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Abstract

In this paper, we propose a progressive pose grammar net-
work learned with Bi-C3D (Bidirectional Convolutional 3D)
for human pose estimation. Exploiting the dependencies
among the human body parts proves effective in solving the
problems such as complex articulation, occlusion and so on.
Therefore, we propose two articulated grammars learned with
Bi-C3D to build the relationships of the human joints and
exploit the contextual information of human body structure.
Firstly, a local multi-scale Bi-C3D kinematics grammar is
proposed to promote the message passing process among
the locally related joints. The multi-scale kinematics gram-
mar excavates different levels human context learned by the
network. Moreover, a global sequential grammar is put for-
ward to capture the long-range dependencies among the hu-
man body joints. The whole procedure can be regarded as
a local-global progressive refinement process. Without bells
and whistles, our method achieves competitive performance
on both MPII and LSP benchmarks compared with previous
methods, which confirms the feasibility and effectiveness of
C3D in information interactions.

1 Introduction

Human pose estimation serves as one of the fundamental
research directions in computer vision, which aims at locat-
ing the joints (head, shoulders, elbows, writsts, knees, an-
kles, etc.) positions given images that contain various human
poses. Human pose estimation has become a significant ba-
sis for many other vision tasks. However, human pose esti-
mation still has difficulty in accurate location due to the oc-
clusion, complex human pose gesture, scale variation, and
foreshortening.

Human pose estimation has achieved significant progress
due to the development of the deep convolutional networks.
(Wei et al. 2016) refined the estimated pose stage by stage
by enlarging the receptive field of the model. The repeated
conv-deconv process proposed in (Newell, Yang, and Deng
2016) captured various scale features and boosted the perfor-
mance by a large margin. Although considerable enhance-
ments have been made by the techniques proposed, it still
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Figure 1: Visualization of the estimated results on the LSP
dataset. Our method achieves promising estimation results
on the images which cover various pose changes.

remains difficult for the network to obtain more precise pre-
dictions. Previous works seldom take consideration of prior
knowledge, which results in pool performance under the cir-
cumstances of the severe occlusion and complex gesture as
shown in Figure 1.

High-level semantic information flow among human
joints, which can also be regarded as a message passing
process, enriches the context of individual features. The
wrongly predicted joints can be easily rectified under the
assistance of correct predictions and problems mentioned
above can be settled thereof. To achieve this goal, we take
advantage of the pose grammar mechanism to propagate the
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message among the feature maps of corresponding human
joints.

In this paper, we advance a progressive grammar net-
work to broadcast information among human joints. Firstly,
a multi-scale Bi-C3D kinematics pose grammar is imposed
to promote local information interactions. We then harness
the global sequential Bi-C3D pose grammar to further en-
courage long-range information flow.

We develop a Bi-C3D grammar module which captures
the kinematics relationships among human joints. For in-
stance, we can build grammar submodule which is related
to the wrist, elbow, and shoulder to promote the message
passing among them. Instead of adopting the Bi-LSTM
which causes large memory consumption, we take use of Bi-
C3D which shows great advantages in spatiotemporal fea-
ture learning to promote the message passing. Our exper-
iments demonstrate that Bi-C3D based grammar learning
brings in non-trivial improvements compared with the base-
line and reduces considerable memory consumptions during
both training and inference. Besides, we experiment with the
dilated operation in that enlarging convolution kernel size to
cover the spatial range of neighboring joints consumes much
more parameters whereas the increase is not that obvious.

Intrinsically, features with different resolutions enjoy dif-
ferent levels semantic information. Low resolution features
capture global information which depicts the whole skele-
ton knowledge of the human body. However, the high res-
olution features learn more spatial details which pose great
significance in accurate localization. In this paper, we extend
the grammar network to a multi-scale framework to promote
multi-level message passing. Different parameter settings
are adopted across different scales to ensure enough spatial
coverage between neighboring joints. Multi-scale grouped
supervision is also imposed here. Furthermore, we fuse the
features after message passing to exploit multi-scale con-
textual information. The fused features enhance the robust-
ness of the network when faced with the scale changes of the
whole input human and corresponding human joints.

To exploit long-range dependencies among the human
joints, we propose a global sequential grammar learned with
Bi-C3D to capture the semantic information of the whole
body not only the semantically related joints. Firstly, we re-
arrange the order of human joints according to spatial rele-
vance instead of tree or loopy structure. The holistic struc-
ture information can be learned from Bi-C3D module which
shows great advantages in promoting long-range message
interactions.

We adopt hourglass model as our basic structure due to its
outstanding performance in human pose estimation, human
parsing and object detection.

The contributions of this work are summarized as follows:
• We propose a multi-scale Bi-C3D kinematics grammar

learning framework to enforce information flow of dif-
ferent granularity levels. The kinematics grammar mainly
captures the associations and adjacency among locally re-
lated body joints. To the best knowledge of ours, this is the
first attempt to apply C3D module to learn the domain-
specific knowledge of the human pose estimation. Ad-
ditionally, fusion of multi-scale context-enriched feature

maps enhances the scale invariance of the network.
• To capture long-range dependencies of the human body

joints, we advocate a novel sequential grammar module
to propagate long-range message passing instead of the
tree or the loopy structure. It is convenient to implement
with Bi-C3D and proves effective.
• Combining the multi-scale Bi-C3D kinematics grammar

and global sequential grammar together executes progres-
sive information exchange among the human joints. Our
experiments confirms the reasonability and validity of
progressive integration of the two grammars.

2 Related Work

2.1 Human Pose Estimation

Human pose estimation has achieved great progress due
to the development of the DCNNs. DeepPose(Toshev and
Szegedy 2014) tried to estimate the body joints by coor-
dinates regression and it was one of the first attempts to
use the deep convolutional features for inference. However,
coordinate regression based methods are difficult to con-
verge. (Tompson et al. 2014; 2015) attempted to take ad-
vantage of MRF to eliminate the false positive predictions.
(Chu et al. 2016) proposed a CRF-CNN framework to model
the inherent structure of the human body in a probabilistic
way. (Lifshitz, Fetaya, and Ullman 2016) utilized the voting
scheme to improve the whole performance. (Wei et al. 2016)
modified the traditional pose machines into a deep convolu-
tional framework and the repeated intermediate supervision
mechanism promoted gradient flow and boosted the perfor-
mance. (Newell, Yang, and Deng 2016) adopted the conv-
deconv, encoder-decoder mode to capture different scales in-
formation and the multiple intermediate supervision mecha-
nism was also enforced in the framework. Subsequent works
such as (Chou, Chien, and Chen 2017; Chu et al. 2017;
Yang et al. 2017; Chen et al. 2017; Peng et al. 2018;
Ning, Zhang, and He 2018) all employed hourglass as their
backbone and explored more effective framework. In this pa-
per, we propose a grammar network based on C3D to pro-
mote the message passing instead of probabilistic graph.

2.2 Grammar Model

Grammar based model has shown its effectiveness in var-
ious domains. (Han and Zhu 2009) proposed a stochastic
grammar model to solve the image parsing problem. (Xiao-
han Nie, Wei, and Zhu 2017) proposed to build the kine-
matic grammar with skeleton-LSTM and patch-LSTM. A
hierarchical attributed grammar network was proposed in
(Fang et al. 2018) to enforce high-order constraints over
3D human poses. (Wang et al. 2018) leveraged two fash-
ion grammars to encode the high-level human knowledge for
the fashion landmark detection. Different from the methods
above, we propose a local-global multi-scale grammar learn-
ing network with C3D instead of largely memory-consumed
LSTM.

3 Method
The whole framework is illustrated in Figure 2. In this sec-
tion, we briefly introduce our progressive Bi-C3D gram-
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Figure 2: The proposed multi-scale Bi-C3D pose grammar network. We accept 8-stack hourglass network as backbone and
the grammar module which encodes human body dependencies and relations is embedded into the last stack of the hourglass
model. The multi-scale Bi-C3D pose grammar network consists of the multi-scale Bi-C3D pose kinematics grammar and global
sequential grammar.

mar network. The whole procedure can be regraded as a
local-global progressive refinement process. The multi-scale
Bi-C3D kinematics grammar module mainly captures local
constraints amid locally correlated joints. The long-term se-
quential pose grammar concentrates on developing global
configuration of the human pose. Combining the gram-
mars mentioned above realizes step-by-step refinement and
proves effective on the human key point localization task.

3.1 Basic Structure

In order to build a solid foundation for grammar learning, we
employ hourglass model which repeats the down-sampling
and up-sampling operations to extract high-level 2D pose
features. The grammar module is embedded into the back-
bone to capture the high-order context. However, there exist
some differences in details. Take 1-scale features for exam-
ple, in practice, instead of feeding the features F1 into the
1 × 1 convolution for final prediction, the features are di-
vided into M branches for inference, where M represents
the number of joints. Each branch of the features is con-
volved with 1× 1 convolution kernel to output heatmaps of
the corresponding human joints. We take advantage of these
M groups features to build the kinematics grammar.

3.2 Bi-C3D Kinematics Grammar

The proposed Bi-C3D kinematics grammar depicts con-
straints of the kinematically connected human joints. In this
section, we define 5 kinematics grammars where local re-

finement is carried on:

GK
1 : r.ankle←→ r.knee←→ r.hip,

GK
2 : l.ankle←→ l.knee←→ l.hip,

GK
3 : r.wrist←→ r.elbow ←→ r.shoulder,

GK
4 : l.wrist←→ l.elbow ←→ l.shoulder,

GK
5 : head←→ neck ←→ thorax←→ pelvis.

(1)

The grammar described above establishes the relationships
of human joints in kinematic chain, which reflects hu-
man anthropomorphic and anatomical constraints. Geomet-
ric construction can be found in Figure 3.

Message passing process of the grammar module is im-
plemented by bi-directional (forward/backward) C3D (Bi-
C3D), which naturally supports chain-like structures. Take
GK

1 for example, suppose the feature tensors of right ankle,
right knee, right hip as follows:

Xrank ∈ RN×Cin×H×W ,

Xrknee ∈ RN×Cin×H×W ,

Xrhip ∈ RN×Cin×H×W ,

(2)

where N represents the batch size, C,H,W represent
the channel number, height, width of the correspond-
ing feature tensor. For the forward pass, we concate-
nate Xrank, Xrknee, Xrhip along the depth dimension se-
quentially and for the backward pass, we concatenate
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Xrank, Xrknee, Xrhip along the depth dimension in a re-
verse order, that is,

GK
1 for ∈ RN×3×Cin×H×W ,

GK
1 back ∈ RN×3×Cin×H×W .

(3)

The resulted grammar features GK
1 for, G

K
1 back are feeded

into the Bi-C3D module to build the chain-like grammar.
The Bi-C3D module consists of two groups 3D convolu-
tions. We employ the first group for the forward pass and
the second group for the backward pass. Each group is com-
posed of three successive 3D convolution kernels and con-
crete kernel size can be found in Sec. 3.3. The output fea-
tures after the message passing can be denoted as

OK
1 for ∈ RN×3×Cout×H×W ,

OK
1 back ∈ RN×3×Cout×H×W .

(4)

We acquire the bi-directional context-enriched features by
splitting the output features OK

1 for, O
K
1 back along the depth

dimension. Take right ankle for example,

Xrank for ∈ RN×Cout×H×W ,

Xrank back ∈ RN×Cout×H×W .
(5)

We sum the forward context-enriched features of right ankle
and backward ones to obtain the final features of right ankle
where

Xrank = Xrank for +Xrank back. (6)

The grammar of other types can be obtained following
the same procedure. The features after the message passing
among corresponding human joints incorporate information
of the neighboring joints and range of the influence lies on
the kernel size of the depth dimension. We set kernel size of
depth dimension of the local kinematics grammar as 3.

3.3 Multi-Scale Bi-C3D Kinematics Grammar
Network

Hourglass model concentrates on learning multi-scale fea-
tures via repeated down-up sampling operations. Different
resolution features represent contextual information of dif-
ferent scales. To promote multi-scale message exchange and
exploit multi-scale contextual information, we embed the
kinematics grammar into each scale of the hourglass model
as illustrated in Figure 2.

Following the grammar building procedure described in
Sec 3.1, Sec 3.2, we firstly enforce multi-scale interme-
diate supervision explicitly on a single stack of hourglass
model. The multi-scale intermediate supervision strength-
ens the robustness of the network when faced with scale
changes and promotes the gradient flow. Multi-scale su-
pervision S1, S2, S3 is enforced at the end of each de-
convolution layer as shown in Figure 2. Each of the features
F1, F2, F3 extracted from the end of each de-convolution
layer is separated into M branches and each branch is con-
volved with 1× 1 kernel to obtain heatmaps of all the joints
across different scales.

Table 1: Different dilated rate settings across multiple scales
for different iterations.

Iter1 Iter2 Iter3
Scale1 2 4 4
Scale1/2 1 2 2
Scale1/4 1 1 1

Figure 3: Illustration of the local Bi-C3D kinematics gram-
mar which depicts the knowledge of human body composi-
tion. The local Bi-C3D kinematics grammar module is con-
stituted by 5 kinematics sub-grammars as shown by the blue
ellipse.

In practice, we adjust the parameter settings across dif-
ferent scales to ensure enough spatial coverage. We per-
form three successive 3D convolution iterations which ex-
ploit 3-by-3-by-3 C3D kernels at scale 1, 1/2, 1/4 respec-
tively. Instead of applying large convolution kernel to ex-
pand the search region of adjacent joints, we take advantage
of successive spatially dilated 3D convolutions to perform
the message passing. On the one hand, the respective field
of neighboring human joints is enlarged to ensure enough
information grasping between them. On the other hand, the
sparse dilated kernel saves total parameters of the model and
reduces the amount of calculation with comparable perfor-
mance. We set the dilation rate on the spatial (height and
width) dimension of the three successive kernels as {2, 4, 4}
at scale 1, {1, 2, 2} at scale 1/2, {1, 1, 1} at scale 1/4. We
set the dilation rate on the depth dimension as 1 across all
the situations. Choice of the dilation rate on the spatial di-
mension can be regarded as a problem of permutations and
combinations while it’s not the main concern of our work.
Concrete configurations can be found in Table 1. We up-
sample the 1/2-scale, 1/4-scale context-enriched features to
the same resolution as the 1-scale one and fuse them by con-
catenation. We reduce the dimension of the fused features
from Cout×3 to Cout and the details can be found in Figure
2.

3.4 Sequential Grammar

In this section, a novel sequential grammar is proposed to
learn long-range dependencies to obtain more accurate pre-
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Figure 4: Illustration of the global sequential grammar
which further explores higher level context information.
There are two directions for the message passing as the ar-
row shows.

dictions. Multi-scale Bi-C3D sequential grammar network is
out of consideration in this work for the efficiency of com-
putation. The features maps of the corresponding joints are
concatenated in a predefined

head− neck − rshoulder − relbow − rwrist−
rhip− rknee− rankle− lankle− lknee− lhip−

lwrist− lelbow − lshoulder − thorax− pelvis

(7)

order to form the inputs of the forward message passing.
Concrete illustration of the concatenation order can be found
in Figure 4. The procedure of the concatenation follows the
same way as in building kinematics grammar. The input of
the backward message passing is formed in a reverse order
of the forward one:

RS
1 for ∈ RN×M×C×H×W ,

RS
1 back ∈ RN×M×C×H×W .

(8)

We feed RS
1 for, R

S
1 back into the Bi-C3D module which

also consists of two groups 3D convolutions. However, one
joint alone is expected to correlate with almost all the other
joints. To achieve this goal, more iterations are stacked re-
peatedly. In practice, we perform 6 successive iterations
which also employ 3-by-3-by-3 C3D dilated kernels. We
set the dilated rate at spatial dimension, depth dimension as
{4, 1} respectively across all the 6 successive iterations. We
take advantage of long-term sequential modeling and effec-
tive message exchange natures of C3D instead of learning
the spatiotemporal features in this work.

3.5 Brief Introduction of Other Implementations

In this section, we will give a brief introduction of the im-
plementation of ConvLSTM. To keep the same power of
features expressions with C3D implementation, the channel
number of each human joint is set as 16 as well. The features
involved are propagated bidirectionally and forward infor-
mation interaction is as follows:

ff
i = σ(bff + Uf

f ∗ xf
i +W f

f ∗ hf
i−1),

ifi = σ(bfin + Uf
in ∗ xf

i +W f
in ∗ hf

i−1),

ofi = σ(bfo + Uf
o ∗ xf

i +W f
o ∗ hf

i−1),

cfi = tanh(bf + Uf ∗ xf
i +W f ∗ hf

i−1),

sfi = ff
i ◦ sfi−1 + ifi ◦ cfi ,

hf
i = ofi ◦ tanh(sfi ),

(9)

where W, b represent convolution kernels and biases seper-
ately, ∗, ◦ indicate convolution and Hadamard product. In
Equation 9, i indicates the sequential order. For compari-
son, we also adopt dilated convolution and three iterations to
cover enough spatial range as done in C3D experiments. The
backward information flow can be formulated as in Equation
9 as well. Instead of fusing the bi-directional features inside
the inner nodes of LSTM, we incorporate bi-directional in-
formation after three iterations message passing. Feature of
corresponding human joint is represented as

hi = hf
i + hb

i . (10)

3.6 Training and Inference

The progressive Bi-C3D pose grammar module is embed-
ded into the last stack hourglass model as shown in Figure
2. The first few hourglass modules where grammar mod-
ule is not included are only enforced with 1-scale super-
vision as done in previous work (Newell, Yang, and Deng
2016). We denote ground-truth locations of the human joints
as x = {xm}Mm=1, where M represents the number of
the human joints. We generate the ground-truth score maps
S = {Sm}Mm=1 by enforcing gauss distributions around the
ground-truth locations with kernel size 7. The loss of the first
few hourglass modules can be denoted as

L1 =

N−1∑

n=1

M∑

m=1

||Sm − S̃m||2, (11)

where N represents the stage number of the hourglass model.
Multi-scale supervision is involved in the last stack hour-

glass module. The multi-scale supervision consists of 3 dif-
ferent scales(1, 1/2, 1/4) supervisions and we finally en-
force 1-scale supervision on the context-enriched feature
maps after the message passing process to obtain the final
prediction. The ground truth score maps of the ith scale su-
pervision can be denoted as Si = {Si

m}Mm=1. Loss for the
last stack hourglass model can be formed as

L2 =

J∑

i=1

M∑

m=1

||Si
m − S̃i

m||2 +
M∑

m=1

||Sm − S̃m||2, (12)
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where J represents the scale number and S̃2
m, S̃3

m are down-
sampled by S̃1

m with max-pooling operation. Overall loss
function can be denoted as

L = L1 + L2. (13)

During inference, unary maps are taken from the last pre-
dictions. The last predictions are obtained from features dec-
orated by the progressive grammar module which are armed
with strong semantics. We take the positions with the maxi-
mum scores without other techniques as our final prediction
x̃ = {x̃m}Mm=1

x̃m = argmaxS̃m (14)

4 Experiments

4.1 Dataset

The experiments are carried on two widely applied bench-
marks MPII (Andriluka et al. 2014) and LSP (Johnson and
Everingham 2010). MPII dataset contains about 25k images
with 40k annotated samples. There are 16 labeled human
joints and 14 of them are expected to be evaluated. We con-
duct our experiments on the 25925 training images and 2958
valid images. LSP dataset contains the original LSP dataset
and the extended version, where 11k training images and 1k
test images are involved.

4.2 Experiment Settings

We conduct all our experiments on the platform of Pytorch.
Learning rate is set as 5e-4 at the beginning and dropped by
10 at 150 epoch and 170 epoch respectively. We utilize the
RMSprop (Tieleman and Hinton 2012) algorithm to update
the parameters of the model. We crop the image to the size of
256× 256 and person expected to be estimated is located at
the center of the cropped patch with roughly the same scale.
We rotate the cropped patch by ±30 and scale the image by
a random number. Random color jittering, shearing and flip-
ping are involved as well. Six-scale (0.8,0.9,1.0,1.1,1.2,1.3)
image pyramids combined with flipping are adopted during
testing. The grammar module is appended at the end of the
eight-stack hourglass model.

4.3 Experiments Results

Our method achieves competitive performance on both of
the datasets. Our approach achieves 92.5% PCKh score at
the threshold of 0.5 on the MPII pose dataset. Concrete de-
tails of the final results can be found in Table 2. In contrast,
our method surpasses the baseline by 2.2% and 2.8% on the
challenging parts ankle and wrist. We incorporate the MPII
split into the LSP training set when conduct training pro-
cess on LSP dataset as done in previous works. Average
PCK score at the threshold of 0.2 can be found in Table 3
where person-centric annotation is involved. Our approach
achieves 94.8% PCK0.2 score and performs better compared
with all the previous methods. According to Table 3 we can
find that our method exceeds previous methods on all human
parts.

Table 2: Evaluation results using PCKh@0.5 as measure-
ment on the MPII dataset

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

(Tompson et al. 2014) 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6
(Tompson et al. 2015) 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
(Hu and Ramanan 2016) 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4
(Lifshitz et al. 2016) 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
(Rafi et al. 2016) 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
(Sun et al. 2017b) 97.5 94.3 87.0 81.2 86.5 78.5 75.4 86.4
(Insafutdinov et al. 2016) 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
(Wei et al. 2016) 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
(Bulat et al. 2016) 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
(Newell et al. 2016) 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
(Sun et al. 2017a) 98.1 96.2 91.2 87.2 89.8 87.4 84.1 91.0
(Ning et al. 2016) 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2
(Chu et al. 2017) 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
(Liu et al. 2018) 98.4 96.4 92.0 87.9 90.7 88.3 85.3 91.6
(Chou et al. 2017) 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
(Chen et al. 2017) 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
(Yang et al. 2017) 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
(Ke et al. 2018) 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1
(Tang, Yu, and Wu 2018) 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
(Sun et al. 2019) 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3

ours 98.5 96.9 92.8 89.3 91.8 89.5 86.4 92.5

Table 3: Evaluation results using PCK@0.2 as measurement
on the LSP dataset

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

(Rafi et al. 2016) 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8
(lifshitz et al. 2016) 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
(Insafutdinov et al. 2016) 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
(Wei et al. 2016) 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
(Bulat et al. 2016) 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
(Sun et al. 2017a) 97.9 93.6 89.0 85.8 92.9 91.2 90.5 91.6
(Chu et al. 2017) 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
(Chen et al. 2017) 98.5 94.0 89.8 87.5 93.9 94.1 93.0 93.1
(Liu et al. 2018) 98.1 94.0 91.0 89.0 93.4 95.2 94.4 93.6
(Yang et al. 2017) 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9
(Chou et al. 2017) 98.2 94.9 92.2 89.5 94.2 95.0 94.1 94.0
(Peng et al. 2018) 98.6 95.3 92.8 90.0 94.8 95.3 94.5 94.5

ours 98.7 95.7 93.2 90.5 95.2 95.5 94.6 94.8

4.4 Ablation Study

We investigate ablation study on the MPII validation set and
adopt the two-stack hourglass model as baseline. We incor-
porate progressive Bi-C3D pose grammar model into the
second stack hourglass module.

Effect of the single-scale pose grammar module. From
Figure 5, we can see that the single-scale Bi-C3D pose gram-
mar module achieves 88.15% PCKh@0.5 score and boosts
the performance by a large margin compared with the pure
two-stack hourglass module which only achieved 87.42%
PCKh@0.5 score. The C3D pose grammar module builds
the relationships among the human pose joints and refines
the prediction results.

Effect of the multi-scale pose grammar module. The
effect of the multi-scale C3D pose grammar module can be
found in Figure 5. Two-scale Bi-C3D pose grammar per-
forms better than single-scale Bi-C3D pose grammar mod-
ule due to the multi-scale message passing. We adopt the
three-scale Bi-C3D pose grammar module at last owing to
its superior performance.

Effect of the global sequential grammar. From Figure
5, we can observe that PCKh score of global sequential
grammar reaches around 88.16% and surpasses the baseline
drastically. Additionally, progressive pose grammar which
is constituted by multi-scale pose grammar and sequential
grammar surpasses the multi-scale pose grammar. We can
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86.5 87.0 87.5 88.0 88.5 89.0

Baseline

global

1-scale

2-scale

3-scale

Progressive

87.42

88.16

88.15

88.25

88.37

88.48

PCKh@0.5

Figure 5: Component investigation on the MPII validation
split. The details can be found in Sec. 4.4.

conclude that global sequential grammar can further boost
up the performance and information broadcasting among all
the human joints proves effective for the final prediction
thereof.

Comparison with other techniques. In this section, we
compare our single-scale Bi-C3D pose grammar module im-
plemented by D-C3D with other techniques to prove the fea-
sibility and effectiveness of it. From Figure 6, we can find
that grammar implemented by D-C3D achieves better results
with much less parameters compared with Bi-LSTM pose
grammar. During the realistic implementation, the Bi-C3D
pose grammar consumes much less memory usage. Addi-
tionally, we investigate the effectiveness of D-C3D by re-
placing D-C3D operation with L-C3D. Though 7 × 7 ker-
nel achieves almost equivalent performance with relatively
small field of perception, the parameter number reaches up
to 8.82M compared with 6.77M and the speed drops quickly
during both the training and inference. The comparison of
D-C3D with P-C3D also verifies the effectiveness of spa-
tially dilated C3D operation in information interactions. The
P-C3D where dilation is not involved performs poorly owing
to insufficient spatial context coverage.

5 Conclusion

This paper has proposed a progressive grammar model con-
stituted by the multi-scale Bi-C3D kinematics grammar
module and global sequential grammar module. The pa-
per provides a new perspective to build human pose gram-
mar. First, we develop the multi-scale kinematics C3D pose
grammar to capture the multi-scale kinematics information.
Kinematics grammar built by Bi-C3D operation takes ad-

D-C3D LSTM L-C3D P-C3D
87.6
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87.8

87.9

88.0

88.1
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88.15
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87.83

PCKh@0.5

D-C3D LSTM L-C3D P-C3D
0
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10

6.77 7.13

8.82

6.77

Parameters

Figure 6: Component investigation on the MPII validation
split. D-C3D (Dilated C3D) means spatially dilated C3D op-
eration where the spatial kernel size is set as 3 × 3, L-C3D
(Large kernel C3D) means C3D operation with large spatial
kernel size which is set as 7× 7, P-C3D (Plain C3D) repre-
sents plain C3D operation without dilated settings where the
spatial kernel size is set as 3×3. The details can be found in
Sec. 4.4.

vantage of the merits of C3D which excels at 3D space mes-
sage passing. Additionally, a well-designed global sequen-
tial grammar which utilizes inherent nature of C3D in long-
term relation construction is proposed. The local-global pro-
cess conducts the message passing progressively and refines
the previous predictions. The whole framework can be end-
to-end trained and achieves promising results over two pub-
lic datasets. Our approach verifies the effectiveness and fea-
sibility of C3D in message passing.
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