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Abstract

The problem of visual object tracking has traditionally been
handled by variant tracking paradigms, either learning a
model of the object’s appearance exclusively online or match-
ing the object with the target in an offline-trained embedding
space. Despite the recent success, each method agonizes over
its intrinsic constraint. The online-only approaches suffer
from a lack of generalization of the model they learn thus are
inferior in target regression, while the offline-only approaches
(e.g., convolutional siamese trackers) lack the target-specific
context information thus are not discriminative enough to
handle distractors, and robust enough to deformation. There-
fore, we propose an online module with an attention mech-
anism for offline siamese networks to extract target-specific
features under L2 error. We further propose a filter update
strategy adaptive to treacherous background noises for dis-
criminative learning, and a template update strategy to handle
large target deformations for robust learning. Effectiveness
can be validated in the consistent improvement over three
siamese baselines: SiamFC, SiamRPN++, and SiamMask.
Beyond that, our model based on SiamRPN++ obtains the
best results over six popular tracking benchmarks and can op-
erate beyond real-time.

1 Introduction

Visual object tracking is a fundamental topic in various com-
puter vision tasks, such as vehicle navigation, automatic
driving, visual surveillance, and video analytics. Briefly
speaking, given the position of an arbitrary target of inter-
est in the first frame of a sequence, visual object tracking
aims to estimate its location in all subsequent frames.

In the context of visual object tracking, almost all the
state-of-the-art trackers can be categorized into two cate-
gories: discriminative and generative trackers. Discrimina-
tive trackers train a classifier to distinguish the target from
the background, while generative trackers find the object that
can best match the target through computing the joint prob-
ability density between targets and search candidates.

Recently, the siamese framework (Bertinetto et al. 2016a)
as a generative tracker has received surging attention in
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Figure 1: Qualitative demonstration and comparison. While
accurate bounding box regression eludes ATOM and
SiamRPN++ struggles at situations like distractors and de-
formation, our method DROL outperforms ATOM with a
siamese matching subnet, and SiamRPN++ with our pro-
posed discriminative and robust online module.

that its performance has taken the lead in various bench-
marks while running at real-time speed. Generally, these ap-
proaches obtain a similarity embedding space between sub-
sequent frames and directly regress to the real state of the
target (Li et al. 2018; Wang et al. 2019). Despite its recent
success, since the siamese paradigm is exclusively trained
offline, it suffers from severe limitations:

(I) Siamese approaches ignore the background informa-
tion in the course of tracking, leading to inferior dis-
criminative capability for target classification in the
face of distractors.

(II) Siamese approaches solely utilize the first frame as
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template or merely update it through averaging the
subsequent frames, thus its performance degrades
with huge deformation, rotation, and motion blur and
results in poor robustness for target regression.

Probing into a unified solution to these issues arising from
the parameter-fixed inherency of siamese tracking, we’re
motivated to introduce an online mechanism referring to the
discriminative trackers which often feature a discriminative
classifier and an efficient online update strategy. The unique
strengths in online fashion, that is, the attainment of dynamic
video-specific information, have long eluded siamese net-
works given its offline settings. However, the directly on-
line updating siamese networks may be improper since any
introduction of noises during tracking may deteriorate the
generative ability of offline-trained embedding space.

Given the above intuitive analysis, a standalone online
module that is systematically integrated but mutually inde-
pendent with siamese networks is proposed as a complemen-
tary subnet. The online subnet is designed with an attention
mechanism for extraction to most representative target fea-
tures and is optimized efficiently to cater for time require-
ments. The response map of the online module is utilized for
two earlier-mentioned issues separately. Specifically, limita-
tion (I) is resolved by fusing the online response map with
siamese classification score yielding an adaptive classifica-
tion score for discriminative tracking, while limitation (II) is
tackled by giving high-quality frames to siamese networks
to update template for robust tracking.

To wrap up, we develop a highly effective visual track-
ing framework and establish a new state-of-the-art in terms
of robustness and accuracy. The main contributions of this
work are listed in fourfold:
• We propose an online module with attention mechanism

optimized as a classification problem for siamese visual
tracking, which can fully exploit background information
to extract target-specific features.
• We propose discriminative learning using target-specific

features via score fusion to help siamese networks han-
dling distractors and background noises.
• We propose robust learning using target-specific features

via template update to improve their robustness handling
deformation, rotation, and illumination, etc.
• The proposed online module can be integrated with a va-

riety range of siamese trackers without re-training them.
Our method consistently set new state-of-the-art perfor-
mance on 6 popular benchmarks of OTB100, VOT2018,
VOT2018-LT, UAV123, TrackingNet, and LaSOT.

2 Related Work

Siamese visual tracking. Recently, the tracking methods
based on siamese network (Bertinetto et al. 2016a) in the
literature greatly outperformed other trackers due to heavy
offline training, which largely enriches the depiction of the
target. The following works include higher-fidelity object
representation (Wang et al. 2019; Li et al. 2018), deeper
backbone for feature extraction (Li et al. 2019a; Zhang and
Peng 2019), and multi-stage or multi-branch network design

(Fan and Ling 2019; He et al. 2018). Beyond that, another
popular optimization is template’s update for robust tracking
in the face of huge target’s appearance change, either by us-
ing fused frames (Choi, Kwon, and Lee 2017a) or separately
selected frames (Yang and Chan 2018). However, the lack
of integrating background information degrades its perfor-
mance on challenges like distractor, partial occlusions, and
huge deformation. In fact, such rigidity is intrinsic given the
fact that the object classification score from siamese frame-
work turns out to be messy thus requires a centered Gaus-
sian window to ensure stability. While many works intend
to construct a target-specific space, by distractor-aware of-
fline training (Zhu et al. 2018), residual attentive learning
(Wang et al. 2018), gradient-based learning (Choi, Kwon,
and Lee 2017b; Li et al. 2019b), this embedding space ob-
tained through cross-correlation has yet to explicitly account
for the distractors and appearance variation.

Online learning approach. Online learning is a domi-
nant feature for discriminative trackers to precede, which
is achieved by training an online component to distin-
guish the target object from the background. Particularly,
the correlation-filter-based trackers (Henriques et al. 2014;
Danelljan et al. 2017) and classifier-based trackers (Kalal,
Mikolajczyk, and Matas 2011; Nam and Han 2016) are
among the most representative and powerful methods. These
approaches learn an online model of the object’s appear-
ance using hand-crafted features or deep features pre-trained
for object classification. Given the recent prevalence of
meta-learning framework, (Bhat et al. 2019; Park and Berg
2018) further learns to learn during tracking. Comparatively
speaking, online learning for siamese-network-based track-
ers has had less attention. While previous approaches are
to directly insert a correlation filter as a layer in the for-
ward pass and update it online (Bertinetto et al. 2016b;
Guo et al. 2017), our work focuses on the siamese’s com-
bination with an online classifier in a parallel manner with
no need to retrain them.

Target regression and classification. Visual object track-
ing synchronously needs target regression and classification,
which can be regarded as two different but related subtasks.
While object classification has been successfully addressed
by the discriminative methods, object regression is recently
upgraded by the introduction of Regional Proposal Network
(Li et al. 2018) in siamese network owing to the intrinsic
strength for generative trackers to embed rich representation.
Nevertheless, the majority of trackers in the gallery stand out
usually with the strength within one subtask while degrading
within the other. To design a high-performance tracker, lots
of works have been focused on addressing these two needs
in two separate parts. MBMD (Zhang et al. 2018) uses a
regression network to propose candidates and classify them
online. ATOM (Danelljan et al. 2019) combines a simple yet
effective online discriminative classifier and high-efficiency
optimization strategy with an IoUNet through overlap max-
imization, while the regression is achieved through a sparse
sampling strategy compared with the dense one via cross-
correlation in siamese networks.
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Figure 2: Overview of the network architecture for visual object tracking. It consists of siamese matching subnet M majorly
accounting for bounding box regression and online classification subnet C generating classification score. Dashed line denotes
reference scores passed from the classifier to the updater to select the short-term template zts.

3 Proposed Method

The visual object tracking task can be formulated as a learn-
ing problem whose the primary task is to find the optimal
target position by minimizing the following objective:

L(w) =
m∑
j=1

γjr(f(xj ;w), yj) +
∑
k

λk‖wk‖2, (1)

where r(f, w) computes the residual at each spatial location
and yj ∈ R

W×H is the annotated label. The impact of each
residual r is set by γj and regularization on wk is set by λk.

3.1 Siamese Matching Subnet

Before moving to our approach, we firstly review the
siamese network baseline. The siamese-network-based
tracking algorithms take (1) as a template-matching task by
formulating as a cross-correlation problem fR and learn a
embedding space φ(·) that computes where in the search re-
gion can best match the template, shown as

f cls
M (x, z) = φ(x) ∗ φ(z) + b ∗ , (2)

where one branch learns the feature representation of the tar-
get z, and the other learns the search area x.

While the brute-force scale search to obtain target regres-
sion freg

M (x, z;w) is insufficient in accuracy, siamese net-
work extensions explicitly complement themselves with a
Region Proposal Network (RPN) head or a mask head by
separately regressing the bounding box and the mask of the
target by encoding a subspace for box [·]reg−box and mask
[·]reg−mask. They each output the offsets for all prior an-
chors or a pixel-wise binary mask. These 3 variants of target
regression can be formulated as:

freg−fc
M (x, z) = φ(x) ∗ φ(ẑ), ẑ ∈ {zi|i = 1, 2, 3}

freg−box
M (x, z) = [φ(x)]reg−box ∗ [φ(z)]reg−box

freg−mask
M (x, z) = [φ(x)]reg−mask ∗ [φ(z)]reg−mask

(3)

which is seperately adopted by our chosen baseline SiamFC,
SiamRPN++, and SiamMask. ẑ is the scaled template with
maximal response value and freg−fc

M (x, ẑ) is a 1d vector,
directly giving target center at pixel with maximal score.
freg−box
M (x, z) is a 4d vector which stands for the offsets of

center point location and scale of the anchors to groudtruth.
freg−mask
M (x, z) is a (63× 63)d vector encoding the spatial

distribution of object mask.
The eventual predicted target state s is obtained using the

same strategy as in (Bertinetto et al. 2016a; Li et al. 2018;
2019a; Wang et al. 2019). Additionally, the siamese network
takes the residuals for classification commonly as cross-
entropy loss, bounding box regression as smooth L1 loss,
and mask regression as logistic regression loss.

3.2 Target-specific Features

The features provided by siamese matching subnet which
are trained offline and set fixed to ensure tracking stabil-
ity and efficiency. However, they’re not target-specific and
adaptive to the target’s domain. Inspired by discriminative
trackers, in the initialization stage (the first frame), we pro-
pose to harness target-specific features on top of siamese
features in a supervised manner by setting (1) as L2 loss
yielding,

rC(f, y1) = ‖fC − y1‖2, (4)

where the expected output fC is the classification scores for
each location belonging to the region of target and overall
representing a spatial distribution of labels. y1 is set to Gaus-
sian according to the given target bounding box.

In light of related researches (Li et al. 2019b; Yang et al.
2019), the fitting of confidence scores for all negative back-
ground pixels dominates online learning by directly using
the standard convolutions, as only a few convolutional filters
play an important role in constructing each feature pattern or
object category. The aforementioned data imbalance in both
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Attention moduleCompression module Filter module

Figure 3: Network architecture of proposed online module,
which consists of compression module to refine the fea-
ture map from backbone suitable for classification, attention
module resolving data imbalance and filter module. ϕs de-
notes spatial attention consisting of 2 FC layers after global
average pool (GAP) and ϕc channel-wise attention com-
posed of a softmax after channel averaging.

spatial and channel-wise fashion degrades the model’s dis-
criminative capabilities.

To accommodate this issue, we introduce a dual atten-
tion mechanism to fully extract target-specific features. As
shown in Figure 3, the compression module, and the atten-
tion module together form a target-specific feature extractor.
Note that these 2 modules (gray area) are only fine-tuned
with the first frame of given sequences and are kept fixed
during tracking to ensure stability. The harnessed target-
specific features are then leveraged to optimize the filter
module (white area) in subsequent frames.

3.3 Discriminative Learning via Filter Update

Extensive study (Zhu et al. 2018) has proved siamese track-
ers can be easily distracted by a similar object during track-
ing even with distractor-aware (target-specific) features. A
more profound reason for such inferiority is that there’s no
online weight update performed to suppress the treacherous
background noises.

As a solution, by changing y1 in (4) to yi centered at
predicted location, the update of filter module can be iter-
atively optimized as tracking proceeds. To further acceler-
ate optimization, reformulating (1) into the squared norm
of the residual vector L(w) = ‖r(w)‖2, where rj(w) =√
γj(f(xj) − yj) and rm+k(w) =

√
λkwk, induces a posi-

tive definite quadratic problem. Instead of using the standard
stochastic gradient descent (SGD) as the optimization strat-
egy, following (Danelljan et al. 2019), we used Conjugate
Gradient Descent better suited for solving quadratic prob-
lem in terms of convergence speed. This algorithm allows
an adaptive search direction p and learning rate α during
backpropogation in an iterative form.

The online classification score from the filter module is
resized using cubic interpolation to the same spatial size
as the siamese classification score and then fused with it
through weighted sum yielding an adaptive classification
score, which can be formulated as:

ḟC(x;w) = λfC(x;w) + (1− λ)f cls
M (x, z;w), (5)

where λ is the impact of online confidence score.

Algorithm 1: Tracking algorithm

Input : Video frames f1, ..., f t of length L;
Initial target state s1;

Output: Target state st in subsequent frames;

Setting train set T for online classification subnet C and
update with augmented search {x̃1} ;

Setting template z, zs for siamese matching subnet M ;
for t = 2 to L do

Obtain the search xt based on the previous
predicted target state st−1;

// Track
Obtain fC(x

t) = C(xt) via classification subnet;
Obtain f cls

M (xt), freg
M (xt) = R(xt) using (2);

Obtain current target state st based on ḟC(x
t) using

(5) and freg
M (xt);

if δc(s
t) ≥ ε then

T t ← T t−1 ∪ xt;
Train C with T t;

end

if (t mod T ) = 0 then

zs ← zts using (6);
end

end

3.4 Robust Learning via Template Update

A crucial section of siamese trackers is the selection of tem-
plates, as the variation of target appearances often renders
poor target regression and even target drift. We thus design
an extra template branch for siamese networks to reserve the
target information on the most recent frame. The template
for this branch is denoted as zs, representing the template in
short-term memory as opposed to retaining the first frame
for long-term memory.

It’s worth noting that the key for good performance rests
largely on the quality of identified templates, thus the se-
lection of possible template candidates need to be designed
reasonably. We use the maximal score f̂C(x;w) of the out-
put from online classifier as a yardstick to select high-quality
templates, which can be formulated by

zs = warp(argmax
x

f̂C(x;w) ∗ f̂C>τc
), (6)

where warp(·) is the cropping operation to feature size of the
template and τc is filtering threshold suppressing low-quality
template facing occlusion, motion blur, and distractors.

By shifting to the short-term template, z in (2) can be
modified to z′ which is decided with

z′ =

⎧⎨
⎩

zs, IoU(f̂reg
M (zs), f̂

reg
M (z1)) ≥ υr,

f̂ cls
M (zs)− f̂ cls

M (z1) ≥ υc,
z1, otherwise,

(7)

where f̂ cls
M denotes location with maximal score and f̂reg

M its
corresponding bounding box. This is to avoid bounding box
drift and inconsistency using the short-term template. The
full pipeline of our method is detailed in Algorithm 1.
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Figure 4: Visualized process of proposed template update strategy on sequence Basketball of OTB2015. The frame with the
highest score in the historical frames will be selected to update the short-term template zs.

4 Experiments

4.1 Implementation Details

Our method is implemented in Python with PyTorch, and
the complete code and video demo will be made available at
https://github.com/shallowtoil/DROL.
Architecture. Corresponding to the regression variants as
described in (3), we apply our method in three siamese base-
lines SiamFC, SiamRPN++, and SiamMask yielding DROL-
FC, DROL-RPN, DROL-Mask respectively. In DROL-FC,
we use the modified AlexNet as the backbone and up-
channel correlation. In DROL-RPN, we use the modified
AlexNet and layer 2, 3, 4 of ResNet50 and depth-wise cor-
relation. While in DROL-Mask, we use layer 2 of ResNet50
and depth-wise correlation. For the classification subnet, the
first layer is a 1 × 1 convolutional layer with ReLU activa-
tion, which reduces the feature dimensionality to 64. The last
layer employs a 4× 4 kernel with a single output channel.
Training phase. For offline training, since we directly use
the off-the-shelf siamese models, no extra offline training
stage for the whole framework is required. The training data
for our models thus is completely the same as those vari-
ants’ baselines. For online tuning, we use the region of size
255 × 255 of the first frame to pre-train the whole classi-
fier. Similar to (Danelljan et al. 2019), we also perform data
augmentation to the first frame of translation, rotation, and
blurring, yielding total 30 initial training samples.
Discriminative learning. We add the coming frames to
initial training samples with a maximal batch size of 250
by replacing the oldest one. Each sample is labeled with a
Gaussian function centered at predicted target location. We
discard the frames with the occurrence of distractors or tar-
get absence for filter update. The classifier is updated every
10 frame with a learning rate set to 0.01 and doubled once
neighboured distractors are detected. To fuse classification
scores, we set λ to 0.6 in DROL-FC and 0.8 in DROL-RPN
and DROL-Mask.
Robust learning. For template update, to strike a balance
between stability and dynamicity when tracking proceeds,
we update the short-term template every T = 5 frames,
while τc, υr, and υc are set to 0.75, 0.6, and 0.5 respectively.
The above hyper-parameters are set using VOT2018 as the
validation set and are further evaluated in Section 5.

Method Backbone OTB2015 VOT2018 FPSAUC Pr EAO A
ECO VGGNet 0.694 0.910 0.280 0.484 8

UPDT ResNet50 0.702 - 0.378 0.536 -
MDNet VGGNet 0.678 0.909 - - 1
ATOM ResNet18 0.669 0.882 0.401 0.590 30
DiMP ResNet50 0.684 0.894 0.440 0.597 40

SiamFC AlexNet 0.582 0.771 0.206 0.527 120
DROL-FC AlexNet 0.619 0.848 0.256 0.502 60
SiamRPN AlexNet 0.637 0.851 0.326 0.569 200

DaSiamRPN AlexNet 0.658 0.875 0.383 0.586 160

SiamRPN++ AlexNet 0.666 0.876 0.352 0.576 180
ResNet50 0.696 0.915 0.414 0.600 35

DROL-RPN
AlexNet 0.689 0.914 0.376 0.583 80

ResNet50 0.715 0.937 0.481 0.616 30
SiamMask ResNet50 - - 0.347 0.602 56

DROL-Mask ResNet50 - - 0.434 0.614 40
Table 1: state-of-the-art comparison on two popular track-
ing benchmarks OTB2015 and VOT2018 with their running
speed. AUC: area under curve; Pr: precisoin; EAO: expected
average overlap; A: accuracy; FPS: frame per second. The
performance is evaluated using the best results over all the
settings proposed in their original papers. The speed is tested
on Nvidia GTX 1080Ti GPU.

4.2 Comparison with state-of-the-art

We first showcase the consistence improvement of DROL
with each of its baseline on two popular benchmarks
OTB2015 (Wu, Lim, and Yang 2015) and VOT2018 (Kris-
tan et al. 2018), as shown in Table 1. We further verify our
best model DROL-RPN with backbone ResNet50 on other
four benchmarks: VOT2018-LT, UAV123 (Mueller, Smith,
and Ghanem 2016), TrackingNet (Muller et al. 2018), and
LaSOT (Fan et al. 2019).
OTB2015. We validate our proposed tracker on the
OTB2015 dataset, which consists of 100 videos. Though the
latest work SiamRPN++ unveiling the power of deep neu-
ral network, as shown in Figure 1, the best siamese trackers
still suffer the agonizing pain from distractors, full occlu-
sion and deformation in sequences like Baseketball, Liquor
and Skating1. Comparatively speaking, our approach can ro-
bustly discriminate the aforementioned challenges thus ob-
tain a desirable gain above the siamese baseline through on-
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Figure 5: state-of-the-art comparison on the OTB2015
dataset in terms of success rate (left) and precision (right).

line learning. Figure 5 and Table 1 show that DROL-RPN
achieves the top-ranked result in both AUC and Pr. Com-
pared with previous best tracker UPDT, we improve 1.3%
in overlap. While compared with ATOM and SiamRPN++,
our tracker achieves a performance gain of 4.6%, 1.9% in
overlap and 5.5%, 2.2% in precision respectively.
VOT2018. Compared with OTB2015, VOT2018 bench-
mark includes more challenging factors, thus may be
deemed as a more holistic testbed on both accuracy and ro-
bustness. We validate our proposed tracker on the VOT2018
dataset, which consists of 60 sequences.

As Figure 6(a) shown, we can observe that our tracker
DROL-RPN improves the ATOM and SiamRPN++ method
by an absolute gain of 8.0% and 6.6% respectively in terms
of EAO. Our approach outperformed the leading tracker
DiMP by 4.8% in overlap and 1.9% in accuracy.
VOT2018-LT. VOT2018 Long-term dataset provides a
challenging yardstick on robustness as the target may leave
the field of view or encounters full occlusions for a long pe-
riod. We report these metrics compared with the state-of-the-
art method in Figure 6(b) and Table 2. We directly adopt-
ing the long-term strategy the same as SiamRPN++ (Li et
al. 2019a) in our siamese subnet. When the target absence
is detected and the search region is enlarged, we don’t add
any search at these moments into training sets to train the
classifier. Compared with our baseline SiamRPN++, our ap-
proach achieves a maximum performance gain of 3.8% in
precision, 3.8% in recall, and 3.8% in F-score respectively.
Results show that even encountered huge deformation and
long-term target absence, the online classification subnet can
still perform desirably.
UAV123. We evaluate our proposed tracker on the UAV123
dataset. The dataset contains more than 110K frames and
a total of 123 video sequences, each with on average 915
frames captured from low-altitude UAVs. Table 3 showcases
the overlap and precision of the compared tracker. We com-
pare our trackers with previous state-of-the-arts and results
show that our approach outperforms the others by achiev-
ing an AUC score of 65.7%. Our tracker outperforms the
SiamRPN++ baseline by a large margin of 4.4% in AUC
score and 4.5% in precision.
TrackingNet. We validate our proposed tracker on the
TrackingNet test dataset, which provides more than 30K
videos with 14 million dense bounding box annotations. As
illustrated in Table 4, our approach DROL-RPN outperforms

(a) Baseline (b) Long-term
Figure 6: state-of-the-art comparison on VOT2018 Baseline
(left) and Long-term (right) dataset. In right one, the max-
imal and minimal value for each attribute is shown in pair,
and the rest are permuted propotionally. In left one, the av-
erage precision-recall curves are shown above, each with its
maximal F-score pointed out at corresponding point.

MMLT DaSiam-LT MBMD SiamRPN++ DROL-RPN

Pr↑ 0.574 0.627 0.642 0.649 0.687
Re↑ 0.521 0.588 0.583 0.612 0.650

Table 2: state-of-the-art comparison on the VOT2018-LT
dataset in terms precision (Pr) and Recall (Re).

ECO SiamRPN SiamRPN++ ATOM DiMP DROL-RPN

AUC 0.525 0.527 0.613 0.631 0.643 0.652
Pr 0.741 0.748 0.807 0.843 0.851 0.855

Table 3: state-of-the-art comparison on the UAV123 dataset
in terms of success (AUC), and precision (Pr).

MDNet ATOM SPM SiamRPN++ DiMP DROL-RPN

AUC 0.614 0.703 0.712 0.733 0.740 0.746
Pr 0.555 0.648 0.661 0.694 0.687 0.708
NPr 0.710 0.771 0.778 0.800 0.801 0.817

Table 4: state-of-the-art comparison on the TrackingNet test
dataset in terms of success (AUC), precision (Pr) and nor-
malized precision (NPr).

Figure 7: state-of-the-art comparison on LaSOT dataset in
terms of success rate (left) and normalized precision (right).

all previous methods and improves the performance of state-
of-the-art by 0.6% in overlap, 1.4% in precision, and 1.6%
in normalized precision.
LaSOT. We validate our proposed tracker on the LaSOT
dataset to further validate its discriminative and genera-
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tive capability. Figure 7 reports the overall performance of
DROL-RPN on LaSOT testing set. Specifically, our tracker
achieves an AUC of 53.7% and an NPr of 62.4%, which out-
performed ATOM and SiamRPN++ without bells and whis-
tles.

4.3 Ablation Study

In this part, we perform ablation analysis to demonstrate the
impact of each component in groups and illustrate the su-
periority of our method (only DROL-RPN with backbone
ResNet50 is showcased for brevity). Since we search the
hyper-parameters using VOT2018 (validation set), we report
the performance with LaSOT and TrackingNet (test set).
Classification score fusion (G1). As data reveals, there’s
a synchronous need of scores from two subnets as two ex-
tremes with λ being 0 or 1 induce poor results while the
optimal coefficient falls around 0.8. Theoretically, it can be
partly explained by that, though discriminative enough, on-
line classification score only locates a rough location, while
more fine-grained details distinguishing the quality of dense
bounding boxes around the peak region need to be fleshed
out by the siamese classification score.
Target-specific feature learning (G2). With the best set-
tings in G1, we further delve into the investigation of the
proposed attention mechanism. As shown in Table 5, the ex-
istence of the attention module further improves trackers’
performance. Qualitatively, in the comparison between Fig-
ure 8(b) and Figure 8(c), the online classification score is
more discriminative to deal with distractors and occlusions.
The attention module uplifts this discriminative capability
given the fact the peak on ground-truth target is more fo-
cused as shown in Figure 8(c) and Figure 8(d).
Template update interval (G3). From Table 5, compared
with directly updating the short-term sample once it obtains
a qualified classification score by setting T = 1, we find
that properly prolonging the update interval and selecting
one with the highest classification confidence after sorting
allows us a more trust-worthy template. To demonstrate the
validity of the update strategy, we provide IoU curve of 2
sequences. As Figure 9(a) shown, short-term template im-
proves the performance especially when putative box over-
laps the ground truth not well, and Figure 9(b) shows such
strategy can even avoid target drift in the long run.
Validity of update strategy (G4). To evaluate the effective-
ness of our update strategy, G4 is conducted by only using
the online classification score to guide template update with-
out fusing it with siamese classification score. Compared
with the baseline (see the first column in G1), the validity
of updater can be more clearly observed.

5 Conclusion

In this work, we propose an online module with a dual atten-
tion mechanism for siamese visual tracking to extract video-
specific features under a quadratic problem. The discrimina-
tive learning is performed by updating the filter module dur-
ing tracking, which enhances siamese network’s discrimina-
tive ability to deal with distractors. And the robust learning
is achieved by an extra short-term template branch updating

group λ pipeline T
LaSOT TrackingNet

AUC NPr AUC NPr

G1

0.0

Cmp −

0.508 0.586 0.733 0.800
0.2 0.514 0.596 0.737 0.808
0.4 0.521 0.605 0.738 0.807
0.6 0.528 0.615 0.739 0.810
0.8 0.532 0.619 0.743 0.814
0.9 0.525 0.612 0.740 0.811
1.0 0.391 0.542 0.576 0.749

G2 0.8
Att-Cmp − 0.528 0.610 0.741 0.812
Cmp-Att 0.534 0.621 0.745 0.817

G3 0.8 Cmp-Att
1 0.526 0.614 0.744 0.815
5 0.537 0.624 0.746 0.817
10 0.533 0.620 0.745 0.817

G4 0.0 Cmp 5 0.513 0.592 0.738 0.805

Table 5: Ablation study of different modules and setups. λ is
fusion weight of classification scores from 2 subnets. Cmp,
Att represent compresson module and attention module re-
spectively. T denotes the update interval for short-term, and
− means no update is applied.

(a) Search (b) w/o C (c) w/o Att (d) w/ Att

Figure 8: Visualization on final classification output after the
Classification subnet C and attention module is used on se-
quence Bolt of OTB2015.

Figure 9: IoU curve and expected average IoU on sequence
MotorRolling (left) and Coke (right) of OTB2015.

dynamically based on scores from the classifier to handle
huge deformation. Without bells and whistles, our proposed
online module can easily work with any siamese baselines
without degenerating its speed too much. Extensive experi-
ments on 6 major benchmarks are performed to demonstrate
the validity and superiority of our approach.
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