakrishnan et al. 2018; Dalca et al. 2018) have
shown the merits of the CNN-based regression for dense
correspondence. In the supervised deep learning framework,
the ground-truth corresponding landmarks and DVFs are re-
quired for the training (Rohé et al. 2017; Yang et al. 2017;
Sokooti et al. 2017; Krebs et al. 2017). Since the man-
ual labeling of volumetric images is more laborious than
the ordinary 2D images and prone to the practitioners’ ex-
periences, the learning suffers from the limited training
data. The unsupervised frameworks follow the spatial trans-
former network (STN) to minimize the voxel-wise appear-
ance differences (Balakrishnan et al. 2018; Dalca et al. 2016;
2018). The existing systems solve the patch-wise registra-
tion to relieve the memory burden (Dalca et al. 2016), or
to solve the unidirectional maps to the template or the at-
las (Balakrishnan et al. 2018; Dalca et al. 2016). In order to
get the invertible one-to-one map, the additional diffeomor-
phic integration layer is needed to obtain the final registra-
tion field from the estimated velocity field (Dalca et al. 2018;
Krebs et al. 2019).

There are several papers exploring the usage of cycle con-
sistency to improve the maps computed between pairs of 3D
shapes or 2D images. Huang et al. present a time-consuming
optimization approach to compute a set of new maps of 3D
shapes aligned with initial maps considering cycle consis-
tency (Huang et al. 2012). Zhou et al. propose to utilize
4-cycle consistency as a supervisory signal to address cor-
respondence between 2D images, leveraging additional 3D
CAD models (Zhou et al. 2016). In this paper, we aim at
finding cycle-consistent voxel-wise correspondence of a vol-
ume corpus and introduce a fully convolutional network to
obtain both the forward and backward parameterized trans-
formation functions between an input volume and a shared
template. Following the STN (Jaderberg et al. 2015), we
minimize the gap between the warped volumetric image
and the target and learn the network in an unsupervised
way. We introduce a combinational inverse constraint to en-
force the invertibility of forward and backward transforma-
tion pair regarding the template for the one-to-one mapping.
Further, we utilize the arbitrary pair and triplet volumes in
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Figure 1: The framework of the proposed network for con-
sistent voxel-wise correspondence.

the datasets to enforce the cycle-consistency of the trans-
formations, where the transformation concatenation along a
closed cycle with two or three volumes are required to be an
identical transformation. For the registration of fine-grained
anatomies, we introduce an optional bidirectional structural
constraint. The online deformable registration between vol-
umes is obtained by a simple evaluation of the learned map-
ping function instead of the expensive iterative optimization.
The novelty of this paper is:

• We present an unsupervised learning-based framework
for dense consistent voxel-wise correspondence;

• We propose CNN-based parameterized functions for both
the forward and backward transformations and enforce
the invertible and cycle-consistent registrations of the vol-
ume corpus;

• Our method enables an efficient online dense voxel-wise
correspondence estimation for clinically captured volu-
metric images.

2 Related Work

3D deformable medical image registration has been ad-
dressed extensively in past decades (Sotiras, Davatzikos, and
Paragios 2013). The conventional techniques employ several
metrics, such as the mean squared distance, the normalized
cross-correlation (CC) (Avants, Epstein, and Gee 2008), and
the mutual information (Maes and others 1997) to minimize
the appearance differences by a large scale nonconvex op-
timization. Several physical and interpolation-based mod-
els have been used in the deformable registration, includ-
ing the elastic body model (Bajcsy and Kovacic 1989), the
demons (Thirion 2011), the flow of diffeomorphisms (Beg
et al. 2005), and the B-spline-based free form deformations
(Rueckert et al. 1999). The diffeomorphism transform real-
izes the invertible and smooth one-to-one map and avoids
the structure folding with topology preservation, which is
a usually desirable property of the anatomical image regis-
tration. The popular formulations, including the large dif-
feomorphic distance metric mapping (LDDMM) (Beg et
al. 2005), the symmetric normalization (SyN) (Avants, Ep-
stein, and Gee 2008), and the diffeomorphic demons (Ver-
cauteren et al. 2009) have been used in anatomy studies. The
optimization-based deformable registration is known to be
time-consuming considering the large set of involved voxels
and the parameters to be solved. The subsampling (Roshni,

Fessler, and Boklye 2009) and statistical deformation model
(Ashburner and Friston 2000) are used to reduce the prob-
lem space, which also relies on the iterative optimization for
parameter solving.

The learning-based deformable registration techniques
avoid online optimization by finding the regression func-
tions from the input images to the registration parameters.
The function evaluation by the support vector regression
(Minjeong et al. 2012), the random forests (Wei et al. 2017),
and the recent deep neural networks (de Vos et al. 2017;
Rohé et al. 2017; Yang et al. 2017; Sokooti et al. 2017;
Krebs et al. 2017; Balakrishnan et al. 2018; Dalca et al.
2018) have a magnitude smaller time complexity than con-
ventional optimization-based methods. The unsupervised
frameworks following the STN (Jaderberg et al. 2015) avoid
data annotation in the training process. In the CNN-based
probabilistic generative model for the diffeomorphic regis-
tration (Dalca et al. 2018; Krebs et al. 2019), the additional
integration layer is used to obtain the final registration field.
There exist studies addressing the inverse constraints, which
avoid the intermediate flow estimation by inferring the bidi-
rectional DVFs directly (Christensen and Johnson 2001;
Leow et al. 2005; He and Christensen 2003). However, they
rely on the hand-crafted features. The inverse constraints are
just imposed on the image pairs without considering the con-
sistent correspondence in the image corpus. For instance,
the image warped by the transformation concatenation along
an arbitrary and closed cycle of volumes should be iden-
tical to itself. In this paper, we explicitly infer dense and
cycle-consistent correspondence of volumetric images with-
out need of intermediate velocity flow estimation.

3 Method

We follow the template deformation paradigm and intro-
duce the bidirectional network-based mapping functions for
the registration between volume image V and a prototypi-
cal or template volume T . Let V, T ∈ R

3 be single-channel
grayscale volumes in a 3D spatial domain. We utilize the
CNN to model the mapping function hΘ,T : V → [φf , φb].
Function hΘ bridges the input image V with the bidirec-
tional transformations, φf : V → T and φb : T → V .
Θ denotes the learnable parameters of function h, i.e., the
kernel weights of the convolutional network. Instead of in-
ferring unidirectional mapping between volumes V and T ,
the output of our system is a pair of DVFs [φf , φb] ∈ R

6. For
voxel x ∈ R

3, φ(x) returns the location of the voxel’s coun-
terparts in the target volume. The volume pair (V ◦ φf , T )
and (V, T ◦ φb) are expected to bear similar anatomical ap-
pearances.

Fig. 1 shows an overview of the proposed method. In the
training phase, the system takes one volume V ∈ V as in-
put, and estimate [φf , φb] using the parameter Θ. The spatial
transformation layer realizes the image warping and results
to V ◦φf (x) and T ◦φb(x). We evaluate the volume similar-
ity in the forward and backward directions to find the opti-
mal parameters Θ. Moreover, we introduce a combinational
inverse constraint to enforce a pair-wise invertible DVFs and
the cycle-consistent registrations in a corpus. Given a train-
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Figure 2: The flowchart of online registration and dense cor-
respondence between a volume pair (VM , VF ).

ing dataset V = {Vi|i = 0, . . . , N} with a distribution of
DV , we minimize the expected loss functions L for Θ:

Θ = argmin
Θ

EV ∈DVL(V, hΘ,T (V )). (1)

In the testing phase (see Fig. 2), given an arbitrary in-
put pair of the moving and fixed volumes (VM , VF ), the
network returns the forward and backward DVFs [φM

f , φM
b ]

and [φF
f , φ

F
b ] of VM and VF respectively, then we obtain

the invertible and consistent DVFs φM→F = φM
f ◦ φF

b and
φF→M = φF

f ◦ φM
b .

3.1 DVF Inference

We employ the fully convolutional network to parameterize
function hΘ,T . Similar to the 3D U-net (Çiçek et al. 2016),
we use the symmetric encoder-decoder structure with long
residual connections to infer the 6-channel registration pair
[φf , φb] from the 1-channel volume V. In our system, the
encoder has six 3 × 3 × 3 convolutional layers of stride 1
followed by the instance normalization and Leaky ReLU. A
2×2×2 pooling layer follows each convolutional layer. The
decoder module also has six 3D deconvolutional layers with
Relu and instance normalization. We use a convolution with
a fractional stride of 1/2 for upsampling of feature volumes
in the decoder for the DVF with the same resolution of the
input. The skip connections between encoder and decoder
facilitate feature propagation and fast convergence.
Spatial Transformation. We follow the unsupervised STN
(Jaderberg et al. 2015) to obtain the warped volumes using
the estimated bidirectional DVFs. In order to estimate the
intensity value on the regular grid of the warped volume, we
linearly interpolate the neighboring voxels in the surround-
ing cube. In the volumetric image interpolation of voxel x
for the bidirectional warping, we consider the neighboring
voxels in N (φκ(x)), κ ∈ {f, b}.

V ◦ φκ(x) =
∑

x′∈N (φκ(x))

V (x′)Π2
i=0(1− |xi − x′

i|). (2)

The operator is differentiable almost everywhere, which en-
ables the error back-propagation in the optimization.

3.2 Consistent Voxel-wise Correspondence

The goal is to estimate the consistent voxel-wise corre-
spondence by the CNN-based bidirectional DVF prediction
framework. We begin with introducing definitions of the
consistent correspondence of a volume corpus.

Definition 1. (Invertibility) A transformation φ between vol-
umetric image Vi and Vj satisfies the invertibility property,
if both φi→j ◦ φj→i and φj→i ◦ φi→j are identical transfor-
mations. φi→j : Vi → Vj and φj→i : Vj → Vi denote the
forward and backward transformations between Vi and Vj .

Definition 2. (Cycle Consistency) A set of transformations
Φ = {φp→q|p, q = 0, . . . , N ; p �= q} in a volume corpus are
consistent if for an arbitrary circle V0 − V1 − · · · − Vk − V0

composed of k + 1 volumes, the concatenation of the DVFs,

φ0→1 ◦ φ1→2 · · · ◦ φk→0, (3)

is an identical transformation.
Proposition 1. If there exist a set of invertible transforma-
tions Φ = {φ{f,b},i|i = 0, . . . , N} from a volume corpus V
to a common latent volume, the set Φ defines a group of con-
sistent registrations of V , which satisfy the cycle consistency
property.

Proof. Given one arbitrary cycle V0−V1−· · ·−Vk−V0 com-
posed of k + 1 volumes, the concatenation of DVFs along
the cycle is defined as: φ0→1 ◦ φ1→2 · · · ◦ φk→0.

If there exist a set of invertible transformations Φ =
{φ{f,b},i|i = 0, . . . , k} from volume {Vi|i = 0, . . . , k} to
a template T, the DVF φp→q between image Vp and Vq is
computed as φp→q = φf,p ◦ φb,q. Then, the warping of V0

by the concatenation of the DVFs is as follows:

V0 ◦ φ0→1 ◦ φ1→2 · · · ◦ φk→0

= V0 ◦ (φf,0 ◦ φb,1) . . . (φf,k ◦ φb,0)
= V0 ◦ φf,0 ◦ φb,0 = V0.

We introduce a combinational inverse constraint to learn
the end-to-end mapping functions for the DVFs that satisfy
the invertibility and cycle-consistent properties. Considering
the Proposition 1, the bidirectional transformations between
image Vi in the training dataset and the template grid T are
required to be invertible. We further expect the transforma-
tion concatenation along an arbitrary circle in the training
dataset be an identical one. We define the inverse loss func-
tion as follows:

Linv =

m∑

i=1

{‖φf,i ◦ φb,i‖2F + ‖φb,i ◦ φf,i‖2F
}

+

K∑

k=1

∑

c∈C,
|c|=k

‖Πk−1
j=0φj→mod(j+1,k)‖2F .

(4)

The first term is used to enforce the bidirectional transfor-
mations [φf , φb] between the training corpus with the shared
template to be invertible. m denotes the volume number in
the mini-batch, and is set to 3 in our experiments. ‖ · ‖F
denotes the Frobenius norm.

In the second term, we require the DVF concatenation
Πk−1

j=0φj→mod(j+1,k) along a closed circle c with k volume
images {Vi|i = 0, . . . , k − 1} to be an identical transfor-
mation. For a training dataset with N volume images, the

12937



number of the closed circle set C of length more than 2 is∑N
k=2

n!
(n−k)! . For simplicity, we only consider cycles with

pair or triplet volumes, and K is set at 3 in our experiments.
The second term enforces the invertibility of DVFs of an
arbitrary image pair and the cycle-consistency of a triplet.
Note that in the testing stage, our system takes an arbitrary
moving and fixed volume pair as an input and returns the
bidirectional DVFs. The case of k = 2 in the second term of
Eq. 4 enforces the consistent voxel-wise correspondence be-
tween the arbitrary volume pair. We compute the DVF con-
catenation in Linv using a coordinate volume Q, which is
transformed by the DVFs to Q′. The DVF concatenation is
simply defined as Q′ −Q.

3.3 Loss Function

As shown in Fig. 1, we learn the parameterized mapping
functions from the volumetric image to the bi-directional
DVFs for the consistent voxel-wise correspondence. By
minimizing the loss function, we try to find the optimal net-
work parameters Θ.

L(Θ) = αsimLsim + αregLreg + αinvLinv. (5)

In our system, the CNN-based functions parameterize the
mapping between a volume in the training dataset and a
shared template. Given the estimated forward and backward
DVFs using network parameters Θ, the similarity term Lsim

measures the gap between the warped volumes with the tar-
get in both the forward and backward directions. Here we
use the cross-correlation similarity metric to measure the
volumetric image difference.

Lsim =

m∑

i

{‖Vi ◦ φf,i − T‖2 + ‖Vi − T ◦ φb,i‖2}. (6)

The regularization term Lreg enforces the smoothness of
both the forward and backward DVFs. We apply the diffu-
sion regularizer on the spatial gradients of the forward and
the backward DVFs.

Lreg =

m∑

i=1

{‖ � φf,i‖2F + ‖ � φb,i‖2F }. (7)

The spatial gradients are approximated using the numerical
differences in the x-, y-, and z-directions.

The constant coefficients α are used to balance the terms
regarding the similarity, the regularization, and the inverse
constraints. In our system, we set the parameters as follows:
αsim = 1, αreg = 50, αinv = 50.

3.4 Optional Structure-aware Constraint

In order to improve the registration accuracy of fine-grained
structures, such as the anterior cranial base (ACB) in
the craniofacial CBCT images, we introduce an optional
structure-aware loss Lstr to penalize the inconsistency in the
structure of interests (SOI) set.

Lstr =
m∑

i=1

{‖M � (Vi ◦ φf,i − T )‖2

+ ‖(M ◦ φb,i) � (Vi − T ◦ φb,i)‖2}.
(8)

The operator � denotes the per-element matrix multiplica-
tion. M denotes the mask of SOIs with entry set at 1 for vox-
els inside the SOI and 0 otherwise. We only define the SOI
mask on the template image T , and do not require any SOI
annotation in the training and testing data. The first part of
Lstr measures the inconsistency of SOI between the warped
Vi and the template. Since the SOI is defined on the shared
template, in the second part regarding the backward registra-
tion, we warp the mask using the backward DVFs as M ◦φb

to the space of input volume Vi.

3.5 Training Details

Instead of training the convolutional network from scratch,
we pre-train the network using a set of synthetic volumes.
We generate the synthetic volumes using random B-spline-
based deformation of the template. The resulted forward and
backward DVFs are used to train the network. Note that the
network initialized by the synthetic volumes is limited to
handle the bidirectional DVF prediction as stated in the ex-
perimental section because the synthetic dataset could not
cover the shape and appearance variations of the volume cor-
pus.

We train the network using the ADAM optimizer with a
learning rate of 1e-4 and momentums of 0.5 and 0.999. The
mini-batch contains three volumes. The framework is im-
plemented using the open-source PyTorch implementation
of convolutional neural networks on an NVIDIA GTX TI-
TAN X GPU. The training takes 66 hours of 300 epochs.
The testing of the registration between an arbitrary volume
pair takes 0.17s.

4 Experiments

Dataset. We validate the proposed method on craniofacial
CBCT images. The training dataset consists of 400 clinically
captured CBCT images from orthodontic patients, including
both the pre- and post-treatment volumes. The volume im-
age resolution is 128× 128× 128. The size of the isotropic
voxel is 1.5 × 1.5 × 1.5mm3. For testing, we collect a toy
dataset with 20 synthetic images and a real dataset with 20
clinically captured images. The voxel values are normalized
to [−1, 1]. It is not easy to get the ground-truth DVFs, so
we generate a toy dataset with the ground-truth DVFs using
synthetic data, where the template volume is deformed us-
ing arbitrary B-spline-based deformations without structure
folding. The control grid is set at 7 × 7 × 7. In our system,
we define the template as the statistical shape average of the
training dataset (visualized in Fig. 4) to avoid the bias in the
DVF estimation.
Metrics. The registration accuracy is evaluated by the mean
squared distance (MSD) of the predicted forward and back-
ward DVFs with the ground-truth in the toy dataset. Ex-
cept for the measurement of MSD, all testing experiments
are conducted on the clinically captured images. For the
quantitative assessment of the consistent voxel-wise corre-
spondence on the clinically captured images, we use the
Dice similarity coefficient (DSC) in the label propagation
scenarios. In our experiments, we segment the skull in the
CBCT images into seven structures, including the maxilla,

12938



Figure 3: (a) Input volume pair (VM , VF ). (b) and (c) are the forward and backward DVFs of VM and VF respectively. (d)
The forward φM→F and the backward φF→M . (e-h) are the warped volumes V ′

F and V ′
M using the backward φF→M and the

forward φM→F obtained by the proposed CVNcyl, the SyN (Avants, Epstein, and Gee 2008), the B-Spline (Rueckert et al.
1999), and theVMdif (Dalca et al. 2018) methods. The contours of the maxillary sinus are plotted in yellow.

Figure 4: (a) The sagittal, (b) coronal, and (c) axial overlap-
ping of one sampled volume pair before registration, after
the forward registration using φf , and after the backward
registration using φb. (d) One sampled slice of the DVFs φf

and φb with the resolution of 50× 50× 50.

the mandible, the zygoma, the frontal bone, the sphenoid
bone, the occipital bone, and the temporal bone. We calcu-
late the number of voxels with negative Jacobian determi-
nants to assess the property of topology-preserving of DVFs,
which is crucial in medical image registration.
Baseline. We compare our method with the affine regis-
tration, the B-spline-based free-form registration (Rueck-
ert et al. 1999), the diffeomorphic SyN (Avants, Epstein,
and Gee 2008) of the ANTs software package (Avants et
al. 2011), and the deep learning-based Voxelmorph (VM)
(Balakrishnan et al. 2018) and its diffeomorphic variant
(VMdif ) (Dalca et al. 2018). We also compare the proposed
CVN without the inverse constraint, the CVNinv with in-
vertible bidirectional mapping (the 1st term in Eq. 4), and
the CVNcyl with additional cycle-consistent constraints (the

2nd term in Eq. 4). The structure-aware constraints (Eq. 8)
are not used in the comparison experiments except in Sec-
tion 4.3.

4.1 Accuracy

Fig. 3 illustrates the bidirectional DVFs of an arbitrary mov-
ing and fixed volume pair (VM , VF ). Each image has a
pair of forward and backward DVFs regarding the template.
φM→F = φM

f ◦ φF
b , and φF→M = φF

f ◦ φM
b . We illus-

trate the warped image V ′
M and V ′

F using the forward φM→F

and backward φF→M obtained by the proposed CVNcyl, the
SyN (Avants, Epstein, and Gee 2008), the B-Spline (Rueck-
ert et al. 1999), and the VMdif (Dalca et al. 2018) meth-
ods. The warped volume obtained by the proposed method
achieves consistency with the ground truth compared with
the diffeomorphic methods with and without deep learning
(Dalca et al. 2018; Avants, Epstein, and Gee 2008). We vi-
sualize the contours of maxillary sinus as shown 3. The con-
tours on the warped volumes obtained by our method are
consistent with the target.

The coarse DVFs with the resolution of 50× 50× 50 are
shown in Fig. 4. The axial, coronal, and sagittal overlapping
of the deformed volumes using the predicted DVFs and the
targets are illustrated. We measure the MSD of the predicted
DVFs from the ground truth, as shown in Table 1. The mean
MSD of both the forward and the backward DVFs are below
0.25mm.

Table 1: The MSD (mm) of the forward and the backward
DVFs on the toy dataset.

φf φb

MSD 0.20± 0.03 0.24± 0.03

Given the DVFs, we transfer the segmentation map from
one labeled volume to novel ones. Fig. 5 shows two cases of
segmentation map transfer. We visualize the segmentation
maps of six anatomies and plot the contours of the maxillary
sinus and the mandible. The proposed method (Fig. 5(d)) is
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Figure 5: Comparison of segmentation map transfer. (a) Moving volume. (b) Fixed volume with ground-truth segmentation.
(c-g) The segmentation map transfer using the pre-trained model Mp, the proposed CVNcyl, the SyN (Avants, Epstein, and
Gee 2008), the VMdif (Dalca et al. 2018), and the B-spline-based (Rueckert et al. 1999) methods. The contours of the maxillary
sinus are plotted in yellow, and contours of the mandible in orange. (Red-maxilla, green-mandible, cyan-frontal bone, magenta-
sphenoid bone, dark green-occipital bone, and brown-left temporal bone.)

feasible to transfer the voxel-wise label maps. As described
in Section 3.5, the proposed network is initialized by the
pre-trained network using labeled synthetic dataset. The pre-
trained network Mp also performs the volume feature ex-
traction and DVF inference. However, the pre-trained model
is not enough to predict reliable voxel-wise correspondence
for the label transfer (see Fig. 5(c)). We think the reason is
that the synthetic dataset is limited to cover the structural
variation of the real volumes. The proposed method learned
using the combinational inverse constraints is comparable
with the diffeomorphic techniques (Avants, Epstein, and Gee
2008; Dalca et al. 2018) and the optimization-based free-
from deformation (Rueckert et al. 1999) in the label transfer.

We report the DSC of the label transfer on seven
anatomies as shown in Table 2. The proposed method
achieves comparable performances with state-of-the-art dif-
feomorphic methods, i.e., Syn (Avants, Epstein, and Gee
2008) and diffeomorphic VMdif (Dalca et al. 2018). In all
seven structures, the proposed CVN method gains the best
performance. Note that when given the inverse constraints,
the proposed CVNinv and CVNcyl significantly reduce the
number of the voxels with negative Jacobian determinants
from an average of 3688 to 40.6 and 7.44 respectively with
small DSC costs. The proposed method is extremely faster
than the traditional iterative optimization-based diffeomor-
phic method. Moreover, there is no need to integrate the in-
termediate velocity field for the final DVF as in other deep
learning-based diffeomorphic registration (Dalca et al. 2018;
Krebs et al. 2019).

4.2 Invertibility

Considering the inverse constraints, the concatenation of the
resulted forward and backward DVFs are expected to be an
identical transformation. Fig. 6 illustrates the concatenated
DVFs of φf ◦φb obtained by the CVN, the CVNinv , and the
CVNcyl. The smaller displacements, the better. We compare
with the non-diffeomorphic B-spline-based method (Rueck-

Figure 6: The concatenated displacement fields of φf ◦ φb

obtained by (a) the CVN, (b) the CVNinv , (c) the CVNcyl,
(d) the B-spline-based (Rueckert et al. 1999), (e) the VMdif

(Dalca et al. 2018), and (f) the SyN (Avants, Epstein, and
Gee 2008) methods. The smaller values, the better.

ert et al. 1999), as well as the diffeomorphic ones including
the SyN (Avants, Epstein, and Gee 2008) and VMdif (Dalca
et al. 2018). The proposed method does not rely on the inter-
mediate velocity vector field inference. The introduction of
the inverse constraints is feasible to get an identical trans-
formation by the concatenation of forward and backward
DVFs.

We also evaluate the consistent registration in a cycle
of 3 images, as shown in Fig. 7. For a volume triplet
(VA, VB , VC), we compare the concatenation of DVF φAB ◦
φBC and the directional DVF φAC . We compare the pro-
posed network CVN learned without the inverse constraints,
the CVNinv with only the inverse constraints regarding the
mapping to the template (the 1st term in Eq. 4), and the
CVNcyl with the additional cycle consistency constraints.
As stated in Proposition 1, the strictly invertible maps re-
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Table 2: The DSC of the label transfer of seven anatomies using the proposed CVN, the CVNinv , the CVNcyl, as well as the
affine, the B-spline-based (Rueckert et al. 1999), the SyN (Avants, Epstein, and Gee 2008), the VM (Balakrishnan et al. 2018),
and the VMdif (Dalca et al. 2018) methods. The bottom row is the number of voxels with negative Jacobian determinants.

Affine B-Spline SyN VM VMdif CVN CVNinv CVNcyl

Maxilla 0.57± 0.04 0.72 ±0.02 0.75± 0.02 0.75 ±0.01 0.74 ±0.01 0.78± 0.02 0.76± 0.02 0.76 ±0.02
Mandible 0.66 ±0.12 0.87 ±0.01 0.88± 0.01 0.89± 0.01 0.88 ±0.01 0.90± 0.01 0.88 ±0.01 0.88 ±0.01
Zygoma 0.60 ±0.09 0.79 ±0.02 0.81± 0.02 0.83 ±0.02 0.80 ±0.02 0.83± 0.02 0.81± 0.02 0.81± 0.02
Frontal 0.66 ±0.05 0.80 ±0.02 0.80 ±0.02 0.85± 0.01 0.82± 0.01 0.85± 0.01 0.82 ±0.01 0.82 ±0.02
Sphenoid 0.47± 0.09 0.68 ±0.02 0.71 ±0.01 0.69 ±0.03 0.68 ±0.02 0.73± 0.02 0.71 ±0.02 0.70 ±0.02
Occipital 0.44 ±0.14 0.73 ±0.06 0.71± 0.10 0.71± 0.11 0.71 ±0.08 0.80 ±0.02 0.76 ±0.04 0.76± 0.04
Temporal 0.53 ±0.08 0.75 ±0.02 0.74 ±0.04 0.79 ±0.03 0.77 ±0.02 0.81± 0.01 0.78± 0.02 0.78 ±0.02
|J(φ)| ≤ 0 0 2016 0 8215 500 3688 40.6 7.44

Figure 7: (a) Input volume images VA, VB , and VC . The
displacement fields obtained using (b) the CVN, (c) the
CVNinv , and (d) the CVNcyl. From left to right: φAB ◦φBC ,
φAC , and the image difference of φAB ◦ φBC − φAC .

garding a shared template is enough for the cycle consis-
tency. However, it is difficult to find strictly invertible DVFs
using the parameterized functions learned by the gradient
descent-based optimization. We observe that with the addi-
tional cycle consistent constraints, the concatenation of the
DVFs along the path is more likely to be an identical one.

4.3 Optional Structure-aware Constraint

In our system, we introduce the optional structure-aware
constraints for accurate registration of SOIs. Fig. 8 illus-
trates the registration of the ACB with and without the struc-
tural constraints. The contours of the sphenoidal sinus are
plotted in green. We observe that the fine-grained structures
in the warped image are more consistent with the target
when given the additional structural constraints on the reg-
istration. Quantitative results using the mask of the sphe-
noid are shown in Table 3 with improved accuracies on the
masked SOI. In experiments, we set the coefficient αstr of
Lstr to 50.

5 Conclusion

We have presented an unsupervised fully convolutional
network-based framework for the cycle-consistent voxel-

Figure 8: The registration of the ACB with and without the
structural constraints. (a) Moving volume VM . (b) Fixed vol-
ume VF . Warped volume V ′

M (c) without structural con-
straints, and (d) with structural constraints. The contours of
the sphenoidal sinus are plotted in green.

Table 3: The DSC of the label transfer of the sphenoid bone
with and without structural constraints (SC) (Eq. 8).

w/o SC with SC
CVN 0.73±0.02 0.74±0.02
CVNinv 0.71±0.02 0.72±0.02

wise correspondence. The system takes advantages of com-
binational inverse constraints to enforce the invertibility
of forward and backward transformation pair regarding
the shared template and the cycle-consistency for the de-
formable registration in a volume corpus. Quantitative and
qualitative results show the benefit to topology-preserving
in deformable registration from involving the combina-
tional inverse constraints. The optional bidirectional struc-
tural constraints are introduced for the registration of the
fine-grained anatomies. The proposed system achieves effi-
cient nonrigid volumetric registration and dense correspon-
dence considering the fast evaluations of fully convolutional
network-based functions, which avoids time-consuming on-
line iterative optimization and inference of velocity volumes
in other inverse-consistent registration techniques.
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