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Abstract

Detecting manipulated images has become a significant
emerging challenge. The advent of image sharing platforms
and the easy availability of advanced photo editing software
have resulted in a large quantities of manipulated images be-
ing shared on the internet. While the intent behind such ma-
nipulations varies widely, concerns on the spread of false
news and misinformation is growing. Current state of the art
methods for detecting these manipulated images suffers from
the lack of training data due to the laborious labeling pro-
cess. We address this problem in this paper, for which we
introduce a manipulated image generation process that cre-
ates true positives using currently available datasets. Draw-
ing from traditional work on image blending, we propose a
novel generator for creating such examples. In addition, we
also propose to further create examples that force the algo-
rithm to focus on boundary artifacts during training. Strong
experimental results validate our proposal.

Introduction

Manipulated photos are becoming ubiquitous on social me-
dia due to the availability of advanced editing software, in-
cluding powerful generative adversarial models (Isola et al.
2017; Yeh et al. 2017). While such images have been cre-
ated for a variety of purposes, including memes, satires, etc.,
there are growing concerns on the abuse of manipulated im-
ages to spread fake news and misinformation. To this end, a
variety of solutions have been developed towards detecting
such manipulated images.

While a number of proposed solutions posed the problem
as a classification task (Cozzolino et al. 2018; Zhou et al.
2017), where the goal is to classify whether a given image
has been tampered with, there is great utility for solutions
that are capable of detecting manipulated regions in a given
image (Huh et al. 2018; Zhou et al. 2017; Park et al. 2018;
Salloum, Ren, and Kuo 2018). In this paper, we similarly
treat this problem as a semantic segmentation task and adapt
GANs (Goodfellow et al. 2014) to generate samples to al-
leviate the lack of training data. The lack of training data
has been an ongoing problem for training models to detect
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Figure 1: Examples of manipulated images across differ-
ent datasets. Columns from left to right are images in CA-
SIA (Dong, Wang, and Tan 2013), COVER (Wen et al.
2016), Carvalho (De Carvalho et al. 2013), and In-The-
Wild (Huh et al. 2018). The odd rows are manipulated im-
ages and the even rows are the ground truth masks. Different
datasets contain different distributions (from animals to per-
son), manipulation techniques (from copy-move (the second
column) to splicing (the rest columns)) and post-processing
methods (from no post-processing to various processes in-
cluding filtering, illumination, and blurring).

manipulated images. Scouring the internet for “real” tam-
pered images (Moreira et al. 2018) is a laborious process
that often leads to over-fitting in the training process. Alter-
natively, one could employ a self-supervised process, where
detected objects in one image are spliced onto another, with
the caveat that such a process often results in training images
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Figure 2: GSR-Net framework overview. (a) Given a tampered image S, an authentic target image T , and the ground truth
mask K, the generation stage generates hard example G(M) starting from a simple copy-pasting image M . (b) Feeding the
training images, copy-pasted images or generated images as input, the segmentation stage learns to segment the boundary
artifacts and fill the interior to produce the final prediction. (c) The segmentation network concatenates lower level features
to predict boundary artifacts and then concatenate back the boundary feature to the segmentation branch for final prediction.
(d) The refinement stage creates a novel tampered image with new boundary artifacts by replacing the predicted manipulated
boundaries of segmentation stage with original authentic regions and learns to make a new prediction.

that are not realistic. Of course, the best approach for gener-
ating training samples is to employ professional labelers to
create realistic looking manipulated images, but this remains
a very tedious process. It is therefore not surprising that ex-
isting datasets (Huh et al. 2018; Dong, Wang, and Tan 2010;
2013; Wen et al. 2016; De Carvalho et al. 2013) are often not
comprehensive enough to train models that generalize well.

Additionally, in contrast to standard semantic image seg-
mentation, correctly segmenting manipulated regions de-
pends more on visual artifacts that are often created at the
boundaries of manipulated regions than on semantic con-
tent (Bappy et al. 2017; Zhou et al. 2018). Several challenges
exist in recognizing these boundary artifacts. First, the space
of manipulations is very diverse. One can, for example, do
a copy-move, which copies and pastes image regions within
the same image (the second column in Figure 1) , or splice,
which copies a region from one image and pastes it to an-
other image (the remaining columns in Figure 1). Second,
a variety of post-processing such as compression, blurring,
and various color transformations make it harder to detect
boundary artifacts caused by tampering. See Figure 1 for
some examples. Most existing methods (Huh et al. 2018;

Zhou et al. 2018; Park et al. 2018; Salloum, Ren, and Kuo
2018) that utilize discriminative features like image meta-
data, noise models, or color artifacts due to, for example,
Color Filter Array (CFA) inconsistencies, have failed to gen-
eralize well for these reasons.

This paper introduces a two-pronged approach to (1) ad-
dress the lack of comprehensive training data, as well as, (2)
focus the training process on learning to recognize bound-
ary artifacts better. We adopt GANs for addressing (1), but
instead of relying on prior GAN methods (Isola et al. 2017;
Zhu et al. 2017; Karras et al. 2018) that mainly explore im-
age level manipulation, we introduce a novel objective func-
tion that optimizes for the realism of the manipulated regions
by blending tampered regions in existing datasets to assist
segmentation. That is, given an annotated image from an ex-
isting dataset, our GAN takes the given annotated regions
and optimizes via a blending based objective function to en-
hance the realism of the regions. Blending has been shown
to be effective in creating training images effective for the
task of object detection (Dwibedi, Misra, and Hebert 2017),
and this forms our main motivation in formulating our GAN.

To address (2), we propose a segmentation and refinement
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procedure. The segmentation stage localizes manipulated re-
gions by learning to spot boundary artifacts. To further pre-
vent the network from just focusing on semantic content, the
refinement stage replaces the predicted manipulation bound-
aries with authentic background and feed the new manip-
ulated images back to the segmentation network. We will
show empirically that the segmentation and refinement has
the effect of focusing the model’s attention on boundary ar-
tifacts during learning (see Table 2).

We design an architecture called GSR-Net which includes
these three components—a generation stage, a segmentation
stage and a refinement stage. The architecture of GSR-Net
is shown in Figure 2. During training, we alternatively train
the generation GAN, followed by the segmentation and re-
finement stage, which take as input the output of the gen-
eration stage as well as images from the training datasets.
The additional varieties of manipulation artifacts provided
by both the generation and refinement stages produce mod-
els that exhibit very good generalization ability. We eval-
uate GSR-Net on four public benchmarks and show that
it performs better to state-of-the-art methods. Experiments
with two different post-processing attacks further demon-
strate the robustness of GSR-Net. In summary, the contri-
butions of this paper are 1) A framework that augments ex-
isting datasets in a way that specifically addresses the main
weaknesses of current approaches without requiring new an-
notations efforts; 2) Introducing a generation stage with a
novel objective function based on blending for generating
images effective for training models to detect tampered re-
gions; 3) Introducing a novel refinement stage that encour-
ages the learning of boundary artifacts inherent in manipu-
lated regions, which, to the best of our knowledge, no prior
work in this field has utilized to help training.

Related Work
Image Manipulation Segmentation. (Park et al. 2018)
train a network to find JPEG compression discrepancies be-
tween manipulated and authentic regions. (Zhou et al. 2017;
2018) harness noise features to find inconsistencies within
a manipulated image. (Huh et al. 2018) treat the problem
as anomaly segmentation and use metadata to locate abnor-
mal patches. The features used in these works are based on
the assumption that manipulated regions are from a different
image, which is not the case in copy-move manipulation.
However, our method directly focuses on general artifacts
in the RGB channel without specific feature extraction and
thus can be applied to copy-move segmentation. More re-
lated works from (Salloum, Ren, and Kuo 2018) and (Bappy
et al. 2017) show the potential of boundary artifacts in dif-
ferent image manipulation techniques. These methods are
sources of motivation for us to exploit boundary artifacts as
a strong cue for detecting manipulations. (Bappy et al. 2017)
design a Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997) based network to identify RGB bound-
ary artifacts at both the patch and pixel level. (Salloum, Ren,
and Kuo 2018) adopt a Multi-task Fully Convolutional Net-
work (MFCN) to manipulation segmentation by providing
both segmentation and edge annotations. Instead of applying
hole filling on edge prediction to do late fusion, our segmen-

tation stage early fuses edge information with segmentation
branch to improve segmentation results.
GAN Based Image Editing. GAN based image editing ap-
proaches have witnessed a rapid emergence and impressive
results have been demonstrated recently (Tsai et al. 2017;
Lalonde and Efros 2007; Wang et al. 2018; Karras et al.
2018; Zhu et al. 2017). Prior and concurrent works force the
output of GAN to be conditioned on input images through
extra regression losses (for example, �2 loss) or discrete la-
bels. However, these methods manipulate the whole images
and do not fully explore region based manipulation. In con-
trast, our GAN manipulates minor regions and fits better for
manipulation segmentation where minor regions have been
manipulated. A more related work (Tsai et al. 2017) gener-
ates natural composite images using both scene parsing and
harmonized ground truth. Even though it targets at region
manipulation, experimental results show that our method
performs better in terms of assisting segmentation.
Adversarial Training. Discriminative feature learning has
motivated recent research on adversarial training on several
tasks. (Shrivastava et al. 2017) propose a simulated and un-
supervised learning approach which utilizes synthetic im-
ages to generate realistic images. An online hard negative
generation network (Wang, Shrivastava, and Gupta 2017)
boosts the performance on occluded and deformed objects.
(Wei et al. 2017) investigate an adversarial erasing approach
to learn dense and complete semantic segmentation. (Le et
al. 2018) propose an adversarial shadow attenuation network
to make correct predictions on hard shadow examples. How-
ever, their approaches are difficult to adapt to manipulation
segmentation because they either generate whole synthetic
images or leave artifacts on erased regions. In contrast, we
replace manipulated regions with original ones so that the
replaced regions become authentic.

Approach

We describe the GSR-net in details in the following sections.
A key to the generation is the utilization of a GAN with a
loss function central around using blending to optimize for
producing realistic training images. The segmentation and
refinement stage are specially designed to single out bound-
aries of the manipulated regions in order to guide the training
process to pay extra attention to boundary artifacts.

Generation

Generator. Referring to Figure 2 (a), the generator is given
as input both copy-pasted images and ground truth masks.
To prepare the input images, we start with the training
samples in manipulation datasets (for example, CASIA 2.0
(Dong, Wang, and Tan 2013)). Given a training image S, the
corresponding ground truth binary mask K and an authen-
tic target image T from a clean dataset (for example, COCO
(Lin et al. 2014)), we first create a simple copy-pasted image
M by taking S as foreground and T as background:

M = K � S + (1−K)� T, (1)

where � represents pointwise multiplication.
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In Poisson blending (Pérez, Gangnet, and Blake 2003),
the final value of pixel i in the manipulated regions is

bi = argmin
bi

∑

si∈S,Ni⊂S

||∇bi −∇si||2

+
∑

si∈S,Ni �⊂S

||bi − ti||2, (2)

where ∇ denotes the gradient, Ni is the neighborhood (for
example, up, down, left and right) of the pixel at position i,
bi is the pixel in the blended image B, si is the pixel in S
and ti is the pixel in T .

Similar to Poisson blending, we optimize the generator to
blend neighborhoods in the resulting image that now con-
tains copy-pasted regions and background regions. A key
part of our loss function enforces the shapes of the tam-
pered regions, while maintaining the background regions.
To maintain background regions, we utilize �1 loss to re-
construct the background:

Lbg =
1

Nbg

∑

ti∈T,ki=0

||mi − ti||1, (3)

where Nbg is the total number of pixels in the background,
mi is the pixel in M and ki is the value in mask K at position
i. To maintain the shape of manipulated regions, we apply a
Laplacian operator to the pasted regions and reconstruct the
gradient of this region to match the source region:

Lgrad =
1

Nfg

∑

si∈S,ki=1

||Δmi −Δsi||1, (4)

where Δ denotes the Laplacian operator and Nfg is the total
number of pixels in pasted regions. To further constrain the
shape of pasted regions, we add an additional edge loss as
denoted by

Ledge =
1

Nedge

∑

si∈S,ei=1

||mi − si||1, (5)

where Nedge is the number of boundary pixels and ei is the
value of the edge mask at position i, which is obtained by the
absolute difference between a dilation and an erosion on K.
To generate realistic manipulated images, we add an adver-
sarial loss Ladv, as explained below, that serves to encourage
the generator to produce increasingly realistic images as the
training progresses.
Discriminator. In our discriminator, a crucial detail to point
out is that the manipulated regions are typically occupy-
ing only a small area in the image. Hence, it is beneficial
to restrict the GAN discriminator’s attention to the struc-
ture in local images patches. This is reminiscent of “Patch-
GAN” (Isola et al. 2017) that only penalizes structure at the
scale of patches. Similar to PatchGAN, our discriminator
applies a final fully convolutional layer at a patch scale of
N × N . The discriminator distinguishes the authentic im-
age T as real and the generated image G(K,M) as fake by
maximizing:

Ladv = ET [log(D(K,T ))]

+ EM [1− log(D(K,G(K,M)))], (6)

where K is concatenated with G(K,M) or T as the input
to the discriminator (we do not show K in the discriminator
input in Figure 2 (a) for simplicity).

The final loss function of the generator is given as

LG = Lbg + λgradLgrad + λedgeLedge + λadvLadv, (7)

where λgrad, λedge, and λadv are parameters which control the
importance of the corresponding loss terms. Conditioned on
this constraint, the generator preserves background and tex-
ture information of pasted regions while blending the manip-
ulated regions with the background, which can be applied to
generate both splicing and copy-move examples. Also, it can
be potentially utilized to generate removal examples by set-
ting λgrad and λedge to zero, and thus the generator learns to
inpaint the missing regions, creating images with removal
manipulation.

Segmentation

For segmentation, we simply adopt the publicly available
VGG-16 (Simonyan and Zisserman 2015) based DeepLab
model (Chen et al. 2018) to include boundary information.
The network structure is depicted in Figure 2 (c), consisting
of a boundary branch predicting the manipulated boundaries
and a segmentation branch predicting the interior. In partic-
ular, to enhance attention on boundary artifacts, we intro-
duce boundary information by subtracting the erosion from
the dilation of the binary ground truth mask to obtain the
boundary mask. We then predict this boundary mask through
concatenating bi-linearly up-sampled intermediate features
and passing them to a 1× 1 convolutional layer to form the
boundary branch. Finally, we concatenate the output features
of the boundary branch with the up-sampled features of the
segmentation branch. Empirically, we noticed such multi-
task learning helps the generalization of the final model.
Only the segmentation branch output after boundary feature
concatenation is used for evaluation during inference. Dur-
ing training, we select the copy-pasted examples M , gener-
ated examples G(M) and training samples S in the dataset
as input to the segmentation network which provides a larger
variety of manipulation. The loss function of the segmenta-
tion network is an average, two class softmax cross entropy
loss.

Refinement

The goal of the refinement stage is to draw attention to the
boundary artifacts during training, taking into account the
fact that boundary artifacts play a more pivotal role than
semantic content in detecting manipulations (Bappy et al.
2017; Zhou et al. 2018). While we may be able to employ
prior erasing based adversarial mining methods (Wei et al.
2017; Wang, Shrivastava, and Gupta 2017), they are not suit-
able for our purpose because it will introduce artifacts on the
erased regions that should become authentic background. In-
stead, the refinement stage utilizes the prediction of the seg-
mentation stage to produce new boundary artifacts through
replacing with original regions. As illustrated in Figure 2
(d), given an authentic target image T in which the manipu-
lated regions was inserted, the manipulated image M (which
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Dataset Carvalho In-The-Wild COVER CASIA

Metrics MCC F1 MCC F1 MCC F1 MCC F1
NOI (Mahdian and Saic 2009) 0.255 0.343 0.159 0.278 0.172 0.269 0.180 0.263
CFA (Ferrara et al. 2012) 0.164 0.292 0.144 0.270 0.050 0.190 0.108 0.207
MFCN (Salloum, Ren, and Kuo 2018) 0.408 0.480 - - - - 0.520 0.541
RGB-N (Zhou et al. 2018) 0.261 0.383 0.290 0.424 0.334 0.379 0.364 0.408
EXIF-consistency (Huh et al. 2018)* 0.420 0.520 0.415 0.504 0.102 0.276 0.127 0.204
DeepLab (baseline) 0.343 0.420 0.352 0.472 0.304 0.376 0.435 0.474
GSR-Net (ours) 0.462 0.525 0.446 0.555 0.439 0.489 0.553 0.574

Table 1: MCC and F1 score comparison on four standard datasets. ‘-’ denotes that the result is not available in the literature. *
Our method is 1600 times faster than EXIF-consistency.

could also be the generated image G(M)), and the manipu-
lated boundary prediction P by the segmentation stage, we
replace the pixels in predicted boundaries by the authentic
regions in T and create a novel manipulated image:

M ′ = T � P +M � (1− P ), (8)

where M ′ is the novel manipulated image with new bound-
ary artifacts. The corresponding segmentation ground truth
now becomes

K ′ = K −K � P, (9)

where K ′ is the new manipulated mask for M ′. The new
boundary artifact mask can be extracted in the same way as
the previous step. Notice that the refinement stage utilizes
the target images T to help training, providing more side
information to spot the artifacts. Taking as input the new
manipulated images, the same segmentation network in Fig-
ure 2 (c) then learns to predict the new manipulated bound-
aries and interior regions.

In addition to augment boundary artifacts, the refinement
stage also mines the hard examples during training. Since
the refinement stage is based on predictions from the pre-
vious stage, hard examples where the manipulation regions
are not predicted remain the same after the replacing oper-
ation. As a result, these hard examples weight more during
training after feeding back to the segmentation network.

Similar to (Wei et al. 2017), multiple refinement opera-
tions are possible and there is a tradeoff between training
time and performance. However, the difference is that the
segmentation network in the refinement stage shares weights
with that in the segmentation stage. The weight sharing en-
ables us to use a single segmentation network at inference.
As a result, the network learns to focus more attention on
boundary artifacts with no additional cost at inference time.

Experiments

We evaluate the performance of GSR-Net on four public
benchmarks and compare it with the state-of-the-art meth-
ods. We also analyze its robustness under several attacks.

Datasets and Experiment Setting

Datasets. We evaluate our performance on four datasets
— In-The-Wild (Huh et al. 2018), COVER (Wen et al.
2016), CASIA 1.0 (Dong, Wang, and Tan 2010) and Car-
valho (De Carvalho et al. 2013).

Evaluation Metrics. We use pixel-level F1 score and MCC
as the evaluation metrics when comparing to other ap-
proaches. For fair comparison, following the same measure-
ment as (Salloum, Ren, and Kuo 2018; Huh et al. 2018;
Zhou et al. 2018), we vary the prediction threshold to get
binary prediction mask and report the optimal score over the
whole dataset.

Main Results

In this section, We present our results for the task of manipu-
lation segmentation. We fine-tune our model on CASIA 2.0
from the ImageNet pre-trained model and test directly the
performance on the aforementioned four datasets. We com-
pare with methods described below:
• NoI (Mahdian and Saic 2009): A noise inconsistency
method which predicts regions as manipulated where the lo-
cal noise is inconsistent with authentic regions. We use the
released code (Zampoglou, Papadopoulos, and Kompatsiaris
2017) for evaluation.
• CFA (Ferrara et al. 2012): A CFA based method which
estimates the internal CFA pattern of the camera for ev-
ery patch in the image and segments out the regions with
anomalous CFA features as manipulated regions. The eval-
uation code is public available (Zampoglou, Papadopoulos,
and Kompatsiaris 2017).
• RGB-N (Zhou et al. 2018): A two-stream Faster R-CNN
based approach which combines features from the RGB and
noise channel to make the final prediction. We train the
model on CASIA 2.0 using the code provided by the au-
thors.
• MFCN (Salloum, Ren, and Kuo 2018): A multi-task FCN
based method which harnesses both an edge mask and seg-
mentation mask for manipulation segmentation. Hole filling
is applied for the edge branch to make the prediction. The
final decision is the intersection of the two branches. We di-
rectly report the results from the paper since the code is not
publicly available.
• EXIF-consistency (Huh et al. 2018): A self-consistency
approach which utilizes metadata to learn features useful for
manipulation localization. The prediction is made patch by
patch and post-processing like mean-shift (Cheng 1995) is
used to obtain the pixel-level manipulation prediction. We
use the code provided by the authors for evaluation.
• DeepLab: Our baseline model which adopts DeepLab
VGG-16 model to manipulation segmentation task. No gen-
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Dataset Carvalho In-the-Wild COVER CASIA
DeepLab 0.420 0.472 0.376 0.474
DL + CP 0.446 0.504 0.410 0.503
DL + G 0.460 0.524 0.434 0.506

DL + DIH 0.384 0.421 0.342 0.420
DL + CP + G 0.472 0.528 0.444 0.507

GS-Net 0.515 0.540 0.455 0.545
GSR-Net 0.525 0.555 0.489 0.574

Table 2: Ablation analysis on four datasets. Each entry is the
F1 score tested on individual dataset.

eration, boundary branch or refinement stage is added.
• GSR-Net: Our full model combining generation, segmen-
tation and refinement for manipulation segmentation.

The final results, presented in Table 1, highlight the ad-
vantage of GSR-Net. For supervised methods (Zhou et al.
2018; Salloum, Ren, and Kuo 2018), we train the model
on CASIA 2.0 and evaluate on all the four datasets. For
other unsupervised methods (Mahdian and Saic 2009; Fer-
rara et al. 2012; Huh et al. 2018), we directly test the model
on all datasets. GSR-Net outperforms other approaches by
a large margin on COVER, suggesting the advantage of
our network on copy-move manipulation. Also, GSR-Net
has an improvement on In-The-Wild, CASIA 1.0 and Car-
valho. Additionally, in terms of computation time, EXIF-
consistency takes 1600 times more computation (80 seconds
for an 800 × 1200 image on average) than ours (0.05s per
image). Compared to boundary artifact based methods, our
GSR-Net outperforms MFCN by a large margin, indicating
the effectiveness of the generation and refinement stages. In
addition to that, no hole filling is required since our approach
does not perform late fusion with the boundary branch, but
utilizing boundary artifacts to guide the segmentation branch
instead.

Our method outperforms the baseline model by a large
margin, showing the effectiveness of the proposed genera-
tion, segmentation and refinement stages.

Ablation Analysis

We quantitatively analyze the influence of each component
in GSR-Net in terms of F1 score.
• DL + CP: DeepLab VGG-16 model with just the segmen-
tation output, using simple copy-pasted (no generator) and
CASIA 2.0 images during training.
• DL + G: DeepLab VGG-16 model with just the segmen-
tation output, using generated and CASIA 2.0 images during
training.
• DL + DIH: DeepLab VGG-16 model with just the seg-
mentation output, using the images generated from (Tsai et
al. 2017) and CASIA 2.0 images during training. We adapt
deep image harmonization (DIH) network for the generation
stage as it also manipulate regions.
• DL + CP + G: DeepLab VGG-16 model with just the
segmentation output, using both copy-pasted, generated and
CASIA 2.0 images during training.
• GS-Net: Generation and segmentation network with
boundary artifact guided manipulation segmentation. No re-
finement stage is incorporated.

Dataset Carvalho In-The-Wild COVER CASIA
CP+S 0.343 0.430 0.351 0.242

CP+G+S 0.354 0.441 0.355 0.270
CP+GSR 0.418 0.479 0.381 0.331

Table 3: F1 score manipulation segmentation comparison
trained with COCO annotations.

The results are shown in Table 2. Starting from our
baseline model, simply adding copy-pasted images (DL +
CP) achieves improvement due to broadening the manip-
ulation distribution. In addition, replacing copy-pasted im-
ages with generated images (DL + G) also shows improve-
ment compared to DL + CP on all the datasets as it refines
the boundary from naive copy-pasting. As expected, adding
both copy-pasted images and generated hard examples (DL
+ CP + G) is more useful because the network has access to
a larger distribution of manipulation.

Compared to applying deep harmonization network (DL
+ DIH), our generation approach (DL + G) performs better
as it aligns well with the natural process of manipulation and
has a larger variety of manipulation.

The results also indicate the impact of boundary guided
segmentation network. Directly predicting segmentation
(DL + CP + G) does not explicitly learn manipulation ar-
tifacts, and thus has limit generalization ability compared
to GS-Net, which uses the boundary features as side infor-
mation. Furthermore, GSR-Net boosts the performance on
GS-Net since the refinement stage introduces new boundary
artifacts.

Robustness to Attacks

We apply both JPEG compression and image scaling attacks
to test images of In-The-Wild and Carvalho datasets. We
compare GSR-Net with RGB-N (Zhou et al. 2018), EXIF-
selfconsistency (Huh et al. 2018) using their publicly avail-
able code, and MFCN (Salloum, Ren, and Kuo 2018) using
the numbers reported in their paper. Figure 3 shows the re-
sults, which indicates our approach yields more stable per-
formance than prior methods.

Segmentation with COCO Annotations

This experiment shows how much gain our model achieves
without using the manipulated images in CASIA 2.0. Instead
of carefully manipulated training data, we only utilize the
object annotations in COCO to create manipulated images.
We compare the result of using different training data as fol-
lows:
• CP + S: Only using copy-pasted images to train the seg-
mentation network.
• CP + G + S: Using both copy-pasted and generated im-
ages.
• CP + GSR: Using copy-pasted images and generated im-
ages. The refinement stage is applied.

Results are presented in Table 3. The performance using
only copy-pasted images (CP + S) on the four datasets indi-
cates that our network truly learns boundary artifacts. Also,
the improvement after adding generated images (CP + G +
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(a) In-The-Wild JPEG attack (b) In-The-Wild scale attack (c) Carvalho JPEG attack (d) Carvalho scale attack

Figure 3: Analysis of robustness under different attacks. Attacks with JPEG compression consists of quality factors of 70 and 50;
scale attacks use scaling ratios of 0.7 and 0.5. (a) JPEG compression attacks on In-The-Wild. (b) Scale attacks on In-The-Wild.
(c) JPEG compression attacks on Carvalho. (d) Scale attacks on Carvalho.

Manipulated 
image

Segmentation 
output

Edge output

Ground 
truth

Figure 4: Qualitative visualization. The first row shows ma-
nipulated images on different datasets. The second indicates
the final manipulation segmentation prediction. The third
row illustrates the output of boundary artifacts branch. The
last row is the ground truth.

Authentic Ground Truth Copy Paste Epoch 4 Epoch 20 Epoch 40

Figure 5: Qualitative visualization of the generation net-
work. The first two columns show the authentic background
and manipulation mask. As the number of epochs increases,
the manipulated region matches better with the background
and thus boundary artifacts are harder to identify.

S) shows that our generation network provides useful ma-

nipulation examples that increases generalization. Last, the
refinement stage (CP + GSR) boosts performance further by
encouraging the network to spot new boundary artifacts.

Qualitative Results

Generation Visualization. We illustrate some visualiza-
tions of the generation network in Figure 5. It is clear that the
generation network learns to match the pasted region with
background during training. As a result, the boundary arti-
facts are becoming subtle and the generation network pro-
duces harder examples for the segmentation network.
Segmentation Results. We present qualitative segmenta-
tion results on four datasets in Figure 4. Unsurprisingly, the
boundary branch outputs the potential boundary artifacts in
manipulated images and the other branch fills in the interior
based on the predicted manipulated boundaries. The exam-
ples indicate that our approach deals well with both splic-
ing and copy-move manipulation based on the manipulation
clues from the boundaries.

Conclusion

We propose a novel segmentation framework that firstly uti-
lizes a generation network to enable generalization across
variety of manipulations. Starting from copy-pasted exam-
ples, the generation network generates harder examples dur-
ing training. We also design a boundary artifact guided seg-
mentation and refinement network to focus on manipula-
tion artifacts rather than semantic content. Furthermore, the
segmentation and refinement stage share the same weights,
allowing for much faster inference. Extensive experiments
demonstrate the generalization ability and effectiveness of
GSR-Net on four standard datasets and show state-of-the-
art performance. The manipulation segmentation problem is
still far from solved due to the large variation of manipula-
tions and post-processing methods. Including more manipu-
lation techniques in the generation network could potentially
boost the generalization ability of the existing model and is
part of our future research.
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