
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

JSNet: Joint Instance and Semantic Segmentation of 3D Point Clouds

Lin Zhao, Wenbing Tao∗
National Key Laboratory of Science and Technology on Multispectral Information Processing

School of Artifical Intelligence and Automation, Huazhong University of Science and Technology, China
{linzhao, wenbingtao}@hust.edu.cn

Abstract

In this paper, we propose a novel joint instance and seman-
tic segmentation approach, which is called JSNet, in order to
address the instance and semantic segmentation of 3D point
clouds simultaneously. Firstly, we build an effective back-
bone network to extract robust features from the raw point
clouds. Secondly, to obtain more discriminative features, a
point cloud feature fusion module is proposed to fuse the dif-
ferent layer features of the backbone network. Furthermore, a
joint instance semantic segmentation module is developed to
transform semantic features into instance embedding space,
and then the transformed features are further fused with in-
stance features to facilitate instance segmentation. Mean-
while, this module also aggregates instance features into se-
mantic feature space to promote semantic segmentation. Fi-
nally, the instance predictions are generated by applying a
simple mean-shift clustering on instance embeddings. As a
result, we evaluate the proposed JSNet on a large-scale 3D in-
door point cloud dataset S3DIS and a part dataset ShapeNet,
and compare it with existing approaches. Experimental re-
sults demonstrate our approach outperforms the state-of-the-
art method in 3D instance segmentation with a significant
improvement in 3D semantic prediction and our method is
also beneficial for part segmentation. The source code for this
work is available at https://github.com/dlinzhao/JSNet.

Introduction

Semantic segmentation is the task which is used to segment
all informative regions in a scene and classify each region
into a specific class. Instance segmentation is different from
semantic segmentation for that different objects of the same
class will have different labels. Both the two tasks have a
wide applications in real-world scenarios, e.g., autonomous
driving and mobile-based navigation. In 2D images, those
two tasks have achieved remarkable results (Chen et al.
2018; He et al. 2017; Li et al. 2019). However, the studies of
3D semantic and instance segmentation are still facing huge
challenges, e.g., large-scale with noisy data processing, high
computation as well as memory consumption.
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Figure 1: Our network JSNet takes raw point clouds as in-
puts and gets outputs instance and semantic segmentation
results for each point. JISS stands for Joint Instance and Se-
mantic Segmentation.

Literature research shows that 3D scene data have differ-
ent representations, e.g., volumetric grids (Wu et al. 2015;
Thanh Nguyen et al. 2016; Maturana and Scherer 2015) and
3D point clouds (Qi et al. 2017b; Li et al. 2018; Wang et
al. 2018b; Yu et al. 2018). Compared with other representa-
tions, point cloud is a more compact and intuitive represen-
tation of 3D scene data. Recently, more efficient and pow-
erful deep learning network architectures (Qi et al. 2017b;
Wu, Qi, and Fuxin 2019; Li, Chen, and Hee Lee 2018) have
been proposed to directly process point clouds and shown
promising results in point cloud classification and part seg-
mentation. Those approaches are often used as feature ex-
traction network in other tasks, e.g., instance segmentation
and semantic segmentation.

In previous works, instance segmentation and semantic
segmentation have often been processed respectively or in-
stance segmentation is treated as a post-processing task of
semantic segmentation (Wang et al. 2018a; Pham et al.
2019a). However, those two problems are related because
points of different categories belong to different instances
and points of the same instance belong to the same class.
Recently, (Pham et al. 2019b) handles the two problems
with multi-task pointwise network and multi-value Condi-
tional Random Field (CRF). However, the CRF is an individ-
ual part behind the Convolutional Neural Network (CNN),
it is difficult to explore the performance of their combina-
tion. Moreover, this method does not investigate whether se-
mantic segmentation and instance segmentation can facili-
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tate each other. At the same time, ASIS (Wang et al. 2019b)
is proposed to address the two tasks simultaneously, which
adapts the semantic feature to instance feature space by a
fully connected layer and aggregates instance feature to se-
mantic feature space by K Nearest Neighbor (kNN). How-
ever, the performance of this method is limited because it
is difficult to choose the right K value and distance metric
for kNN. Besides, it has expensive computation and mem-
ory consumption because it will generate a high order sparse
tensor during training process.

In this work, we introduce a joint instance semantic seg-
mentation neural network of 3D point clouds called JSNet to
address the two fundamental problems: semantic segmenta-
tion and instance segmentation. The proposed network JS-
Net includes four parts: a shared feature encoder, two par-
allel branch decoders, a feature fusion module for each de-
coder, a joint segmentation module. The feature encoder and
decoders are built based on PointNet++ (Qi et al. 2017b)
and PointConv (Wu, Qi, and Fuxin 2019) to learn more
effective high-level semantic features. To obtain more dis-
criminative features, we propose a point cloud feature fu-
sion module to fuse the high-level and low-level informa-
tion to refine the output features. In order to make the two
tasks promote each other, a novel joint instance and semantic
segmentation module is proposed to handle instance and se-
mantic segmentation simultaneously. Specifically,this mod-
ule transforms semantic features into instance embedding
space by a 1D convolution and then the transformed features
are further fused with instance features to facilitate instance
segmentation. Meanwhile, this module also aggregates in-
stance features into semantic feature space by implicit learn-
ing to promote semantic segmentation. Thus, our approach
can be used to learn instance-aware semantic fusion features
and semantic-aware instance embedding features, which can
make the predictions of those points more accurate.

To summarize, the main contributions of our work are as
follows:

• We design a more efficient Point Cloud Feature Fusion
(PCFF) module to generate more discriminative features
and improve the accuracy of point predictions.

• We propose a novel Joint Instance and Semantic Segmen-
tation (JISS) module to make instance segmentation and
semantic segmentation mutual promote. This module fur-
ther improve the accuracy with acceptable GPU memory
consumption during training process.

• We achieve impressive results on the S3DIS dataset (Ar-
meni et al. 2016) along with a significant improvement
on the 3D instance segmentation task. Additionally, our
experiments on the ShapeNet dataset (Yi et al. 2016) indi-
cate that JSNet also can achieve satisfactory performance
for part segmentation task.

Related Work

In this section, we briefly review some point cloud feature
extraction works, and some existing approaches for seman-
tic and instance segmentation in 3D scene. Especially, we
concentrate on deep neural network-based methods applied

to 3D point clouds because of their proven robustness and
efficiency in the field.

Deep learning for 3D Point Clouds

Although deep learning has been successfully used for 2D
images, there are still many challenges in the feature learn-
ing capabilities of 3D point clouds with irregular data struc-
tures. Recently, PointNet (Qi et al. 2017a) is one of the first
approaches of directly applying neural networks to point
clouds. It uses shared Multi-Layer Perceptron (MLP) and
max pooling to learn deep features from unordered point
sets. However, PointNet has difficulty in capturing local re-
gion features. This drawback has been addressed by Point-
Net++ (Qi et al. 2017b) with a hierarchical neural network.
The max pooling operation is a key structure to extract fea-
tures from points for both PointNet and PointNet++. But it
only keeps the strongest activation on a local or global region
of feature maps, which may cause some useful detailed in-
formation lost for semantic and instance segmentation tasks.

Some later works (Simonovsky and Komodakis 2017;
Hermosilla et al. 2018; Xu et al. 2018) extract features of
point clouds with learning continuous filters for convolu-
tion calculation. The work (Simonovsky and Komodakis
2017) firstly presents the idea that learning continuous fil-
ters with edge-conditioned into 3D graph. Furthermore, Dy-
namic graph CNN (Wang et al. 2018b) introduces a method
to update the graph dynamically. The following work Point-
Conv (Wu, Qi, and Fuxin 2019) proposes an inverse den-
sity scale to re-weight the continuous function learned by
MLP and compensate the non-uniform sampling, while it
also needs high GPU memory during training process.

Semantic&Instance Segmentation on Point Clouds

For semantic segmentation, methods (Zhao et al. 2017;
Chen et al. 2018) based on full convolutional networks
(Long, Shelhamer, and Darrell 2015) have achieved tremen-
dous progress in 2D domain. As for 3D semantic segmenta-
tion, 3D-FCNN introduced by (Huang and You 2016) pre-
dicts a coarse voxel label with a 3D fully convolutional neu-
ral network. SEGCloud (Tchapmi et al. 2017) extends 3D-
FCNN with trilinear interpolation and fully connected con-
ditional random fields. RSNet (Huang, Wang, and Neumann
2018) models local dependencies for point clouds with a
slice pooling layer, Recurrent Neural Network (RNN) lay-
ers, and a slice unpooling layer. 3P-RNN (Ye et al. 2018)
models the inherent contextual features for semantic seg-
mentation by using a pointwise pyramid pooling module and
explores long-range spatial dependencies with two-direction
hierarchical RNNs. Recently, GAC (Wang et al. 2019a), a
graph attention convolution, is proposed to capture the struc-
tured feature of point clouds with dynamical kernels to adapt
the structure of an object. However, there are few previous
works which focus on semantics segmentation by using the
advantages of instance embedding.

For instance segmentation, approaches (Li et al. 2019;
Huang et al. ) based on Mask R-CNN (He et al. 2017) dom-
inate it on 2D images. However, there are few studies for
3D instance segmentation. SGPN (Wang et al. 2018a) gen-
erates instance proposals from learning a similarity matrix
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of the point features with a double-hinge loss. GSPN (Yi et
al. 2019) generates proposals by reconstructing shapes and
outputs the final segmentation results based on PointNet++.
3D-BoNet (Yang et al. 2019) directly regresses 3D bound-
ing boxes and predicts point-level masks for all instances si-
multaneously. Similarly, there are few works which segment
instances using the advantages of semantic fusion.

However, most of the previous works tackle the two tasks
separately. Very recently, (Pham et al. 2019b) proposes a
multi-task pointwise network (MT-PNet) for predicting the
semantic categories and instance embedding vectors and
then uses a multi-value conditional random field (MV-CRF)
as a post-processing. However, the CRF is an individual
part behind the CNN, and it is difficult to explore the per-
formance of their combination. Moreover, this method does
not investigate whether semantic segmentation and instance
segmentation can promote each other. Therefore, the per-
formance improvement is not obvious. Meanwhile, ASIS
(Wang et al. 2019b) is proposed to segment instances and
semantics for 3D point clouds at once, which uses PointNet
or PointNet++ as backbone network and then concatenates a
proposed module ASIS. The ASIS adapts the semantic fea-
tures to instance feature space by a fully connected layer
and aggregates instance features to semantic feature space
by kNN. While the approach (Wang et al. 2019b) has dif-
ficult to choose the right K value and distance metric for
kNN, and it also has high memory cost because it will pro-
duce a high order sparse matrix at training process.

Proposed Method

In this section, firstly, we describe the whole network ar-
chitecture of our proposed JSNet for instance and semantic
segmentation of 3D point clouds. Then, we elaborate on the
two main components of our proposed network, including
the Point Cloud Feature Fusion (PCFF) module and the Joint
Instance and Semantic Segmentation (JISS) module, respec-
tively.

Network Architecture

The whole network illustrated in Figure 2(a) composes with
four main components including a shared encoder, two par-
allel decoders, a point cloud feature fusion module for each
decoder, a joint segmentation module as the last part. For the
two parallel branches, one aims to extract semantic feature
for each point, while the other one is for instance segmen-
tation task. Specifically for the feature encoder and two de-
coders, we can directly use PointNet++ or PointConv as our
backbone network by duplicating a decoder because the two
decoders have the same structure. However, as is mentioned
above, as for instance or semantic segmentation, the Point-
Net++ may lose detailed information because of max pool-
ing operation and the PointConv has expensive GPU mem-
ory consumption during training process. In this work, we
combine the PointNet++ and PointConv to build a more ef-
fective backbone network with acceptable memory cost. The
encoder of the backbone is built by concatenating a set ab-
straction module of PointNet++ and three feature encoding
layers of PointConv. Similarly, the decoders are composed

with three depthwise feature decoding layers of PointConv
followed by a feature propagation module of PointNet++.

For the whole pipeline, our network takes a point cloud
of size Na as input, then encodes it into a Ne × 512 shaped
matrix by the shared feature encoder. Next, the output of
feature encoder is input into the two parallel decoders and
processed by their following components separately. The se-
mantic branch decodes the shared features and fuses the fea-
tures of different layers into a semantic feature matrix FSS

shaped with Na × 128. Similarly, the instance branch out-
puts an instance feature matrix FIS after the PCFF module.
Finally, both the semantic features and the instance features
are fetched and processed by the JISS module, and then out-
put two feature matrices. One of the matrices PSSI shaped
with Na × C which is used to predict the semantic cate-
gories, where C is the number of semantic categories. The
other one EISS shaped with Na ×K is an instance feature
matrix and it is used to predict the instance labels for each
point, where K is the dimension of the embedding vector. In
the embedding space, the embeddings represent the instance
relationship of points: the points belonging to the same in-
stance object are close, and the points of the different in-
stances are kept away from each other.

At training time, the loss function L of our network con-
sists of semantic segmentation loss Lsem and instance em-
bedding loss Lins:

L = Lsem + Lins, (1)

where Lsem is defined with the classical cross entropy loss.
As for the instance embedding loss, we utilize a discrimina-
tive function to express the embedding loss Lins inspired by
the work in (De Brabandere, Neven, and Van Gool 2017).
Specifically, the instance embedding loss function is formu-
lated as follows:

Lins = Lpull + Lpush, (2)

where Lpull pulls embeddings close to the mean embedding
of instance, while the Lpush makes the mean embedding
of different instances seperated from each other. Given the
number of instances M , the number of elements Nm in the
m-th instance, the embedding en of point, and the mean of
embeddings μm in the m-th instance. Each term is rewritten
as follows:

Lpull =
1

M

M∑

m=1

1

Nm

Nm∑

n=1

[‖μm − en‖1 − δv]
2
+
, (3)

Lpush =
1

M (M − 1)

M∑

i=1

M∑

j=1

i �=j

[
2δd − ‖μi − μj‖1

]2
+
, (4)

where [x]+ = max (0, x); ‖·‖1 is L1 distance; δv and δd are
margins for Lpull and Lpush respectively.

At testing time, the final instance labels are generated by
using a simple mean-shift clustering (Comaniciu and Meer
2002) on the embeddings and the final semantic categories
are obtained by using a argmax operation.
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Figure 2: An overview of the Joint Instance Semantic Segmentation Neural Network of 3D Point Cloud (JSNet). (a) Illustration
of the network architecture. (b) Components of the Point Cloud Feature Fusion (PCFF) module. (c) Components of the Joint
Instance and Semantic Segmentation (JISS) module. Different colored blocks represent different modules in (a), while those
blocks represent different features in (b) and (c).

Point Cloud Feature Fusion Module

In the segmentation and detection tasks for 2D image, only
the feature of last layer is used for prediction in previous
works, while different layer features are fused in subsequent
approaches (Lin et al. 2017; He et al. 2017; Chen et al. 2018)
because the high level layer has richer semantic information
while the low level has much more detailed information.
Those works indicate that the fused features are beneficial
for better prediction.

Based on observation above, we propose a Point Cloud
Feature Fusion (PCFF) module for semantic and instance
segmentation in point clouds. Figure 2(b) presents the de-
tails of the structure. Considering the precision, computation
and GPU memory consumption, we only fuse the last three
layers of the decoder. We use Fa, Fb and Fc to represent
those feature matrices of the decoder with shape Na × 128,
Nb×128 and Nc×256 respectively. Firstly, we concatenate
Fa and F

′
b upsampling with interpolation from Fb. Then the

former output is added to F
′
c (upsampling from Fc) element-

wise and a convolution is applied to the previous result. Fol-
lowing (Qi et al. 2017b), the interpolation is achieved by
using an inverse square distance weighted average based on

three nearest neighbors. Finally, the PCFF generates a fused
feature matrix with shaped Na × 128. This module can re-
fine the output features from the decoder with acceptable
computation and memory consumption.

Joint Instance and Semantic Segmentation

In fact, both the semantic segmentation and the instance
segmentation map the initial point cloud features to differ-
ent new high-level feature spaces separately. In the semantic
feature space, points of the same semantic category are clus-
tered together, while the different classes are separated. In
the instance feature space, points of the same instance object
are closely assembled, while points of different instances are
separated. It indicates that we could extract semantic aware-
ness information from the semantic feature space to inte-
grate the information into the instance features and gener-
ates semantic-aware instance embedding features, and vice
versa.

Based on this observation, we propose a Joint Instance
Semantic Segmentation (JISS) module to obtain semantic
labels and segment instance objects simultaneously, as is
illustrated in Figure 2(c). The JISS module transforms se-
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mantic features into instance embedding space and then the
transformed features are further fused with instance features
to facilitate instance segmentation. Meanwhile, this module
also aggregates instance features into semantic feature space
to promote semantic segmentation. Specifically, the seman-
tic feature matrix FSS is transformed into instance feature
space as FSST by a 1D convolution (Conv1D), and the FSST

is added to instance feature matrix FIS element-wise as
FISS . Then, we model the spatial correlation of point fea-
tures to enhance important features by concatenating the fea-
ture FIS and FISS into a FISSC , and then the FISSC is ap-
plied a mean of elements across dimension (Mean) and an
element-wise sigmoid (Sigmoid) to generate a weight ma-
trix FISR. Finally, the feature matrix FISSC multiply the
FISR to generate the feature matrix FISSR followed by two
1D convolution to produce the instance embedding feature
EISS shaped with Na ×K. The process can be formulated
as follows:

FISSC = Concat (FIS , FIS + Conv1D (FSS)) , (5)

FISSR = FISSC · Sigmoid(Mean(FISSC)), (6)
EISS = Conv1D (Conv1D (FISSR)) , (7)

where instance embedding feature matrix EISS is used to
generate final instance labels by using mean-shift clustering.

For the semantic segmentation branch, given the instance
embeddings FISSR, this module integrates the FISSR into
semantic feature space as FISST with a 1D convolution fol-
lowed by a mean of elements across dimension and a tiling
operation. Next, other operations are similar to the instance
branch except the last layer which outputs an instance-aware
semantic feature matrix PSSI shaped with Na ×C. We also
formulate this procedure as follows:

FISST = T ile (Mean (Conv1D (FISSR))) , (8)

FSSI = Concat(FSS , FSS + FISST ), (9)
FSSIR = FSSI · Sigmoid(Mean(FSSI)), (10)

PSSI = Conv1D (Conv1D (FSSIR)) , (11)
where FSSI is a instance-fused feature matrix and the
FSSIR is a feature fusion matrix for semantic segmentation.
The final instance-aware semantic features are fed into the
last classifier to predict the categories for each point.

Experiments

Datasets and Evaluation Metrics

We evaluate our approach on the following two public
datasets: Stanford Large-Scale 3D Indoor Spaces (S3DIS)
(Armeni et al. 2016) and ShapeNet (Yi et al. 2016). The
S3DIS is an indoor 3D point cloud dataset that contains six
areas of three different buildings and have 272 rooms and
involve 13 categories in total. For a principled evaluation,
we follow the same k-fold cross validation as in (Qi et al.
2017a), and we also present the results of the 5-th fold (Area
5) following (Tchapmi et al. 2017) because Area 5 is not in
the same building as other areas and there exist some differ-
ences between the objects in Area 5 and other areas. More-
over, we also evaluate our algorithm on ShapeNet dataset.

This dataset contains 16881 CAD models from 16 categories
annotated with 50 types of parts and the models in each cate-
gory are labeled with two to five parts. We follow the official
split of 795 scenes as training set, 654 scenes as testing set.
The instance annotations generated following (Wang et al.
2018a) are regarded as instance ground truth labels.

For semantic segmentation evaluation, overall accuracy
(oAcc), mean accuracy (mAcc) and mean IoU (mIoU) are
calculated across over all the categories. For instance seg-
mentation, we evaluate our method including mean preci-
sion (mPrec), mean recall (mRec) with IoU threshold 0.5
and (weighted) coverage (Cov, WCov) (Ren and Zemel
2017; Wang et al. 2019b). The Cov scores measure the
instance-wise IoU for each prediction matched with ground
truth instance averaged over the scene. And then the Cov
is further weighted with the size of ground-truth instances
to obtain WCov. Given the predicted regions P and ground
truth regions G, the Cov and WCov are formulated as:

Cov (G,P) =

|G|∑

m=1

1

|G| max
n

IoU
(
rGm, rPn

)
, (12)

WCov (G,P) =

|G|∑

m=1

wm max
n

IoU
(
rGm, rPn

)
, (13)

wm =

∣∣rGm
∣∣

∑
k

∣∣rGk
∣∣ , (14)

where
∣∣rGm

∣∣ is the number of points in ground truth region
m.

Implementation Details

For the large scale dataset S3DIS, each point in our model
is represented by a 9-dim vector (XYZ, RGB and normal-
ized location as to the room). Following experimental set-
tings in PointNet (Qi et al. 2017a), we split the rooms into
overlapped blocks of area 1m × 1m, and each block con-
tains 4096 points. During training process, we configure the
network with δv = 0.5, δd = 1.5 and K = 5, where K
is the dimension of the embedding. We train the network
for 100 epochs with batch size 24 on a single NVIDIA
GTX1080Ti. We use Adam optimizer to optimize the net-
work with momentum set to 0.9, base learning rate set to
0.001, and decay by 0.5 every 12.5k iterations. At test time,
We use mean-shift clustering with bandwidth 0.6 to gener-
ate instance objects and merge instances of different blocks
by using BlockMerging algorithm (Wang et al. 2018a). For
ShapeNet dataset, each model is sampled into a point cloud
with 2048 points represented by a 6-dim vector (XYZ and
normal) as in (Qi et al. 2017b).

Instance Segmentation on the S3DIS dataset

As is depicted in Table 1, we present the performance of our
approach in instance segmentation task on S3DIS dataset.
In this task, we evaluate and compare our method with ex-
ist state-of-the-art methods including SGPN (Wang et al.
2018a), MT-PNet (Pham et al. 2019b), MV-CRF (Pham et
al. 2019b), ASIS (Wang et al. 2019b), 3D-BoNet (Yang et
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Table 1: Instance segmentation results on S3DIS dataset.
Method mCov mWCov mRec mPrec

5-th fold
SGPN 32.7 35.5 28.7 36.0
ASIS 44.6 47.8 42.4 55.3

JSNet (Ours) 48.7 51.5 46.9 62.1

6 fold

SGPN 37.9 40.8 31.2 38.2
MT-PNet - - - 24.9
MV-CRF - - - 36.3

ASIS 51.2 55.1 47.5 63.6
3D-BoNet - - 47.6 65.6

JSNet (Ours) 54.1 58.0 53.9 66.9

Table 2: Semantic segmentation results on S3DIS dataset.
Method mAcc oAcc mIoU

5-th fold

PointNet 52.1 83.5 43.4
SEGCloud 57.4 - 48.9

RSNet 59.4 - 51.9
3P-RNN 71.3 85.7 53.4

ASIS 60.9 86.9 53.4
JSNet (Ours) 61.4 87.7 54.5

6 fold

PointNet 60.3 80.3 48.9
3P-RNN 73.6 86.9 56.3
MT-PNet - 86.7 -
MV-CRF - 87.4 -

ASIS 70.1 86.2 59.3
JSNet (Ours) 71.7 88.7 61.7

al. 2019). We can see our network outperforms the other
methods on S3DIS. Among them, ASIS is the most similar
approach to our method. Compared with ASIS, our network
JSNet achieves significant improvements on the four evalu-
ation metrics. Especially on Area 5 of S3DIS, the improve-
ments are more significant for each metric: 4.1 mCov, 3.7
mWCov, 4.5 mRec and 6.8 mPrec. Compared with the latest
method 3D-BoNet on six fold experiments, our approach is
also slightly better. Qualitative results are presented in Fig-
ure 3.

Semantic Segmentation on the S3DIS dataset

Table 2 presents the quantitative results of our architecture
in semantic segmentation task on S3DIS dataset. As is seen
from Table 2, our approach outperforms the baseline Point-
Net (Qi et al. 2017a) by 11.4 mAcc, 8.4 oAcc and 12.8
mIoU in over all accuracy on six fold cross validation ex-
periments. For the generalizability evaluation on Area 5 of
S3DIS, the performance is improved with 9.3 mAcc, 4.2
oAcc and 11.1 mIoU respectively. In addition, we also com-
pare our method with other state-of-the-art methods on 6
fold or 5-th fold of S3DIS. Our model is slightly better than
SEGCloud (Tchapmi et al. 2017), RSNet (Huang, Wang,
and Neumann 2018), 3P-RNN (Ye et al. 2018), MT-PNet
(Pham et al. 2019b), MV-CRF (Pham et al. 2019b), and
ASIS (Wang et al. 2019b). Qualitative results are presented
in Figure 4.

ShapeNet Results

Besides evaluation on the large scale indoor real scene
benchmark S3DIS, we also conduct experiments on

Real Scene ASIS JSNet (Ours) Ground Truth
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Figure 3: Comparison results of ASIS and our method in in-
stance segmentation task on S3DIS. Different colors repre-
sent different instances. Different numbers indicate that the
segmentation results of our method are better than the ASIS
in nearby area.
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Figure 4: Comparison results of ASIS and our method in se-
mantic segmentation task on S3DIS. Different numbers in-
dicate that the segmentation results of our method are better
than the ASIS in nearby area.

ShapeNet dataset. Following (Wang et al. 2018a), the in-
stance annotations are generated as ground truth to train our
network. Since these annotations are fake ground truth la-
bels, we only present the qualitative results of part instance
segmentation, as is illustrated in Figure 5. The results of se-
mantic segmentation are reported in Table 3. We use Point-
Net++ (Qi et al. 2017b) as our baseline, and JSNet outper-
forms the baseline by 0.9-point mIoU. Compared with ASIS
(Wang et al. 2019b), our approach also achieve an improve-
ment of 0.8 mIoU. These results show that our approach is
also favorable for the part segmentation task.

Ablation Study

To better validate the effectiveness of each component in our
network, we conduct 7 groups of ablation experiments on
Area 5 of S3DIS dataset. In addition, we also conduct addi-
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(c) Ins. (d) Ins. GT(a) Sem. (b) Sem. GT

Figure 5: Qualitative results of JSNet on ShapeNet dataset.
(a) Semantic prediction results of JSNet. (b) Ground truth
of semantic segmentation. (c) Instance prediction results of
JSNet. (d) Generated instance annotation for instance seg-
mentation.

Table 3: Semantic segmentation results on ShapeNet dataset.
Method mIoU
PointNet 83.7

PointNet++ 84.9
ASIS 85.0

JSNet (Ours) 85.8

tional experiments to validate the effects of different training
strategies on the same dataset. For all ablation experiments,
if there are no extra notes, we use the same configuration in
the subsection Implementation Details.
(1) Base Network. The base network includes a shared en-
coder and two parallel decoders. The encoder is built by
stacking four set abstraction modules of PointNet++ (Qi et
al. 2017b), and the decoders are built by stacking four fea-
ture propagation modules of PointNet++.
(2) Backbone Network. The encoder of backbone is built
by concatenating a set abstraction module of PointNet++
and three feature encoding layers of PointConv (Wu, Qi,
and Fuxin 2019). Similarly, the decoders are composed with
three depthwise feature decoding layers of PointConv fol-
lowing a feature propagation module of PointNet++.
(3)-(6) Single Module Evaluation. We remove other com-
ponents from the full framework (7) and only retain a mod-
ule for the ablation experiments respectively.
(8)-(10) Different strategies. we train the full model with
early stopping or random sample.

In Table 4, we present the ablation experimental results
of different components in the full framework. Compared
with the base network, the backbone network indeed ben-
efits from a more efficient real convolution with density
weighted. Compared with (2) and (3), the experimental re-
sults shows that fusing the feature of different layers could
improve the segmentation precision because of the richer
features after fusing. As for the only instance fusion seman-
tic segmentation and only semantic awareness instance seg-

Table 4: Ablation experiments results on Area 5 of the
S3DIS. The short names for components and strate-
gies are defined as: BN−Base network, BBN−Backbone
network, IF−Instance fusion branch of JISS module,
SF−Semantic fusion branch of JISS module, ES−Early
stopping, RS−Random sample.

Group Component Strategy Metric
BN BBN PCFF IF SF ES RS mPrec mIoU

(1)
√

52.3 52.7
(2)

√
55.9 53.0

(3)
√ √

58.6 54.5
(4)

√ √
56.9 53.5

(5)
√ √

57.2 53.5
(6)

√ √ √
58.6 54.3

(7)
√ √ √ √

57.6 54.3
(8)

√ √ √ √ √
58.7 54.4

(9)
√ √ √ √ √

62.1 54.5
(10)

√ √ √ √ √ √
62.9 55.0

mentation, the results indicate that better instance predic-
tions could assign more reliable category labels to seman-
tic branch, which can improve the performance of semantic
segmentation. Similarly, the semantic awareness could en-
hance the instance predictions. In sixth ablation experiment,
we combine instance fusion with semantic awareness, and
the performance improvement is larger than only using one
of them.

Table 4 also depicts the ablation experiments results of
the full framework trained with different schemes including
fix sample, fix sample with early stopping, random sample
and random sample with early stopping. Compared with (7)
and (8), our model has a slight overfitting and we alleviate
this phenomenon by training the network with early stop-
ping. Compared the fix sample (7) with random sample (9),
the results indicates that we train the full framework with
the strategies random sample, which makes our model avoid
overfitting and has stronger generalization ability. In addi-
tion, we also use the early stopping strategies to train the
network with random sample. our approach achieves 62.9
mPrec and 55.0 mIoU for instance segmentation and seman-
tic segmentation respectively.

Conclusion

In this work, we propose JSNet, which is a novel end-to-end
approach based on deep learning framework for 3D instance
segmentation and semantic segmentation on point clouds.
The framework consists of a shared feature encoder, two
parallel feature decoders followed by a point cloud feature
fusion (PCFF) module respectively and a joint instance se-
mantic segmentation (JISS) module. On the one hand, the
feature encoder, the feature decoders and the PCFF module
can learn more effective and more discriminative features.
On the other hand, the JISS module make the instance and
semantic segmentation take advantage of each other. Finally,
our approach achieves a significant improvement in both in-
stance and semantic segmentation tasks on S3DIS dataset.
In the future, spatial geometric topology of point clouds can
be added into our framework for better segmentation results.
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