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Abstract

Machine learning models typically suffer from the domain
shift problem when trained on a source dataset and evaluated
on a target dataset of different distribution. To overcome this
problem, domain generalisation (DG) methods aim to lever-
age data from multiple source domains so that a trained model
can generalise to unseen domains. In this paper, we propose a
novel DG approach based on Deep Domain-Adversarial Im-
age Generation (DDAIG). Specifically, DDAIG consists of
three components, namely a label classifier, a domain classi-
fier and a domain transformation network (DoTNet). The goal
for DoTNet is to map the source training data to unseen do-
mains. This is achieved by having a learning objective formu-
lated to ensure that the generated data can be correctly classi-
fied by the label classifier while fooling the domain classifier.
By augmenting the source training data with the generated
unseen domain data, we can make the label classifier more
robust to unknown domain changes. Extensive experiments
on four DG datasets demonstrate the effectiveness of our ap-
proach.

Introduction

Most existing deep learning models assume that the train-
ing (source) and testing (target) data come from the same
domain/dataset and thus follow the same distribution. How-
ever, in practice this assumption is often invalid. For exam-
ple, a module for recognising pedestrians and traffic signs
in an autonomous driving car may be deployed anywhere
in the world under any weather condition. Considering each
city and weather combination as a domain, it is impossible
to collect training data of every domain for model train-
ing. Other domain changes can correspond to the change
of image style/modality such as those shown in Figure 1
where a classifier trained on images of cartoon, photo and
sketch is applied to art images. Unfortunately, it is well
known that existing deep learning models are sensitive to
domain changes/shifts (Li et al. 2017; Shankar et al. 2018;
Balaji, Sankaranarayanan, and Chellappa 2018) in that they
tend to overfit the source domains, resulting in poor gener-
alisation.

A straightforward way to deal with the domain gap be-
tween source and target domains is to acquire labelled tar-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

�������	
�����
����������
�

���� �������
���
�������	�
��� �������	�
��

�


������
���������


�������
���������


���������������

�������

Figure 1: Given multiple source domains, e.g. Cartoon,
Photo and Sketch, we learn a domain transformation net-
work (DoTNet) to transform images to unseen domains,
which maintain the class labels but change domain-related
properties. Both original and transformed images are used
to train a label classifier, which is applied to an unseen tar-
get domain, e.g. Art.

get data and perform supervised model fine-tuning. How-
ever, large-scale data collection and annotation for every
new target domain is prohibitively expensive and time-
consuming, which make the fine-tuning strategy infeasible.
A more economical solution is to use unsupervised domain
adaptation (UDA) methods (Long et al. 2015; Ganin and
Lempitsky 2015; Hoffman et al. 2018; Gong et al. 2019;
Chen et al. 2019), which only use unlabelled target data.
Although the data annotation step is avoided, UDA still re-
quires a data collection step followed by a model adaptation
step for each new domain, which hinders its applicability.

As a result, domain generalisation (DG) (Muandet, Bal-
duzzi, and Scholkopf 2013) has received an increasing in-
terest lately. The goal of DG is to train a model using
data from multiple source domains and deploy the model
to an arbitrary unseen target domain without any adaption.
Many existing DG methods adopt a core idea from the do-
main adaption (DA) research, which is to align source do-
main distributions at feature-level, assuming that a source
domain invariant model can be learned (Li et al. 2018b;
2018c). However, without access to any target domain data,
the model learned with domain alignment can still overfit the
source domains. Alternatively, meta learning based methods
have been recently employed to address DG where held-
out source domains are used to simulate unseen target do-
mains (Li et al. 2018a; Balaji, Sankaranarayanan, and Chel-
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lappa 2018). However, meta learning models still focus on
narrowing domain gaps among source domains and thus of-
fer no guarantee for generalisation to unseen domains.

In this paper, we tackle the DG problem by synthesis-
ing data from unseen domains. We assume that augment-
ing the original training data of source domains with syn-
thetic data from unseen domains could make the task model
intrinsically more domain-generalisable (Tobin et al. 2017;
Yue et al. 2019). To this end, a novel framework based
on Deep Domain-Adversarial Image Generation (DDAIG)
is introduced, which is illustrated in Figure 1. There are
three components in DDAIG, which are label classifier, do-
main classifier and domain transformation network (DoT-
Net). Each component is a deep neural network. The la-
bel classifier and domain classifier are trained to predict the
class labels and domain labels of the input data respectively.
The functionality of DoTNet is to transform the input data in
such a way that they can be recognised by the label classifier
but fool the domain classifier. In particular, the transforma-
tion produced by DoTNet is designed to be perturbations
with the same shape as the input. Therefore, the new data is
generated by combining the perturbations with the original
input. By doing so, we can efficiently generate additional
training data that covers the (otherwise sparsely sampled)
manifold of domains, which in turn allows a more domain-
agnostic label classifier to be learned. We further show that
DoTNet can be easily extended to incorporate other types of
transformations, e.g., geometric transformations by adding
spatial transformer network (STN) (Jaderberg et al. 2015).
In practice, the three networks are trained jointly in an end-
to-end manner. Unlike the domain alignment and meta learn-
ing methods, our DDAIG works directly at pixel-level, thus
largely improving the interpretability of the model.

To evaluate DDAIG, we conduct extensive experiments
on three DG benchmark datasets, namely PACS (Li et al.
2017), Office-Home (Venkateswara et al. 2017) and digit
recognition among MNIST (LeCun et al. 1998), MNIST-
M (Ganin and Lempitsky 2015), SVHN (Netzer et al. 2011)
and SYN (Ganin and Lempitsky 2015). These datasets
cover a variety of visual recognition tasks and contain
different types of domain variation (see Figure 4). We
demonstrate that DDAIG outperforms current state-of-the-
art DG methods on all datasets. We also verify the ef-
fectiveness of DDAIG on a heterogeneous DG task, i.e.,
person re-identification where the source and target do-
mains have different label spaces. Finally, we visualise the
generated images and feature embeddings to provide in-
sights on why our approach works. The code is available
at https://github.com/KaiyangZhou/DG-research-pytorch.

Related Work

Early kernel alignment (Muandet, Balduzzi, and Scholkopf
2013; Gan, Yang, and Gong 2016) and examplar SVM
based (Xu et al. 2014; Niu, Li, and Xu 2015) DG models
have been followed mainly by deep neural network based
ones. The current deep DG studies can be generally divided
into three groups: (i) domain alignment, (ii) meta learning
and (iii) data augmentation.

Domain alignment has been extensively studied for domain
adaptation (DA) problems, where some labelled or unla-
belled data are accessible during training. These DA meth-
ods aim to either (i) minimise the distance (e.g., maximum
mean discrepancy (MMD) (Pan, Kwok, and Yang 2008)) be-
tween source and target distributions, or (ii) fool a domain
classifier that tries to discriminate different domains (Ganin
and Lempitsky 2015). As shown in (Motiian et al. 2017),
domain alignment based DA models can be easily modified
for DG by iteratively training on every pair of source do-
mains. Among the recent alignment based deep DG models,
(Li et al. 2018b) proposed to minimise MMD of all possible
pairs within source domains, meanwhile an adversarial au-
toencoder was used to ensure that the learned features follow
the Laplace distribution. (Li et al. 2018c) considered align-
ing the conditional distributions as well as the marginal ones
via adversarial training. Though domain alignment is a sen-
sible strategy for DA, the potential risk of applying it to DG
is that the model might overfit all seen domains yet still gen-
eralise poorly to the unseen domains.

Meta learning in computer vision has been widely exploited
for few-shot learning (Finn, Abbeel, and Levine 2017). Re-
cently, meta learning has been adapted to address the DG
setting (Li et al. 2018a; Balaji, Sankaranarayanan, and Chel-
lappa 2018). Since the final objective of a DG model is to
generalise to unseen domains, the key idea of using meta
learning is to simulate domain shift during training to pre-
pare models for domain shift during testing. Specifically,
source domains are separated into two disjoint sets, namely
meta-train and meta-validation, and a model is optimised
on meta-train so as to boost the performance on meta-
validation. One early work in this direction is MLDG (Li
et al. 2018a), which is based on MAML (Finn, Abbeel,
and Levine 2017). Recently, MetaReg (Balaji, Sankara-
narayanan, and Chellappa 2018) proposed to learn a cus-
tomised regulariser to improve DG. A meta learning based
DG approach is appealing as it reduces the efforts in man-
ual design. However, as a black-box approach it is hard to
diagnose exactly how it improves the DG performance. Im-
portantly, using only the original source domain data, it still
has the risk of overfitting source domains.

Data augmentation is a common practice to train deep
neural networks, e.g. flipping and rotation. However, con-
ventional data augmentation methods only deal with sim-
ple geometric changes within the same dataset (Volpi and
Murino 2019). When the domain gap is large such as
those illustrated in Figure 4 containing image style varia-
tions, learning-based augmentation strategies are required.
Very recently, inspired by adversarial attacks (Goodfellow,
Shlens, and Szegedy 2015), (Shankar et al. 2018) introduced
CrossGrad to generate a new sample x̃ by adding to the orig-
inal sample its gradient from a domain classifier h(·), i.e.,
x̃← x+ ε∂h(x)∂x . A similar approach with an additional reg-
ularisation term in h(·) was proposed in (Volpi et al. 2018)
for the single source domain case. The main drawback of
these methods is their direct and simple dependence on the
gradient, which only makes simple perturbations that cannot
account for semantic changes like style or font shift (see Fig-
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Figure 2: Overview of our framework. A domain transformation network Tθ is trained by minimising the label classification
loss J̃L while maximising the domain classification loss J̃D on the transformed data x̃. The label classifier fφ is learned by
minimising the label classification loss given both original and transformed data. The domain classifier hϕ is trained to classify
each instance into one of source domains. The red dashed arrows represent the gradient flow.

ure 9). Moreover, being based on adversarial attack models
that are deliberately designed to make imperceptible mod-
ifications to an image, the perturbations are too subtle to
be representative of real-world domain shift. In contrast, by
learning a full CNN model (i.e. DoTNet) to generate the
‘shift’, we can produce more sophisticated and more overt
perturbations to synthesise new data and the results are eas-
ier to interpret. We demonstrate clear advantages of our ap-
proach over CrossGrad both quantitatively and qualitatively.
We also show that our transformation CNN can be easily
extended to incorporate geometric transformations such as
rotation (see Figure 5), which is impossible with gradient-
based perturbation methods.

Methodology

Our idea to tackle domain generalisation (DG) is based
on Deep Domain-Adversarial Image Generation (DDAIG),
which aims to train a domain transformation network (DoT-
Net) to synthesise data from unseen domains given some
input and use both original and synthetic data to learn a
domain-invariant classifier. To learn DoTNet, we simultane-
ously train a label classifier and a domain classifier, which
are tasked to recognise the class labels and domains of the
input data, respectively. The learning objective for DoTNet
is to transform the input data in such a way that the synthetic
data keeps the same labels as the input but fools the domain
classifier. As the synthetic data has labels, it can be com-
bined with the original data to train the label classifier using
supervised learning. As a result, the label classifier can learn
representations that are more invariant to domain shift than
that trained with the original data only1. An overview of our
DDAIG framework is illustrated in Figure 2. The learning
procedure for each component is detailed below.
Domain transformation network. Let Tθ be the DoTNet
parameterised by θ, fφ the label classifier parameterised by
φ, hϕ the domain classifier parameterised by ϕ, y the class
label of input x and d the domain label, the objective func-
tion for Tθ is

min
θ

J̃L(fφ(Tθ(x)), y)− J̃D(hϕ(Tθ(x)), d), (1)

1To clarify, a classifier means the combination of a feature ex-
traction backbone and a softmax classification layer, unless speci-
fied otherwise.

where J̃L and J̃D are cross-entropy losses for label and do-
main classification, respectively. We use differentiable neu-
ral networks to construct Tθ, fφ and hϕ, thus the gradients
can be back-propagated through fφ and hϕ and all the way to
Tθ. The specific architecture design of Tθ will be discussed
later.
Label classifier. The label classifier fφ is fed with both orig-
inal and synthetic data. The loss function is

min
φ

(1− α)JL(fφ(x), y) + αJ̃L(fφ(Tθ(x)), y), (2)

where α is a balance weight, which is fixed to 0.5.
Domain classifier. The domain classifier hϕ is required to
capture domain-discriminative features, thus its learning ob-
jective is to minimise the domain classification loss w.r.t ϕ,

min
ϕ

JD(hϕ(x), d). (3)

Note that our domain classifier is analogous to the dis-
criminator in the classic GAN framework (Goodfellow et
al. 2014) but differs in that we do multi-class classifi-
cation (Odena, Olah, and Shlens 2017) (on source do-
mains2) while GAN’s discriminator performs binary clas-
sification (real or fake). This difference ensures that max-
imising the domain classification loss does not simply force
the synthetic data to fall into another single domain dis-
tribution. Suppose there are three source domains, given
a synthetic instance from the first domain we maximise
− log ez1

ez1+ez2+ez3 (zi denotes logit), which essentially min-
imises z1 whilst giving equal gradients to maximise z2 and
z3 simultaneously. As such, neither one of the gradients to
z2 and z3 is dominant.
Architecture design. For the label classifier, any network
architecture suitable for the given recognition problem can
be adopted. Throughout this paper, the domain and label
classifiers share the same architecture. To construct DoT-
Net, we use fully convolutional network (FCN) (Long, Shel-
hamer, and Darrell 2015). Instead of directly generating
data, which is often difficult because the data can be high-
dimensional such as RGB image, we use FCN to generate
perturbations, which are added to the input, resulting in

x̃ = x+ λTθ(x), (4)
2In DG tasks, we often assume that we have access to multiple

source domains.
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Figure 3: Architecture of domain transformation network.

where λ is a positive weight typically set between 0.1 and
0.7. This is inspired by the residual feature learning (He et
al. 2016) but the residual connection links the input directly
to the output. This design is also related to adversarial at-
tack methods (Szegedy et al. 2014; Goodfellow, Shlens, and
Szegedy 2015). However, different from adversarial pertur-
bations, which are usually imperceptible, our DoTNet is al-
lowed to produce visually perceptible perturbations, which
can better represent the real-world domain shift (see Fig-
ure 8). Note that (4) will replace the Tθ(x) in (1) and (2).

More concretely, as shown in Figure 3, the architecture
of DoTNet starts with a 3 × 3 conv layer, followed by n
2-conv residual blocks (He et al. 2016) to extract mid-level
features. All residual blocks use 3× 3 kernels. The output is
branched into an identity layer and a global average-pooling
layer. The latter produces a context vector encapsulating the
global information (Liu, Rabinovich, and Berg 2016). The
context vector is expanded spatially and then concatenated
back to the main stream, which is further processed by a 1×1
conv layer for feature fusion. Finally, a 1 × 1 conv layer is
used to generate the perturbation. All layers use ReLU as
the non-linearity function except the last one which uses the
Tanh function. Similar to (Zhu et al. 2017), we insert in-
stance normalisation layer (Ulyanov, Vedaldi, and Lempit-
sky 2017) after every conv layer excluding the last one. The
stride is set to 1 for all layers. All 3 × 3 kernels use the re-
flection padding of size 1.

In this paper, we mainly investigate this perturbation de-
sign for T . However, our framework is generic and does not
impose any restriction on the architecture (as long as it is
differentiable). The design of T thus mostly depends on the
specific tasks at hand. For instance, T can take the form of
STN (Jaderberg et al. 2015) to deal with geometric transfor-
mations; or even a combination of STN and the perturbation
architecture in Figure 3.

The full algorithm of DDAIG is presented in Algorithm 1.
Note that the warm-up scheme mainly aims to make the data
generated by DoTNet more reliable before being fed to the
classifier.

Experiments

Datasets and Settings

We first evaluate our approach DDAIG on three conven-
tional DG benchmark datasets, which cover a variety of
recognition problems. (1) We conduct leave-one-domain-out

Algorithm 1 Deep Domain-Adversarial Image Generation
1: Input: source domains S, label classifier fφ, domain classifier

hϕ, DoTNet Tθ , learning rate η, hyperparameter λ, loss bal-
ance weight α, maximum iteration K, warmup iteration Km.

2: Output: label classifier fφ.
3: for k = 1 to K do
4: (x, y, d) ∼ S // Randomly sample a minibatch
5: x̃ = x+ λTθ(x) // Transform the minibatch
6: θ = θ − η∇θ(J̃L − J̃D) // Update DoTNet
7: if k < Km then
8: φ = φ− η∇φJL // Update label classifier
9: else

10: x̃ = x+ λTθ(x) // Transform the minibatch using
updated DoTNet

11: φ = φ− η∇φ((1− α)JL + αJ̃L) // Update label
classifier using both original and synthetic data

12: end if
13: ϕ = ϕ− η∇ϕJD // Update domain classifier
14: end for
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Figure 4: Example images from Digits-DG (1st row), PACS
(2nd row) and Office-Home (3rd row) show that large do-
main gaps exist, challenging domain generalisation.

digit recognition on MNIST (LeCun et al. 1998), MNIST-
M (Ganin and Lempitsky 2015), SVHN (Netzer et al. 2011)
and SYN (Ganin and Lempitsky 2015), which differ drasti-
cally in font style and background (see Figure 4 1st row).
MNIST contains handwritten digit images. MNIST-M is a
variant of MNIST by blending the images with random
colour patches. SVHN contains street view house number
images. SYN consists of synthetic digit images with vary-
ing fonts, backgrounds and stroke colours. This benchmark
is called Digits-DG hereafter. We randomly select 600 im-
ages per class from each dataset and split the data into 80%
for training and 20% for validation. All models are trained
on the training data of three domains and evaluated on all
images of the remaining domain. (2) PACS (Li et al. 2017)
consists of four domains, namely Photo (1,670 images), Art
Painting (2,048 images), Cartoon (2,344 images) and Sketch
(3,929 images). Each domain contains seven categories. Fol-
lowing the prior work (Li et al. 2017; Carlucci et al. 2019;
Li et al. 2019a), we choose one domain as test domain
and use the remaining three domains as source domains.
To fairly compare with published methods, our models are
trained using data only from the training split. The domain
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Table 1: Leave-one-domain-out results on Digits-DG dataset
(with 95% confidence intervals).

Method MNIST MNIST-M SVHN SYN Avg.
Vanilla 95.8±.3 58.8±.5 61.7±.5 78.6±.6 73.7
CCSA 95.2±.2 58.2±.6 65.5±.2 79.1±.8 74.5
MMD-AAE 96.5±.1 58.4±.1 65.0±.1 78.4±.2 74.6
CrossGrad 96.7±.1 61.1±.5 65.3±.5 80.2±.2 75.8
DDAIG (ours) 96.6±.2 64.1±.4 68.6±.6 81.0±.5 77.6

shift mainly corresponds to image style changes as depicted
in Figure 4 2nd row. (3) Office-Home (Venkateswara et al.
2017), originally introduced for domain adaptation, is get-
ting popular in the DG community (D’Innocente and Caputo
2018; Carlucci et al. 2019). It contains four domains, which
are Artistic, Clipart, Product and Real World. Each domain
has 65 classes, which are related to office and home objects.
There are around 15,500 images in total. The domain varia-
tions mainly take place in background, viewpoint and image
style. See Figure 4 (the third row) for example images.

For performance measure, we report top-1 classification
accuracy (%) averaged over five runs and 95% confidence
intervals. We compare our DDAIG with state-of-the-art DG
methods with reported results on these datasets or codes.
These methods include CCSA (Motiian et al. 2017), MMD-
AAE (Li et al. 2018b), CrossGrad (Shankar et al. 2018),
MetaReg (Balaji, Sankaranarayanan, and Chellappa 2018),
D-SAM (D’Innocente and Caputo 2018), JiGen (Carlucci et
al. 2019) and Epi-FCR (Li et al. 2019a). We also include a
strong baseline called Vanilla, which directly combines data
from all source domains for model training without any DG-
targeting tricks.

Evaluation on Digits-DG

Implementation. Images are resized to 32 × 32 and con-
verted to RGB by replicating channels. The classification
network is constructed by four 3 × 3 conv layers (64 ker-
nels), each followed by ReLU and 2×2 max-pooling. A soft-
max classification layer is attached on the top, which takes
the flattened vector as input. The networks are trained from
scratch using SGD, initial learning rate of 0.05, batch size
of 128 and weight decay of 5e-4 for 50 epochs. The learning
rate is decayed by 0.1 every 20 epochs.
Results. Table 1 shows that our DDAIG achieves the best
overall performance (Avg.), outperforming the second best
CrossGrad by a clear margin of 1.8% and all domain align-
ment methods (CCSA & MMD-AAE) by more than 3%.
On the most difficult target domains, namely MNIST-M and
SVHN which contain complex backgrounds and cluttered
digits respectively, DDAIG obtains large margins over the
competitors, notably with +5.3% and +6.9% improvements
compared with the Vanilla model. This demonstrates the ef-
fectiveness of the generated unseen domain data, which es-
sentially increases the diversity of source domains.

Evaluation on PACS

Implementation. Images are resized to 224 × 224. Fol-
lowing (Carlucci et al. 2019; Li et al. 2019a), we use the
ImageNet-pretrained ResNet18 (He et al. 2016) as the clas-

Table 2: Leave-one-domain-out results on PACS dataset
(with 95% confidence intervals). †: results are reported in
their papers. ‡: use train+val for training.

Method Art Cartoon Photo Sketch Avg.
MetaReg†‡ 83.7±.1 77.2±.3 95.5±.2 70.3±.3 81.7
Vanilla 77.0±.6 75.9±.6 96.0±.1 69.2±.6 79.5
CCSA 80.5±.6 76.9±.6 93.6±.4 66.8±.9 79.4
MMD-AAE 75.2±.3 72.7±.3 96.0±.1 64.2±.2 77.0
CrossGrad 79.8±.8 76.8±.8 96.0±.2 70.2±.4 80.7
D-SAM† 77.3 72.4 95.3 77.8 80.7
JiGen† 79.4 75.3 96.0 71.6 80.5
Epi-FCR† 82.1 77.0 93.9 73.0 81.5
DDAIG (ours)) 84.2±.3 78.1±.6 95.3±.4 74.7±.8 83.1

Table 3: Leave-one-domain-out results on Office-Home
dataset (with 95% confidence intervals). †: results are re-
ported in their papers.

Method Artistic Clipart Product Real World Avg.
Vanilla 58.9±.3 49.4±.1 74.3±.1 76.2±.2 64.7
CCSA 59.9±.3 49.9±.4 74.1±.2 75.7±.2 64.9
MMD-AAE 56.5±.4 47.3±.3 72.1±.3 74.8±.2 62.7
CrossGrad 58.4±.7 49.4±.4 73.9±.2 75.8±.1 64.4
D-SAM† 58.0 44.4 69.2 71.5 60.8
JiGen† 53.0 47.5 71.5 72.8 61.2
DDAIG (ours)) 59.2±.1 52.3±.3 74.6±.3 76.0±.1 65.5

sification network. The networks are trained with SGD, ini-
tial learning rate of 5e-4, batch size of 16 and weight decay
of 5e-4 for 25 epochs. The learning rate is decayed by 0.1 at
the 20th epoch. For data augmentation, we use random crop
on images rescaled by a factor of 1.25 and random horizon-
tal flip. During the first three epochs, the label classifier is
only fed with real data.
Results. We summarise our findings from Table 2 as fol-
lows. (1) Our DDAIG is clearly the best method, beating the
second best methods MetaReg and Epi-FCR by around 1.5%
(on Avg.). It is noted that MetaReg benefits from additional
training data from the validation split. The recently pro-
posed Epi-FCR uses episodic training to improve the Vanilla
model. DDAIG outperforms Epi-FCR on all domains by a
clear margin, suggesting that data augmentation with un-
seen domain data is much more effective. (2) Again, DDAIG
achieves large improvements (3.7%+ on Avg.) against all
domain alignment methods. (3) Compared with CrossGrad,
DDAIG yields large improvements on all domains except
Photo. In particular, the margins are 4.4% on Art, 1.3% on
Cartoon and 4.5% on Sketch. This justifies that learning a
dedicated CNN for perturbation generation is much more
useful than gradient-based perturbations.

Evaluation on Office-Home

Implementation. Following (D’Innocente and Caputo
2018; Carlucci et al. 2019), we randomly split the data into
90% for training and 10% for validation. The commonly
used leave-one-domain-out protocol is adopted for evalua-
tion. For fair comparison with published methods, we only
use the training split of source domains for model training.
Other implementation details for network training are the
same as those for PACS.
Results. From Table 3, we observe that the Vanilla model
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Table 4: Results on cross-domain person re-ID datasets.

Method Market1501→Duke Duke→Market1501
R1 R5 R10 mAP R1 R5 R10 mAP

Vanilla 48.5 62.3 67.4 26.7 57.7 73.7 80.0 26.1
CrossGrad 48.5 63.5 69.5 27.1 56.7 73.5 79.5 26.3
DDAIG (ours) 50.6 65.2 70.3 28.6 60.9 77.1 83.2 29.0

Table 5: Results on Digits-DG using different λ’s.
Method MNIST MNIST-M SVHN SYN Avg.
Baseline 95.8 58.8 61.7 78.6 73.7
DDAIG λ = 0.1 96.3 62.3 68.6 79.8 76.8
DDAIG λ = 0.3 96.4 61.9 68.0 81.0 76.8
DDAIG λ = 0.5 96.6 61.2 68.0 80.5 76.6
DDAIG λ = 0.7 96.4 64.1 65.9 80.8 76.8

achieves very strong performance, largely outperforming
most DG methods including MMD-AAE, D-SAM and Ji-
Gen. This makes sense because the domain gap is much
smaller compared to that in PACS, especially among Artis-
tic, Product and Real World, where the variations mainly
take place in background and viewpoint. Among all meth-
ods, only DDAIG achieves a clear margin against Vanilla.
In particular, it is worth noting that DDAIG achieves huge
improvement (+2.9%) on Clipart, which contains the largest
domain gap as opposed to the source domains (see Figure 4).
Therefore, the results strongly demonstrate the versatility of
our DDAIG framework. Compared with CrossGrad, DDAIG
achieves better performance on all domains.

Evaluation on Heterogeneous DG

In this section, we evaluate our approach on the cross-dataset
person re-identification (re-ID) task, which is essentially a
heterogeneous DG problem due to disjoint label spaces be-
tween training and test identities (Li et al. 2019b). Person
re-ID aims to match people across non-overlapping camera
views. In this task, we treat each camera view as a domain.
Datasets. We use two commonly used re-ID datasets,
namely Market1501 (Zheng et al. 2015) and DukeMTMC-
reID (Duke) (Ristani et al. 2016; Zheng, Zheng, and Yang
2017). Market1501 contains 32,668 images of 1,501 identi-
ties, which are captured by 6 cameras. Duke contains 36,411
images of 1,812 identities, which are captured by 8 cameras.
Each dataset is split into training set, query set and gallery
set based on the standard protocols (Zheng et al. 2015;
Zheng, Zheng, and Yang 2017). For evaluation, we train
models using one dataset and perform test on the other. Cu-
mulative Matching Characteristics (CMC) ranks and mean
Average Precision (mAP) are used as the performance mea-
sure.
Implementation. Images are resized to 256×128. We adopt
the state-of-the-art re-ID model OSNet (Zhou et al. 2019b;
2019a) as the CNN backbone. Following (Zhou et al. 2019b;
2019a), we train the re-ID model using the standard classi-
fication pipeline where each person identity is regarded as
a class. Therefore, the entire training algorithm remains the
same as before. At test time, the features extracted from the
re-ID model are used to compute Euclidean distance for im-
age matching. The code is based on Torchreid (Zhou and
Xiang 2019).

Table 6: Accuracy on rotated MNIST when MNIST-M,
SVHN and SYN are used as the source domains.

Method 0◦ 20◦ 30◦ 40◦ 50◦

CrossGrad 96.7 82.7 65.1 45.6 30.1
DDAIG w/o STN 96.6 87.7 72.1 54.1 40.3
DDAIG w/ STN 96.4 87.7 76.7 61.1 46.6

TSTN(x) TP(TSTN(x))x TSTN(x) TP(TSTN(x))x

Figure 5: Transformations produced by an extended DoT-
Net. STN: Spatial Transformer Network. P: Perturbation.

Results. We compare our method with CrossGrad and the
strong vanilla model. The overall results are shown in Ta-
ble 4. It is clear that only our DDAIG consistently im-
proves upon the vanilla baseline on both settings, with
noticeable margins. It is widely acknowledged that cross-
domain re-ID is a challenging problem (Zhong et al. 2019;
Zhou et al. 2019a). Without using target data, it is difficult
to gain improvement over the vanilla model. Therefore, the
results strongly demonstrate the versatility of our DDAIG: It
is not only effective for the conventional DG tasks but also
useful to heterogeneous DG problems such as person re-ID.

Further Analysis

Impact of λ. Table 5 shows the results of varying λ in Eq. 4
from 0.1 to 0.7. When the target domain is less dissimilar
to the source domains such as MNIST and SYN, the result
does not vary too much with different λs. However, when the
target domain has a larger domain gap than the sources, e.g.
MNIST-M and SVHN, our model shows a moderate sensi-
tivity to λ. It is important to note that all results are better
than the Vanilla baseline.
Dealing with geometric transformations. Image perturba-
tion is less useful in simulating geometric transformations
such as rotation. To overcome this limitation, we extend the
perturbation CNN (Figure 3) by inserting STN (Jaderberg
et al. 2015) before it. Therefore, the new DoTNet first geo-
metrically transforms the input and then adds perturbation.
Note that such a transformation is impossible with gradient-
based perturbation methods (Shankar et al. 2018). We test
this design on Digits-DG where the target domain is rotated
MNIST and the source domains are MNIST-M, SVHN and
SYN. Note that the ‘rotation’ shift is never observed among
the sources. The results are shown in Table 6. First of all,
we observe that all methods’ performance drops as the ro-
tation degree increases. This is expected because increasing
the rotation degree essentially enlarges the domain gap with
the source data, making the target domain more challenging.
Comparing DDAIG (without STN) with CrossGrad, the per-
formance drop of the latter is much larger. This indicates that
the CNN-learned perturbation does not contain solely the
style changes but also sophisticated transformations, which
make the task model more robust to the geometric domain
shift. With STN, the performance drop is significantly re-
duced (especially on 40◦ and 50◦) which demonstrates the
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Figure 6: T-SNE visualisation in the domain space using PACS’s validation set. The first three images compare transformed
data (T) with original data for each source domain. The last image shows an overall comparison between original (grey) and
transformed (pink) data.

Table 7: Comparison between models trained using source
data, novel data and source+novel data.

Souce Novel MNIST MNIST-M SVHN SYN Avg.
� 95.8 58.8 61.7 78.6 73.7

� 95.6 58.3 57.9 79.9 72.9
� � 96.6 64.1 68.6 81.0 77.6

Figure 7: Transformed image vs. original source images.

flexibility of the DDAIG framework. See Figure 5 for the
visualisation of the transformations.
Importance of combining source and novel data. Ta-
ble 7 shows that training with the novel data only does not
bring any gain at all. This is expected because the perfor-
mance gain of DDAIG mainly comes from the aggregation
of source domains and the generated novel domains.
Visualisation. To better understand why DDAIG works for
DG, we visualise the feature embeddings in the domain
space using t-SNE (Maaten and Hinton 2008) (see Figure 6).
It is clear that the new data distributions do not overlap
with any of the existing source domains. Instead, they are
distributed over the unfilled domain space, indicating ex-
ploration of unseen domains. Consequently, the generated
unseen-domain data along with the source-domain data al-
lows the model to learn more domain-generalisable repre-
sentations, which explains why DDAIG achieves excellent
performance on all DG benchmark datasets. Figure 7 shows
four example images from the first domain space where the
new “art” image clearly differs from the other source images
in terms of image style.

Figure 8 provides a clearer view of how images are trans-
formed by the perturbations. Comparing the transformed im-
ages with the original images, we observe that the domain-
related information has been drastically changed while the
category-specific properties are well maintained, which is
consistent with the motivation of our method. The perturba-
tions are instance-specific and can represent complex trans-
formations such as colour and texture. For instance, the per-

x x̃ T (x) x x̃ T (x)

Figure 8: Examples of transformed images from PACS (1st
row), Digits-DG (2nd row) and Office-Home (3rd row). x,
x̃ and T (x) denote original image, transformed image and
transformation (perturbation), respectively.
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Figure 9: Comparison between perturbations generated by
CNN (ours) and adversarial perturbations.

turbation for the elephant image tends to add green and pink
colours to the background and enhance the textures on the
elephant body.
Comparison with adversarial perturbations. Figure 9
compares the perturbations between DDAIG and Cross-
Grad. It is obvious that CrossGrad’s perturbation does
not contain meaningful patterns and look like salt-and-
pepper noise, resembling those of adversarial attack meth-
ods (Goodfellow et al. 2014). In contrast, our perturbation is
instance-specific and has obvious effects on the transformed
image, which is more representative of the real-world do-
main shift.

Conclusion

We presented DDAIG, a novel DG method to synthesise data
from unseen domains for data augmentation. Unlike current
data augmentation-based DG methods, DDAIG learns a full
transformation CNN to model the domain shift. Extensive
experiments on three DG datasets showed that our method
can improve the generalisation of CNN models on unseen
domains, outperforming current state-of-the-art DG meth-
ods. Results on the cross-domain person re-ID task further
demonstrated the versatility of DDAIG beyond DG.
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