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Abstract

Discriminative learning based image denoisers have achieved
promising performance on synthetic noises such as Addi-
tive White Gaussian Noise (AWGN). The synthetic noises
adopted in most previous work are pixel-independent,
but real noises are mostly spatially/channel-correlated and
spatially/channel-variant. This domain gap yields unsatisfied
performance on images with real noises if the model is only
trained with AWGN. In this paper, we propose a novel ap-
proach to boost the performance of a real image denoiser
which is trained only with synthetic pixel-independent noise
data dominated by AWGN. First, we train a deep model
that consists of a noise estimator and a denoiser with mixed
AWGN and Random Value Impulse Noise (RVIN). We then
investigate Pixel-shuffle Down-sampling (PD) strategy to
adapt the trained model to real noises. Extensive experiments
demonstrate the effectiveness and generalization of the pro-
posed approach. Notably, our method achieves state-of-the-
art performance on real sRGB images in the DND benchmark
among models trained with synthetic noises. Codes are avail-
able at https://github.com/yzhouas/PD-Denoising-pytorch.

Introduction

As a fundamental task in image processing and computer
vision, image denoising has been extensively explored in
the past several decades even for downstream applica-
tions (Zhou, Liu, and Huang 2018; Wang et al. 2019). Tra-
ditional methods including the ones based on image filter-
ing (Dabov et al. 2008), low rank approximation (Gu et
al. 2014; Xu et al. 2017; Yair and Michaeli 2018), sparse
coding (Elad and Aharon 2006), and image prior (Ulyanov,
Vedaldi, and Lempitsky 2017) have achieved satisfactory re-
sults on synthetic noise such as Additive White Gaussian
Noise (AWGN). Recently, deep CNN has been applied to
this task, and discriminative-learning-based methods such as
DnCNN (Zhang et al. 2017a) outperform most traditional
methods on AWGN denoising.

Unfortunately, while these learning-based methods work
well on the same type of synthetic noise that they were

∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Basic idea of the proposed adaptation method:
Pixel-shuffle Down-sampling (PD). Spatially-correlated
real noise (Left) is broken into spatially-variant pixel-
independent noise (Middle) to approximate spatially-variant
Gaussian noise (Right). Then an AWGN-based denoiser can
be applied to such real noise accordingly.

trained on, their performance degrades rapidly on real im-
ages, showing poor generalization ability in real world
applications. This indicates that these data-driven denois-
ing models are highly domain-specific and non-flexible to
transfer to other noise types beyond AWGN. To improve
model flexibility, the recently-proposed FFDNet (Zhang,
Zuo, and Zhang 2018) trains a conditional non-blind de-
noiser with a manually adjusted noise-level map. By giving
high-valued uniform maps to FFDNet, only over-smoothed
results can be obtained in real image denoising. There-
fore, blind denoising of real images is still very challeng-
ing due to the lack of accurate modeling of real noise
distribution. These unknown real-world noises are much
more complex than pixel-independent AWGN. They can be
spatially-variant, spatially-correlated, signal-dependent, and
even device-dependent.

To better address the problem of real image denoising,
current attempts can be roughly divided into the follow-
ing categories: (1) realistic noise modeling (Shi Guo 2018;
Brooks et al. 2019; Abdelhamed, Timofte, and Brown 2019),
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(2) noise profiling such as multi-scale (Lebrun, Colom, and
Morel 2015a; Yair and Michaeli 2018), multi-channel (Xu
et al. 2017) and regional based (Liu et al. 2017) settings, and
(3) data augmentation techniques such as the adversarial-
learning-based ones (Chen et al. 2018). Among them, CBD-
Net (Shi Guo 2018) achieves good performance by model-
ing the realistic noise using the in-camera pipeline model
proposed in (Liu et al. 2008). It also trains an explicit noise
estimator and sets a larger penalty for under-estimated noise.
The network is trained on both synthetic and real noises,
but it still cannot fully characterize real noises. Brooks et
al. (Brooks et al. 2019) used prior statistics stored in the
raw data of DND to augment the synthetic RGB data, but
it does not prove the generalization of the model on other
real noises.

In this work, from a novel viewpoint of real image
blind denoising, we seek to adapt a learning-based denoiser
trained on pixel-independent synthetic noises to unknown
real noises. As shown in Figure 1, we assume that real
noises differ from pixel-independent synthetic noises dom-
inantly in spatial/channel-variance and correlation (Stan-
ford 2015). This difference results from in-camera pipeline
like demosaicing (Zhou et al. 2019). Based on this assump-
tion, we first propose to train a basis denoising network us-
ing mixed AWGN and RVIN. Our flexible basis net con-
sists of an explicit noise estimator followed by a condi-
tional denoiser. We demonstrate that this fully-convolutional
nets are actually efficient in coping with pixel-independent
spatially/channel-variant noises. Second, we propose a sim-
ple yet effective adaptation strategy, Pixel-shuffle Down-
sampling(PD), which employs the divide-and-conquer idea
to handle real noises by breaking down the spatial correla-
tion.

In summary, our main contributions include:
• We propose a new flexible deep denoising model (trained

with AWGN and RVIN) for both blind and non-blind im-
age denoising. We also demonstrate that such fully convo-
lutional models trained on spatially-invariant noises can
handle spatially-variant noises.

• We adapt the AWGN-RVIN-trained deep denoiser to
real noises by applying a novel strategy called Pixel-
shuffle Down-sampling (PD). Spatially-correlated noises
are broken down to pixel-wise independent noises. We ex-
amine and overcome the proposed domain gap to boost
real denoising performance.

• The proposed method achieves state-of-the-art perfor-
mance on DND benchmark and other real noisy RGB im-
ages among models trained only with synthetic noises.
Note that our model does not use any images or prior
meta-data from real noise datasets. We also show that with
the proposed PD strategy, the performance of some other
existing denoising models can also be boosted.

Related Work

Discriminative Learning based Denoiser. Denoising
methods based on CNNs have achieved impressive perfor-
mance on removing synthetic Gaussian noise. Burger et al.
(Burger, Schuler, and Harmeling 2012) proposed to apply

multi-layer perceptron (MLP) to denoising task. In (Chen
and Pock 2017), Chen et al. proposed a trainable nonlin-
ear reaction diffusion (TNRD) model for Gaussian noise re-
moval at different level. DnCNN (Zhang et al. 2017a) was
the first to propose a blind Gaussian denoising network us-
ing deep CNNs. It demonstrated the effectiveness of residual
learning and batch normalization. More network structures
like dilated convolution (Zhang et al. 2017b), autoencoder
with skip connection (Mao, Shen, and Yang 2016), ResNet
(Ren, El-Khamy, and Lee 2018), recursively branched de-
convolutional network (RBDN) (Santhanam, Morariu, and
Davis 2017) were proposed to either enlarge the receptive
field or balance the efficiency. Recently some interests are
put into combining image denoising with high-level vision
tasks like classification and segmentation. Liu et al. (Liu
et al. 2017) applied segmentation to enhance the denoising
performance on different regions. Similar class-aware work
were developed in (Niknejad, Bioucas-Dias, and Figueiredo
2017). Due to domain-specific training and deficient realis-
tic noise data, those deep models are not robust enough on
realistic noises. In recently proposed FFDNet (Zhang, Zuo,
and Zhang 2018), the author proposed a non-blind denoising
by concatenating the noise level as a map to the noisy image.
By manually adjusting noise level to a higher value, FFDNet
demonstrates a spatial-invariant denoising on realistic noises
with over-smoothed details.

Blind Denoising on Real Noisy Images. Real noises of
CCD cameras are complicated and are related to optical
sensors and in-camera process. Specifically, multiple noise
sources like photon noise, read-out noise etc. and process-
ing including demosaicing, color and gamma transforma-
tion introduce the main characteristics of real noises: spa-
tial/channel correlation, variance, and signal-dependence.
To approximate real noise, multiple types of synthetic noise
are explored in previous work, including Gaussian-Poisson
(Foi et al. 2008; Liu, Tanaka, and Okutomi 2014), Gaussian
Mixture Model (GMM) (Zhu, Chen, and Heng 2016), in-
camera process simulation (Liu et al. 2008; Shi Guo 2018)
and GAN-generated noises (Chen et al. 2018), to name a
few. CBDNet (Shi Guo 2018) first simulated real noise and
trained a subnetwork for noise estimation, in which spatial-
variance noise is represented as spatial maps. Besides, multi-
channel (Xu et al. 2017; Shi Guo 2018) and multi-scale (Le-
brun, Colom, and Morel 2015a; Yu and Koltun 2015) strat-
egy were also investigated for adaptation. Different from all
the aforementioned works which focus on directly synthe-
sizing or simulating noises for training, in this work, we ap-
ply AWGN-RVIN model and focus on pixel-shuffle adap-
tation strategy to fill in the gap between pixel-independent
synthetic and pixel-correlated real noises.

Methodology

Basis Noise Model

The basis noise model is mixed AWGN-RVIN. Noises in
sRGB images are no longer approximated Gaussian-Poisson
Noises as in the raw sensor data mainly due to gamma trans-
form, demosaicing, and other interpolations etc.. In Figure 2,
we follow (Liu et al. 2008) pipeline to synthesize noisy im-
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Figure 2: Noise Level Function (NLFs) (noise variance as
a function of image intensity) before (first row) and after
(second row) gamma transform and demosaicing. Gamma
factor is 0.39, 1.38 and 2.31 from the left to right column.

Figure 3: Structure of the proposed blind denoising model.
It consists of a noise estimator E and a follow-up non-blind
denoiser R. The model aims to jointly learn the image resid-
ual.

ages, and plot the Noise Level Functions (NLFs) (noise vari-
ance as a function of image intensity) before (first row) and
after (second row) the Gamma Correction transform and de-
mosaicing. From left to right, the Gamma factor increases.
It shows that in RGB images, clipping effect and other non-
linear transforms will greatly influence the originally linear
noise variance-intensity relationship in raw sensor data, even
change the noise mean. Tough complicated, for a more gen-
eral case than Gaussian-Poisson noises of modeling different
nonlinear transforms, real noises in RGB can still be locally
approximated as AWGN (Zhang, Zuo, and Zhang 2018;
Lee 1980; Xu, Zhang, and Zhang 2018). In this paper, we
thus assume the RGB noises to be approximated spatially-
variant and spatially-correlated AWGN.

Adding RVIN for training aims at explicitly resolving the
defective pixels caused by dead pixels of camera hardware
or long exposure frequently appearing in most night-shot
images. We generate AWGN, RVIN and mixed AWGN-
RVIN following PGB(Xu et al. 2016).

Basis Model Structure

The architecture of the proposed basis model is illustrated in
Figure 3. The proposed blind denoising model G consists of
a noise estimator E and a follow-up non-blind denoiser R.
Given a noisy observation yi = F(xi), where F is the noise
synthetic process, and xi is the noise-free image, the model
aims to jointly learn the residual G(yi) ≈ vi = yi−xi, and it

is trained on paired synthetic data (yi, vi). Specifically, the
noise estimator outputs E(yi) consisting of six pixel-wise
noise-level maps that correspond to two noise types, i.e.,
AWGN and RVIN, across three channels (R, G, B). Then
yi is concatenated with the estimated noise level maps E(yi)
and fed into the non-blind denoiser R. The denoiser then
outputs the noise residual G(yi) = R(yi, E(yi)). Three ob-
jectives are proposed to supervise the network training, in-
cluding the noise estimation (Le), blind (Lb) and non-blind
(Lnb) image denoising objectives, defined as,

Le =
1

2N

N∑

i=1

||E(yi; ΘE)− ei||2F , (1)

Lb =
1

2N

N∑

i=1

||R(yi, E(yi; ΘE); ΘR)− vi||2F , (2)

Lnb =
1

2N

N∑

i=1

||R(yi, ei; ΘR)− vi||2F , (3)

where ΘE and ΘR are the trainable parameters of E and R.
ei is the ground truth noise level maps for yi, consisting of
eiAWGN and eiRV IN . For AWGN, eiAWGN is represented
as the even maps filled with the same standard deviation val-
ues ranging from 0 to 75 across R,G,B channels. For RVIN,
eiRV IN is represented as the maps valued with the corrupted
pixels ratio with upper-bound set to 0.3. We further normal-
ize ei to range [0,1]. Then the full objective can be repre-
sented as a weighted sum of the above three losses,

L = αLe + βLb + γLnb, (4)

in which α, β and γ are hyper-parameters to balance the
losses, and we set them to be equal for simplicity.

The proposed model structure can perform both blind and
non-blind denoising simultaneously, and the model is more
flexible in interactive denoising and result adjustment. Ex-
plicit noise estimation also benefits noise modeling and dis-
entanglement.

Pixel-shuffle Down-sampling (PD) Adaptation

Pixel-shuffle Down-sampling. Pixel-shuffle (Shi et al.
2016) down-sampling is defined to create the mosaic by
sampling the images with stride s. Compared to other down-
sampling methods like linear interpolation, bi-cubic interpo-
lation, and pixel area relation, the pixel-shuffle and nearest-
neighbour down-sampling on noisy image would not influ-
ence the real noise distribution. Besides, pixel-shuffle also
benefits image recovery by preserving the original pixels
from the images compared to others. These two advantages
yield the two stages of PD strategy: adaptation and refine-
ment.

Adaptation. Learning-based denoiser trained on AWGN
is not robust enough to real noises due to domain difference.
To adapt the noise model to real noise, here we briefly an-
alyze and justify our assumption on the difference between
real noises and Gaussian noise: spatial/channel variance and
correlation.
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(a) As the stride increases, Left: Estimated noise level on AWGN-
corrupted image. Right: Estimated noise level on real noisy images.

(b) Left: Changing factor rs on AWGN-corrupted images of
CBSD68 and Right: on real noisy images of DND. Different color
lines represent different image samples.

Figure 4: Influence of Pixel-shuffle on noise patterns and
noise estimation algorithms.

Suppose a noise estimator is robust, which means it
can accurately estimate the exact noise level, for a single
AWGN-corrupted image, pixel-shuffle down-sampling will
neither influence the AWGN variance nor the estimation val-
ues, when the sample stride is small enough to preserve the
textural structures. When extending it to real noise case, we
have an interesting hypothesis: as we increase the sample
stride of pixel-shuffle, the estimation values of specific noise
estimators will first fluctuate and then keep steady for a cou-
ple of stride increment. This assumption is feasible because
pixel-shuffle will break down the spatial-correlated noise
patterns to pixel-independent ones, which can be approxi-
mated as spatial-variant AWGN and adapted to those esti-
mators.

We justify this hypothesis on both (Liu, Tanaka, and Oku-
tomi 2013) and our proposed pixel-wise estimator. As shown
in Figure 1, we randomly cropped a patch of size 200× 200
from a random noisy image y in SIDD(Abdelhamed, Lin,
and Brown 2018). We add AWGN with std = 35 to its
noise-free ground truth x. After pixel-shuffling both y and
AWGN-corrupted x, starting from stride s = 2, the noise
pattern of y demonstrates expected pixel independence. Us-
ing (Liu, Tanaka, and Okutomi 2013), the estimation result
for x is unchanged in Figure 4 (a) (Left), but the one for y in
Figure 4 (a) (Right) first increases and begins to keep steady
after stride s = 2. It is consistent with the visual pattern and
our hypothesis.

One assumption of (Liu, Tanaka, and Okutomi 2013) is
that the noise is additive and evenly distributed across the
image. For spatial-variant signal-dependent real noises, our
pixel-wise estimator has its superiority. To make statistics of
spatial-variant noise estimation values, we extract the three
AWGN channels of noise map EAWGN (yi) ∈ RW×H×3,
where W and H are width and height of the input image,
and compute the normalized 10-bin histograms hs ∈ R10×3

across each channel when the stride is s. We introduce the

changing factor rs to monitor the noise map distribution
changes as the stride s increases,

rs = Ec||hsc − h(s+1)c||22, (5)

where c is the channel index. We then investigate the dif-
ference of rs sequence between AWGN and realistic noises.
Specifically, we randomly select 50 images from CBSD68
(Roth and Black 2009) and add random-level AWGN to
them. For comparison, we randomly pick up 50 image
patches of 512×512 from DND benchmark. In Figure 4 (b),
rs sequence remains closed to zero for all AWGN-currupted
images (Left figure), while for real noises rα demonstrates
an abrupt drop when s = 2. It indicates that the spatial-
correlation has been broken from s = 2.

The above analysis inspires the proposed adaptation strat-
egy based on pixel-shuffle. Intuitively, we aim at finding
the smallest stride s to make the down-sampled spatial-
correlated noises match the pixel-independent AWGN. Thus
we keep increasing the stride s until rs drops under a thresh-
old τ . We run the above experiments on CBSD68 for 100
iterations to select the proper generalized threshold τ . After
averaging the maximum r of each iteration, we empirically
set τ = 0.008.

PD Refinement. Figure 5 shows the proposed Pixel-
shuffle Down-sampling (PD) refinement strategy: (1) Com-
pute the smallest stride s, which is 2 in this example and
more digital camera image cases, to match AWGN follow-
ing the adaptation process, and pixel-shuffle the image into
mosaic ys; (2) Denoise ys using G; (3) Refill each sub-
image with noisy blocks separately and pixel-shuffle upsam-
ple them; (4) Denoise each refilled image again using G and
average them to obtain the ‘texture details’ T ; (5) Combine
the over-smoothed ‘flat regions’ F to refine the final result.

As summarized in (Liu et al. 2008), the goals of noise
removal include preserving texture details and boundaries,
smoothing flat regions, and avoiding generating artifacts.
Therefore, in the above step-(5), we propose to further re-
fine the denoised image with the combination of ‘texture de-
tails’ T and ‘flat regions’ F . ‘Flat regions’ can be obtained
from over-smoothed denoising results generated by lifting
the noise estimation levels. In this work, given a noisy ob-
servation y, the refined noise maps are defined as,

ˆE(PD(y))(i, j) = maxi,j E(PD(y))(i, j), i ∈ [1,W ], j ∈ [1, H]. (6)

Consequently, the ‘flat region’ is defined as F =

PU(R(PD(y), ˆE(PD(y)))), where PD and PU are pixel-
shuffle downsampling and upsampling. The final result is
obtained by kF + (1− k)T .

Experiments

Implementation Details

In this work, the structures of the sub-network E and R fol-
low DnCNN (Zhang et al. 2017a) of 5 layers and 20 layers.
For grayscale image experiments, we also follow DnCNN to
crop 50 × 50 patches from 400 images of size 180 × 180.
For color image model, we crop 50× 50 patches with stride
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Figure 5: Pixel-shuffle Down-sampling (PD) refinement
strategy with s = 2.

10 from 432 color images in the Berkeley segmentation
dataset (BSD) (Roth and Black 2009). The training data ra-
tio of single-type noises (either AWGN or RVIN) and mixed
noises (AWGN and RVIN) is 1:1. During training, Adam
optimizer is utilized and the learning rate is set to 10−3, and
batch size is 128. After 30 epochs, the learning rate drops to
10−4 and the training stops at epoch 50.

To evaluate the algorithm on synthetic noise (AWGN,
mixed AWGN-RVIN and spatially-variant Gaussian), we
utilize the benchmark data from BSD68, Set20 (Xu et al.
2016) and CBSD68 (Roth and Black 2009). For realistic
noise, we test it on RNI15 (Online 2015a), DND bench-
mark (Plötz and Roth 2017), and self-captured night photos.
We evaluate the performance of the algorithm in terms of
PSNR and SSIM. Qualitative performance for denoising is
also presented, with comparison to other state-of-the-arts.

Evaluation with Synthetic Noise

Table 1: Comparison of PSNR results on mixture of Gaus-
sian noise (AWGN) and Impulse noise (RVIN) removal per-
formance on Set20.

(σ, r) BM3D WNNM PGB DnCNN-B Ours-NB Ours-B
(10, 0.15) 25.18 25.41 27.17 32.09 32.43 32.37
(10, 0.30) 21.80 21.40 22.17 29.97 30.47 30.32
(20, 0.15) 25.13 23.57 26.12 29.52 29.82 29.76
(20, 0.30) 21.73 21.40 21.89 27.90 28.41 28.16

Mixed AWGN and RVIN. Our model follows similar
structure of DnCNN and FFDNet (Zhang, Zuo, and Zhang
2018), so its performance on single-type AWGN removal is
also similar to them. We thus evaluate our model on elim-
inating mixed AWGN and RVIN on Set20 as in (Xu et al.
2016). We also compare our method with other baselines,
including BM3D (Dabov et al. 2006) and WNNM (Gu et
al. 2014) which are non-blind Gaussian denoisers anchored
with a specific noise level estimated by the approach pro-
vided in (Liu, Tanaka, and Okutomi 2013). Besides, we in-
clude the PGB (Xu et al. 2016) denoiser that is designed for
mixed AWGN and RVIN. The result of the blind version of
DnCNN-B, trained by the same strategy as our model, is also

Table 2: Comparison of PSNR results on Signal-dependent
Noises on CBSD68.

(σs, σc) BM3D FFDNet DnCNN-B CBDNet Ours-B
(20, 10) 29.09 28.54 34.38 33.04 34.75
(20, 20) 29.08 28.70 31.72 29.77 31.32
(40, 10) 23.21 28.67 32.08 30.89 32.12
(40, 20) 23.21 28.80 30.32 28.76 30.33

presented for reference. The comparison results are shown
in Table 1, from which we can see the proposed method
achieves the best performance. Compared to DnCNN-B, for
complicated mixed noises, our model explicitly disentangles
different noises. It benefits the conditional denoiser to differ-
entiate mixed noises from other types.

Signal-dependent Spatially-variant Noise. We conduct
experiments to examine the generalization ability of
fully convolutional model on signal-dependent noise
model (Shi Guo 2018; Foi et al. 2008; Liu, Tanaka, and Oku-
tomi 2014). Given a clean image x, the noises in the noisy
observation y contain both signal-dependent components
with variance xσ2

s and independent components with vari-
ance σ2

c . Table 2 shows that for non-blind model like BM3D
and FFDNet, only scalar noise estimator (Liu, Tanaka, and
Okutomi 2013) is applied, thus they cannot well cope with
the spatially-variant cases. In this experiment, DnCNN-B is
the original blind model trained on AWGN with σ ranged
between 0 and 55. It shows that spatially-variant Gaussian
noises can still be handled by fully convolutional model
trained with spatially-invariant AWGN (Zhang, Zuo, and
Zhang 2018). Compared to DnCNN-B, the proposed net-
work explicitly estimates the pixel-wise map to make the
model more flexible and possible for real noise adaptation.

Evaluation with Real RGB Noise

Qualitative Comparisons. Some qualitative denoising re-
sults on DND are shown in Figure 6. The compared results
of DND are all directly obtained online from the original
submissions of the authors. The methods we include for the
comparison cover blind real denoisers (CBDNet, NI (Online
2015b) and NC (Lebrun, Colom, and Morel 2015b)), and
non-blind Gaussian denoisers (CBM3D, WNNM (Gu et al.
2014), and FFDNet). From these example denoised results,
we can observe that some of them are either noisy (as in
WNNM), or spatially-invariantly over-smoothed (as in FFD-
Net). CBDNet performs better than others but it still suffers
from blur edges and uncleaned background. Our proposed
method (PD) achieves a better spatially-variant denoising
performance by smoothing the background while preserving
the textural details in a full blind setting.

Quantitative Results on DND Benchmark. The images
in the DND benchmark are captured by digital camera and
demosaiced from raw sensor data, so we simply set the stride
number s = 2. We follow the submission guideline of DND
dataset to evaluate our algorithm. Recently, many learning-
based methods like Path-Restore (Yu et al. 2019),RID-
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(a) Noisy Image (b) CBM3D(29.33dB) (c) WNNM(29.80dB) (d) NI(32.29dB)

(e) NC(32.29dB) (f) FFDNet(34.47dB) (g) CBDNet(34.50dB) (h) Ours(s=2, k=0) (36.08dB)

Figure 6: Denoising results on DND Benchmark. Red box indicates texture details while the green box background or edge.

Net (Anwar and Barnes 2019),WDnCNN (Zhao, Lam, and
Lun 2019) and CBDNet, achieved promising performance
on DND, but they are all finetuned on real noisy images,
or use prior knowledge in the meta-data of DND (Brooks
et al. 2019). For fair comparison, we select some repre-
sentative conventional methods(MCWNNM, EPLL, TWSC,
CBM3D), and learning-based methods trained only with
synthetic noises. The results are shown in Table 3. Models
trained on AWGN (DnCNN, TNRD, MLP) perform poorly
on real RGB noises mainly due to the large gap between
AWGN and real noise. CBDNet improves the results signif-
icantly by training the deep networks with artificial realistic
noise model. Our AWGN-RVIN-trained model with PD re-
finement achieves much better results (+0.83dB) than CBD-
Net trained only with synthetic noises, and also boosts the
performance of other AWGN-based methods (+PD). Com-
pared to the base model, the proposed adaptation methods
improve the performance on real noises by 5.8 dB. Note that
our model is only trained on synthetic noises, and does not
utilize any prior data of DND.

Ablation Study on Real RGB Noise

Adding RVIN. Training models with mixed AWGN and
RVIN noises will benefit the removal of dead or over-
exposure pixels in real images. For comparison, We train
another model only with AWGN, and test it on real noisy
night photos. An example utilizing the full pipeline is shown
in Figure 7, in which it demonstrates the superiority of the
existence of RVIN in the training data. Even though model
trained with AWGN can also achieve promising denoising
performance, it is not effective on dead pixels.

Stride Selection. We apply different stride numbers while
refining the denoised results, and compare the visual qual-
ity in Figure 8 (a)(b). For arbitrary given sRGB images, the
stride number can be computed using our adaptation algo-
rithm with the assistance of noise estimator. In our experi-
ments, the selected stride is the smallest s that rs < τ . Small

Table 3: Comparison of PSNR and SSIM on DND Bench-
mark. PD: Pixel-suffle Down-sampling Strategy. Among all
models trained only with synthetic data.

Method PSNR SSIM
MCWNNM(Xu et al. 2017) 37.38 0.929
EPLL(Zoran and Weiss 2011) 33.51 0.824
TWSC(Xu, Zhang, and Zhang 2018) 37.93 0.940
MLP(Burger, Schuler, and Harmeling 2012) 34.23 0.833
TNRD(Chen and Pock 2017) 33.65 0.830
CBDNet(Syn)(Shi Guo 2018) 37.57 0.936
CBM3D(Dabov et al. 2008) 34.51 0.850
CBM3D(+PD) 35.02 0.873
CDnCNN-B(Zhang et al. 2017a) 32.43 0.790
CDnCNN-B(+PD) 35.44 0.876
FFDNet(Zhang, Zuo, and Zhang 2018) 34.40 0.847
FFDNet(+PD) 37.56 0.931
Our Base Model(No PD) 32.60 0.788
Ours(Full Pipeline) 38.40 0.945

Table 4: Ablation study on refinement steps.

Model (s=1) (s=3, Full) (s=2,I) (s=2,DI) (s=2,Full)
PSNR 32.60 37.90 37.00 37.20 38.40
SSIM 0.7882 0.9349 0.9339 0.9361 0.9452

stride number will treat large noise patterns as textures to
preserve, as shown in Figure 8 (b). While using large stride
number tends to break the textural structures and details. In-
terestingly, as shown in Figure 8 (b), the texture of the fabric
is invisible while applying s > 2.

Image Refinement Process. The ablation on the refine-
ment steps is shown in Figure 8 (c)(d) and Table 4, in which
we compare the denoised results of I (i.e. directly pixel-
shuffling upsampling after step (2)), DI (i.e. denoising I us-
ing G), and Full (i.e. the current whole pipeline). It shows
that both I and DI will form additional visible artifacts, while
the whole pipeline smooths out those artifacts and has the
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(a) Noisy image (b) AWGN only (c) AWGN-RVIN

Figure 7: Denoised performance of models trained with
AWGN in (b) and mixed AWGN-RVIN in (c). During test-
ing, k = 0 and s = 2.

(a) Noisy image (b) Denoised. (c) Noisy Image (d) Denoised.

Figure 8: (a)(b):Denoised performance of different stride s
when k = 0, and (c)(d): Ablation study on refinement. s = 2
and k = 0.

best visual quality.

Blending Factor k. Due to the ambiguity nature of fine
texture and mid-frequent noises, human perception inter-
vene on the denoising level is inevitable. k is this parameter
introduced as a ’linear’ adjustment of denoising level for a
more flexible and interactive user operation. Using blending
factor k is more stable and safe to preserve the spatially-
variant details than directly adjusting the estimated noise
level like CBDNet. In Figure 9, as k increases, the denoised
results tend to be over-smoothed. This is suitable for im-
ages with more background patterns. However, smaller k
will preserve more fine details which are applicable for im-
ages with more foreground objects. In most cases, users can
simply set k to 0 to obtain the most detailed textures recov-
ery and visually plausible results.

Conclusions

In this paper, we revisit the real image blind denoising from
a new viewpoint. We assumed the realistic noises are spa-
tially/channel -variant and correlated, and addressed adapta-
tion from AWGN-RVIN noises to real noises. Specifically,
we proposed an image blind and non-blind denoising net-
work trained on AWGN-RVIN noise model. The network
consists of an explicit multi-type multi-channel noise es-
timator and an adaptive conditional denoiser. To general-
ize the network to real noises, we investigated Pixel-shuffle
Down-sampling (PD) refinement strategy. We showed qual-
itatively that PD behaves better in both spatially-variant de-
noising and details preservation. Results on DND bench-
mark and other realistic noisy images demonstrated the
newly proposed model with the strategy are efficient in

(a) Noisy (b) 0 (c) 0.3 (d) 0.5 (e) 0.8 (f) 1

Figure 9: Ablation study on merging factor k, and s = 2.

processing spatial/channel variance and correlation of real
noises without explicit modeling.
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