
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Towards Omni-Supervised Face Alignment for Large Scale Unlabeled Videos

Congcong Zhu,1,2 Hao Liu,2,3∗ Zhenhua Yu,2,3 Xuehong Sun2,3

1School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
2School of Information Engineering, Ningxia University, Yinchuan, 750021, China

3Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence
Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan, 750021, China

congcong.zhu nxu@outlook.com, {liuhao, zhyu, sunxh}@nxu.edu.cn

Abstract

In this paper, we propose a spatial-temporal relational rea-
soning networks (STRRN) approach to investigate the prob-
lem of omni-supervised face alignment in videos. Unlike ex-
isting fully supervised methods which rely on numerous an-
notations by hand, our learner exploits large scale unlabeled
videos plus available labeled data to generate auxiliary plau-
sible training annotations. Motivated by the fact that neigh-
bouring facial landmarks are usually correlated and coher-
ent across consecutive frames, our approach automatically
reasons about discriminative spatial-temporal relationships
among landmarks for stable face tracking. Specifically, we
carefully develop an interpretable and efficient network mod-
ule, which disentangles facial geometry relationship for every
static frame and simultaneously enforces the bi-directional
cycle-consistency across adjacent frames, thus allowing the
modeling of intrinsic spatial-temporal relations from raw face
sequences. Extensive experimental results demonstrate that
our approach surpasses the performance of most fully super-
vised state-of-the-arts.

Introduction

Face alignment (a.k.a., facial landmark detection) aims to
detect multiple facial landmarks for the given facial image
or video sequence, which has dominated a crucial step in
many facial analysis tasks such as face identification and
recognition (Hu, Lu, and Tan 2014; Liu et al. 2019a) and
face animation (Roth, Tong, and Liu 2015; Liu et al. 2016).
While significant works have been devoted to face alignment
recently (Liu et al. 2019b; Wu et al. 2018; Kumar and Chel-
lappa 2018), the practical performance hardly meets the pre-
cise requirements in the scenario of performing large scale
unlabeled videos. The major reasons are two-fold: 1) Exist-
ing methods intensely rely on the sheer volume of training
annotations. 2) It is tedious to annotate the spatial-temporal
structures on the massive set of frames. Hence, we are sup-
posed to propose an accurate and robust face alignment al-
gorithm to automatically annotate the large amounts of un-
labeled face videos.

∗Corresponding Author is Hao Liu.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Spatial Dendritic Relational Constraint

(b) Temporal Cycle-Consistent Relation

Figure 1: Insight of our proposed STRRN. Our method pro-
cesses the large scale unlabeled video by automatically dis-
tilling the spatial-temporal knowledge, i.e., a) exploiting the
facial geometry relationship by holding a dendritic structure,
b) enforcing the bi-directional cycle-consistency temporally
on consecutive frames. We leveraged these self-supervised
spatial-temporal relations to generate extra reliable training
annotations for model update.

Throughout recent literatures, face alignment is domi-
nated by the regression-based approaches (Trigeorgis et al.
2016; Wu et al. 2018; Kumar and Chellappa 2018; Guo, Lu,
and Zhou 2018; Liu et al. 2019b; 2018), which typically seek
discriminative feature-to-shape mappings with preserving
the shape constraint. Methods such as LAB (Wu et al. 2018)
and PCD-CNN (Kumar and Chellappa 2018) impose the rel-
ative geometry among multiple landmarks, making the plug-
in module pose-invariant for accurate performance. How-
ever, these fully-supervised methods require large amounts
of precise hand-crafted annotations for training and cannot
be directly adopted for unlabeled data. Besides the spatial
relationship, video-based methods such as CCR (Sánchez-
Lozano et al. 2016) and TSTN (Liu et al. 2018) enforces
the consistency relation temporally across adjacent frames,
which improves the stableness versus the jitter problem dur-
ing tracking. One major issue in this type of method is
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that the training efficiency still relies on the tremendous
volume of per-frame annotations, where it is challenging
to manually annotate numerous frames. To address this is-
sue, we investigate into the omni-supervised learning to-
wards face alignment inspired by (Radosavovic et al. 2018;
Dong et al. 2018). Our basic idea aims at reasoning dis-
entangling spatial-temporal relationship by exploiting large
scale unlabeled videos plus all available training annota-
tions. The self-reasoned spatial-temporal relation allows us
to trust their predictions on the unseen video data. The intu-
itive idea is presented in Fig. 1.

To tackle the omni-supervised face alignment, we propose
a spatial-temporal relational reasoning networks (STRRN)
approach, which automatically distills interpretable knowl-
edge of large scale unlabeled video data. To produce plau-
sible training annotations for model update, our approach
reasons about meaningful relations of unlabeled videos in
both the spatial and temporal dimensions accordingly. For
modeling of the spatial relation, we first divide the whole
face into different semantic components (e.g., eyes, nose,
mouth, facial cheek and etc.), where the nose is assumed
as the root. Then our STRRN disentangles the component-
based appearance and geometric information with preserv-
ing a dendritic structure. For modeling of the temporal rela-
tion, we ensure that our model tracks forward until the tar-
get and it should arrive the starting position in the backward
order. This principally enforces the cycle-consistent tempo-
ral relation on consecutive frames for reliable tracking. To
learn the network parameters, we adopt a cooperative and
competitive strategy to exploit the complementary informa-
tion from both the tracking module and the backbone de-
tector. Fig. 2 shows the detailed network architecture of the
proposed STRRN. To evaluate the effectiveness of our pro-
posed approach, we carry out extensive experiments on folds
of large scale unlabeled video datasets and experimental re-
sults indicate compelling performance versus state-of-the-
art methods.

Related Work
We briefly review some related literatures of existing face
alignment methods and knowledge distillation models.

Conventional Face Alignment: Existing face alignment
methods are roughly classified into image-based (Cao et
al. 2012; Xiong and la Torre 2013; Zhu et al. 2015;
Ren et al. 2014) and video-based (Sánchez-Lozano et al.
2016; Tzimiropoulos 2015). Earlier shallow models in-
tend to seek a sequence of discriminative linear feature-to-
shape mappings, so that the initialized shape is adjusted
to the target one in a coarse-to-fine manner. Represen-
tative cascade regression-based methods include explicit
shape regression (ESR) (Cao et al. 2012), supervised de-
scent method (SDM) (Xiong and la Torre 2013) and coarse-
to-fine shape searching (CFSS) (Zhu et al. 2015). To make
the image-based methods suitable for video data, one com-
mon solution is to regard the outcomes of previous frames
as initializations for the following frames via a tracking-by-
detection method (Wang et al. 2015). However, this method
could only extract 2D spatial appearances from static im-
ages and cannot explicitly exploit the temporal information

on consecutive frames. To circumvent this problem, video-
based methods (Sánchez-Lozano et al. 2016; Tzimiropou-
los 2015; Haris Khan, McDonagh, and Tzimiropoulos 2017)
learn to memorize and flow the temporal consistency infor-
mation across frames, which improves the robustness to the
jitter problem in visual tracking. However, one major issue
in these methods is that these linear mappings are too weak
to exploit the complex and nonlinear relationship between
image pixels and shape variations in unconstrained environ-
ments.

Deep Neural Networks for Face Alignment: These
years have witnessed that deep learning (Krizhevsky,
Sutskever, and Hinton 2012; Lecun, Bengio, and Hinton
2015) contributes breakthroughs in face alignment (Guo,
Lu, and Zhou 2018; Trigeorgis et al. 2016; Wu et al. 2018;
Kumar and Chellappa 2018; Sun, Wang, and Tang 2013;
Zhang et al. 2014; Jourabloo et al. 2017; Liu et al. 2019b;
2018; Peng et al. 2016), which achieves improvements by
taking advantages of nonlinear regression and end-to-end
feature learning. Representative deep learning-based meth-
ods include mnemonic descent method (MDM) (Trigeor-
gis et al. 2016), two-stream transformer networks (Liu et
al. 2018), pose conditioned dendritic convolutional neural
networks (PCD-CNN) (Kumar and Chellappa 2018), Hour-
Glass Network (HGN) (Newell, Yang, and Deng 2016) and
a look-at-boundary (LAB) method (Wu et al. 2018). How-
ever, most methods are performed by fully supervised learn-
ing and likely give rise to the upper-bounded performance
with existing labeled data (Radosavovic et al. 2018). More-
over, it is difficult to manually annotate the massive set of
adjacent frames in practice. More recently, reinforcement
learning (Williams 1992) is introduced to face alignment re-
cently (Liu et al. 2019b; Guo, Lu, and Zhou 2018), which
teaches a policy to select actions sequentially by obtaining a
greater feedback value each time. The same sense has been
discussed in (Xiong and la Torre 2015) that cascade regres-
sion can be considered as a simple and nature case of imita-
tion learning. In contrast to prior efforts, our approach aims
to reason about meaningful knowledge from amounts of un-
labeled data. Meanwhile, both the spatial geometry relation-
ship and temporal dependency information are simultane-
ously exploited in a unified deep learning architecture. As a
result, our architecture serves as a scalable solution for pro-
cessing large scale unlabeled data source.

Knowledge Distillation Models: Knowledge distillation
targets on making predictions on unlabeled data and further
using them to update the model, which has been adopted in
various scenarios such as visual detection (Radosavovic et
al. 2018; Chou, Chien, and Chen 2018; Chu et al. 2016) and
model compression (Romero et al. 2015; Gupta, Hoffman,
and Malik 2016). For example, Romero et al. (Gupta, Hoff-
man, and Malik 2016) adopts a shallow and wider teacher
model to learn a thin and deep student model. Without train-
ing a large set of models, Radosavovic et al. (Radosavovic
et al. 2018) presented a data distillation method to infer-
ring predictions from unlabeled data by multiple transfor-
mations, resulting new training annotations. Our work is
mostly related to a supervised-by-registration (SBR) (Dong
et al. 2018) method where the detector’s predictions on unla-
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Figure 2: Network design of our STRRN. Overall, our method processes in a bi-directional tracking routing, which is visualized
in the blue arrow (forward) and brown arrow (backward). For each routing, our architecture incorporates with the spatial and
temporal modules. Accordingly, the spatial module is fed with the current frame and initialized landmarks (tracked results of
previous frame). Then the module reasons about both the spatial appearance and geometry relationship, resulting discriminative
features with preserving a dendritic-structure. Having obtained these features, we directly feed them to a neural networks (NN)
structure to track landmarks in the temporal module. The network parameters of both directions are shared, thus allowing
the temporal modeling of cycle-consistent relation for stabling tracking. During learning phase, the STRRN is self-supervised
based on the outcomes of the backbone detector. This figure is best viewed in color pdf file.

beled data are leveraged to train itself. However, SBR (Dong
et al. 2018) ignores the spatial geometric relationship of
neighbouring landmarks, thus likely making bias predic-
tions during tracking. On contrast, in our approach, we auto-
matically reason the meaningful spatial-temporal knowledge
from large scale unlabeled videos by following the success
of the relation networks framework (Hu et al. 2018). As a
result, the dendritic geometry in the spatial dimension and
cycle-consistency in the temporal dimension are simultane-
ously exploited to generate reliable new annotations.

Learning Spatial-Temporal Relational

Reasoning Networks

In our approach, the main goal aims to address the omni-
supervised face alignment for large scale unlabeled videos.
The basic idea is to distill spatial-temporal knowledge
from numerous amounts of unlabeled frames, thus gen-
erating extra reasonable training annotations. To achieve
this, we propose a spatial-temporal relational reasoning net-
works (STRRN) architecture which consists of the spa-
tial and temporal modules. Specifically, our architecture
typically reasons about tree-structural relationship spatially
based on the appearance and geometry features. Tempo-
rally, we enforce the bi-directional cycle-consistency rela-
tion across consecutive frames for robust landmark tracking.

Fig. 2 demonstrates the network design which incor-
porates with the bi-directional executions of the STRRN.
Suppose we have an downloaded unlabeled video set
D = {It

i}1:T1:N with N video clips, where {Ii}1:T =
{I1

i , I
2
i , ..., I

t
i , ..., I

T
i } denotes each face sequence that con-

sists of T frames. It is valuable to stress that we assume

that each face frame to be tracked is already cropped by
the learned face detector (Zhang et al. 2016a). Let pt =
[(x1, y1), (x2, y2), · · · , (xL, yL)]

t ∈ R
2L×1 denote the co-

ordinates of the facial shape vector for the tth frame, where
L specifies the landmark quality within the whole face (e.g.,
68 landmarks in 300-W (Sagonas et al. 2016)). For nota-
tion brevity, we assume there is only one unlabeled video
with T frames and thus ignore the video index i. The main
objective of face tracking in videos is to transform face
sequence It (a set of local patches cropped based on the
previous outcomes) to the shape coordinates pt at time t.
One alternative to model the shape coordinates is to regress-
ing a set of heat maps by feeding the entire face image
like (Kumar and Chellappa 2018; Wu et al. 2018), which
indicates the superiority on promoting the alignment perfor-
mance. However, face tracking in videos is always sensitive
to the detection. That is, the low-quality detections probably
cause the drifting issue for tracking results. How to achieve
the synergy between detection and tracking is investigated
in (Haris Khan, McDonagh, and Tzimiropoulos 2017; Guo,
Lu, and Zhou 2018), which appears beyond the range of this
work. Next, we describe the network specification for the
spatial and temporal modules accordingly in our proposed
STRRN. Moreover, we present the detailed training proce-
dure.

Spatial Relational Reasoning Module: It has been stud-
ied that conditioning structural information of neighbouring
landmarks provides much potential to promote the perfor-
mance (Belhumeur et al. 2011; Liu et al. 2017; Kumar and
Chellappa 2018). Inspired by this, the motivation of our spa-
tial module aims at disentangling a dendritic geometry rela-
tionship based on the tracked results of precious frame and
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then tracking on the current face frame. To exploit the ge-
ometry relation, we first divide the whole landmarks p into
C components using the tracked results of previous frame,
e.g., facial cheek, left eye, right eye, nose, mouth, by strictly
following the standard of the 300-W annotations1. Based on
the initialized landmarks, we extract a set of raw patches and
divide them to C groups. Let It(pt

c, d) represent raw patches
cropped from the t-th frame via the initialized shape vector
p, where c denotes the group identity up to C and the patch
size is assigned to d (ignored for simplicity). Within each
group, we compute the coupled appearance feature and ge-
ometry feature via deep neural networks. Specifically, we
embed the raw patches to the immediate features in each
group as (ignoring the patch index):

f t
A = σ(WA · It(pt−1) + bA), (1)

where the parameters {WA, bA} specify the spatial ap-
pearance weights and σ(·) is the nonlinear function, e.g.,
ReLU (Krizhevsky, Sutskever, and Hinton 2012), respec-
tively.

For the description of the geometry relation, we com-
pute the relation feature by the comparisons of the paired
(m,n) patches within each group. To make it invariant
to affine transformations due to different poses, we as-
sume the nose as the base location for robust feature learn-
ing. More specifically, we compute the geometry features
(φm

G ,φn
G) (simply ignoring the time-stamp index) of the

paired patches by concatenating the relative distance vector
[log(|xm−xn|), log(|ym−yn|)] and the pose-invariant vec-
tor [log(|xm − x∗|), log(|ym − y∗|)] (x∗ and y∗ specify the
horizontal and vertical coordinates of the nose, respectively).
To exploit the complexly nonlinear spatial relationship, we
embed these geometric features into the high-dimensional
feature representations as

f t
G(m) = σ(WG · CONCAT[φm

G ,φn
G] + bG), (2)

where {WG, bG} are the spatial geometric weights and
CONCAT(·) denotes the concatenation operator. For each
group, we perform the spatial relation features via addition,

f t
SR = CONCAT[f t

G,f
t
A(1), · · · ,f t

A(m)], (3)

where f t
G specifies the holistic geometric feature concate-

nation across all groups. Note that f t
A(m) specifies the ap-

pearance feature for m-th group where m is the landmark
scalability for each group.

Lastly, we concatenate all the embedded features into one
long feature vector f t

SR across m groups for the tth frame.
Furthermore, we feed the spatial relation feature fSR into a
tiny convolutional network to estimate landmark positions
of following frames.

In summary, the spatial module learns the correlation
of neighbouring landmarks by grouping them separately.
By exploiting local appearance for each facial group, it
guides landmarks moving towards more plausible predic-
tion. Moreover, our module reasons with the nose-centered
geometric relations, which enforces view-consistency for ro-
bust landmark tracking versus various view changes (Zavan
et al. 2016).

1https://ibug.doc.ic.ac.uk/resources/300-W/

Temporal Relational Reasoning Module: In the term
of the temporal module, our goal is to reason about the
bi-directional cycle-consistent relation between adjacent
frames. In other words, the module ensures that our tracker
proceeds forward along the video and it should arrive at the
starting position in the backward order. Thus, this allows
our model to reason with the cycle-consistency constraint of
unlabeled videos for stabling temporal modeling (Meister,
Hur, and Roth 2018). To achieve this, we learn two trackers
parameterized by the designed deep neural networks, play-
ing the video forward and backward accordingly. In order to
minimize the discrepancy of tracked results in both forward
and backward orders, we employ a cycle-consistency check
function to evaluate the tracking reliability.

As demonstrated in Fig. 2, there are two steps for each
tracker. First, we regard the tracked results pt to perform
the spatial relation feature f t+1

SR on It+1 via the proposed
spatial module. Sequentially, we feed the feature f t+1

SR to a
forward-NN to estimate the landmarks p̂t+1 on the (t+ 1)th
frame. In the similar manner on the tth frame It, we em-
ploy the tracked landmarks pt+1 as the initialization to per-
form the spatial relation feature f t

SR. Having obtained f t
SR,

we pass it to the backward-NN and achieve the feedback re-
sults p̂t. Both the forward and backward tracking executions
are formulated as follows:

p̂t+1 = NNbackward(f
t+1
SR ), p̂t = NNforward(f

t
SR), (4)

where NNforward(·) and NNbackward(·) denote the neural net-
works with multiple layers, aiming to estimate the coordi-
nates of the landmarks. Moreover, the parameters both for-
ward and backward networks are shared. To make the track-
ing process efficient, we leveraged a squeezed deep archi-
tecture which is equipped with only a few layers of convo-
lutions, max pooling, nonlinear ReLU activation and fully
connection.

To further evaluate the reliability of the cyclic execu-
tion, we compute the cycle-consistency check function,
which ensures that the tracked landmarks should be re-
traced back again to the start. By doing this, our premise
is that if the tracked results of the forward-tracker are plau-
sible, the landmarks should return to the same positions af-
ter tracking in the backward order. In this way, our method
achieves reliable tracking results with the bi-directional
cycle-consistency check temporally across adjacent frames.
The check loss is computed as follows:

L = ‖p̂t − pt‖22, (5)

where ‖ · ‖ denotes the �2 norm to measure the discrepancy
between the tracked and feedback results.

Training Procedure: In our approach, we investigate into
the omni-supervised setting of face alignment particularly
for large scale unlabeled video data. Targeting on omni-
supervised learning, our method learns to trust the predic-
tions across the massive amounts of frames and moreover in-
cludes these proxy predictions as training annotations. Since
our tracker module may not always succeed, the predic-
tions are not directly considered as the reliable training su-
pervision signals. Hence, to make the prediction robust for
the model update, we leverage a backbone detector, e.g.,
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Figure 3: Training procedure of our STRRN. Basically, there
are two complementary steps: 1) We pass frames onto our
STRRN by distilling the spatial-temporal relation and per-
form the tracked results. 2) We utilize the backbone detector
to evaluate the tracked results. Consequently, our tracker is
self-supervised by justifying the reliability of both the cycle-
consistency and the detected results. This really allows our
model to trust these reasoned predictions for robust and effi-
cient training.

MDM (Trigeorgis et al. 2016) and HGN (Newell, Yang,
and Deng 2016), learned by amounts of annotated images,
to evaluate the tracking reliability. With the detector, our
tracker is iteratively refined by the reliable reasoned train-
ing data itself, offering much potential to surpass the perfor-
mance of existing fully-supervised approaches.

As illustrated in Fig. 3, our training procedure justifies
two-fold scenarios: 1) The higher reliability will be given
when the tracking results pt

tck go back again to the start
p̂t−1

tck , where the discrepancy Ltck enforces the temporal con-
tinuity in our STRRN. 2) A negative feedback is provided
when the discrepancy Ldet between backward-tracked re-
sults p̂t−1

tck and those pt−1
det generated by the backbone image-

based detector. This means the performance degrades to the
pre-trained backbone detector when we undergo imprecise
and unreliable tracking results.

To exploit the model update, we select the reliable outputs
of both tracking and detection by minimize the complete loss
functions of Ldet and Ltck as follows:

Lensemble =

T∑

t=1

Lt
tck + λ

T∑

t=1

Lt
det, (6)

where λ is the weight of the ensemble for both detected and
tracked results. With (6), our method achieves to be self-
supervised by reasoning with the reliable tracking. This prin-
cipally benefits from the competitive and cooperative execu-
tions of our tracker and the backbone detector. Moreover,
the complementary feedback of both parts leads to reliable
new training annotations Ddet and Dtck, where Ddet and Dtck
denote the detected and tracked for module update. Algo-
rithm 1 shows the detailed pseudocode for training proce-
dure.

Experiments

To justify the effectiveness of the proposed STRRN, we rep-
resent folds of experimental results and analysis based on
three downloaded large scale video datasets.

Algorithm 1: Training Procedure of Our STRRN

Input: Training set: D = {It}t=1:T (ignoring sample i
for simplity) and S (samples from 300-W).

Output: Network parameters: {WA, bA}, {WG, bG},
NNforward and NNbackward.

1 //Training the backbone Detector (Both MDM and
HGN were employed in the experiments);

2 for t ∈ video < T do
3 /*Detecting on the tth frame:*/
4 pt

det = Detector(It);
5 /*Forward tracking on the tth frame:*/

pt
tck = Forward-STRRN(It,pt−1

det );
6 /*Backward tracking based on detected

landmarks:*/
p̂t−1

det = Backward-STRRN(It−1,pt
det);

7 /*Backward tracking based on tracked landmarks:*/
p̂t−1

tck = Backward-STRRN(It−1,pt
tck);

8 /*Criticizing the tracking reliability by the detection
according to (5):*/

9 Ldet = ‖p̂t−1
det − pt−1

det ‖22, Ltck = ‖p̂t−1
tck − pt−1

det ‖22;
10 /*Generating new training annoations by

thresholding T :*/
11 if Ldet,Ltck < T then
12 if Ltck > Ldet then

13 Dtck ← Dtck ∪ (It,pt
det);

14 end

15 Ddet ← Ddet ∪ (It,pt
tck) ;

16 end

17 end
18 /*Data distilling and model re-training;*/
19 Train(Detector, Ddet ∪ S); Train(STRRN,Dtck);
20 Return: {WA, bA}, {WG, bG}.

Evaluation Datasets: 300VW (Shen et al. 2015): The 300
Videos in the Wild (300VW) Dataset was collected specific
for video-based face alignment. The dataset contains 114
videos captured in various conditions and each video has
around 25-30 images every second. By following (Shen et al.
2015), we utilized 50 sequences for training and the remain-
ing 64 sequences were used for testing. The whole testing
set was divided into three categories: well-lit, mild uncon-
strained and challenging. In particular, the Category Three
exploits many difficult cases of face sequences, which high-
lights the superiority of the proposed approach. It is valu-
able to note that we leveraged the 300-W (Sagonas et al.
2016) training set to initialize our backbone detector. In our
approach, we mainly improved the tracker module by ex-
ploiting large scale unlabeled videos, which is quite differ-
ent from SBR (Dong et al. 2018) principally to reinforce
the landmark detector. Hence, we do not justified the supe-
riority of our method on the image-based datasets such as
300-W (Sagonas et al. 2016).

YouTube-Face (Wolf, Hassner, and Maoz 2011) and
YouTube-Celebrities(Kim et al. 2008): We also leveraged
two large scale unlabeled video datasets including YouTube-
Face (Wolf, Hassner, and Maoz 2011) and YouTube-
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Table 1: Comparisons of averaged errors of our proposed
STRRN with the state-of-the-arts (68-lms, in chronologi-
cal ranking). It can be seen from the results that our un-
supervised STRRN outperforms both the unsupervised SBR
and other fully supervised approaches. Moreover, the per-
formance of both the backbone MDM and HGN is promoted
by integrating with our STRRN.

Method Cate-1 Cate-2 Cate-3

CFSS (2015) 7.68 6.42 13.67
TCDCN (2015) 7.66 6.77 14.98
CCR (2016) 7.26 5.89 15.74
iCCR (2016) 6.71 4.00 12.75
MDM (2016) 9.88 8.14 9.81
HGN (2016) 6.12 5.33 7.04
TSTN (2018) 5.36 4.51 12.84
SBR (2018) 5.77 4.90 12.66
STRRN (Backbone-MDM) 5.03 4.74 6.63
STRRN (Backbone-HGN) 5.31 4.77 8.06

† Semi-STRRN−50 4.21 4.18 5.16

† Semi-STRRN−25 4.49 4.05 5.88

† Semi-STRRN−10 4.67 4.00 5.93

† −50,−25 and−10 denote the percentages of 300VW an-
notations were employed for our STRRN training, respec-
tively.

Celebrities(Kim et al. 2008) for evaluation. Specifically,
YouTube-Face consists of 3425 video clips with 1595 per-
son identities, while YouTube-Celebrities consists of videos
with 35 celebrities which undergo large variations due to dif-
ferent poses, illumination and partial occlusions. By follow-
ing the setting in SBR (Dong et al. 2018) which is also de-
signed suitable to unlabeled videos , we filtered these videos
with low resolution and trained our STRRN unsupervisedly.

Experimental Setup: Following the evaluation protocol
employed in (Liu et al. 2018), we computed the root mean
squared error (RMSE) normalized by the inter-pupil dis-
tance (Xiong and la Torre 2013; Sagonas et al. 2016) and
cumulative error distribution (CED) curves for comparisons
in our experiments. To be specific, we performed the RMSEs
of all frames within each category in 300VW and then aver-
aged them as final performance. Moreover, we leveraged the
CED curves of RMSE errors to quantitatively evaluate the
performance. Besides, as discussed in MDM (Trigeorgis et
al. 2016), there is no consistent way of the normalized fac-
tors for alignment, e.g., inter-ocular distance (Xiong and la
Torre 2013; Sagonas et al. 2016) or inter-pupil distance (Zhu
et al. 2015; Cao et al. 2012). To clarify the results, we also
computed the area-under-the-curve (AUC) by respectively
thresholding the RMSEs at 0.05 and 0.08.

For each video to be aligned, we rescaled each face frame
in the size of [315 × 315]. Our spatial relational reasoning
module accepts L raw patches, where L is assigned 68 ac-
cording to the 300-W annotation and each patch is rescaled
in size of 30× 30. For hyper-parameters in our STRRN, we
empirically set the discounted factor λ to 0.4 and the thresh-
olding T to the normalized RMSE 0.02 during generating
extra training annotations. More details will be made pub-
licly in our release model and source code.

Comparisons with State-of-the-art Methods: We com-

pared our proposed STRRN with image-based meth-
ods (Xiong and la Torre 2013; Zhu et al. 2015; Zhang et
al. 2016b; Trigeorgis et al. 2016) and video-based meth-
ods (Sánchez-Lozano et al. 2016; Liu et al. 2018), where
these methods were fully supervised by large amounts of
annotations. For fair comparisons, we re-produced the re-
sults with their released codes or cropped the reported re-
sults from their original papers. Note that only our STRRN
and SBR (Dong et al. 2018) only leveraged 300-W images
for model training.

To investigate the effectiveness of our proposed approach,
we compared our approach with the state-of-the-art face
alignment methods, which were designed for both static
images and tracking in videos via a fully-supervised man-
ner. For fair comparisons, we first discarded all annotations
for model training by following the unsupervised setting.
Hence, we did not compare our STRRN with the newly-
proposed supervised method dubbed FHR (Tai et al. 2019).
To further highlight the advantage of our approach, we
trained our model by only a subset of annotations, which
is termed as Semi-STRRN in Table 1, which tabulates the
comparisons of our method with the state-of-the-arts in both
unsupervised and semi-supervised on the 300VW datasets.
From these results, we see that our proposed STRRN sig-
nificantly outperforms other face alignment methods by a
large margin especially on the challenging 300VW Cate-
gory Three. This is mainly because our cycle-consistent ex-
ecution exploits more interpretable cues to learn discrim-
inative spatial-temporal features for robust face tracking.
Moreover, seeing from Table 1 which tabulates the compar-
isons of STRRN versus semi-STRRN, we found that even
with weakly-labeled supervision signals, we still perform
very compelling results on the challenging cases includ-
ing large poses, diverse expressions and severe occlusions.
This also demonstrates the effectiveness of the proposed
spatial-temporal relation modeling of the bidirectional or-
ders, where these learned temporal relations are helpful to
reinforce the tracking stabilization.

Lastly, we investigated the effectiveness of the tempo-
ral relational reasoning module in our STRRN. We used
SBR (Dong et al. 2018) as the baseline method. Both our
method and SBR (Dong et al. 2018) were learned on 300VW
without any supervision, and tested on the selected 517-th
face sequence of the most challenging category. Fig. 4(a)
shows the sequential errors of our STRRN and SBR (Dong
et al. 2018) across a series of time stamps. From these
curves, we achieve a clear and stable results by a large mar-
gin compared with SBR (Dong et al. 2018), which shows the
stabilization of ours versus various temporal motions. This
is mainly because the testing sequences undergo continu-
ous occlusion over time steps. Clearly, our STRRN achieves
to reason about the robust spatial-temporal feature represen-
tation across frames for stabling landmark tracking, while
SBR (Dong et al. 2018) always degrades especially on the
facial cheek. The similar sense is visualized on the qualita-
tive comparisons in Fig. 4(b), where our STRRN achieves
the coherency cues in contrast to SBR (Dong et al. 2018).

Investigation on Unlabeled Video Datasets: We further
compared our proposed STRRN on different datasets in-
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Figure 4: Comparisons of our STRRN and SBR on the challenging 517-th sequence of the 300VW Category Three. Both-fold
results demonstrate that our model achieves low errors especially on occluded facial cheek thanks to the spatial constraint.

Table 2: Comparisons of STRRN on different training
datasets (AUC (%) thresholding RMSEs at 0.05 and 0.08).

Video Dataset AUC@0.05 AUC@0.08

300VW 26.67 78.07
300VW+YouTubeCelebrities 28.31 77.24
300VW+YouTubeFace 36.33 80.43
All Combined 39.48 85.06

cluding 300VW (Shen et al. 2015), YouTube-Face (Wolf,
Hassner, and Maoz 2011) and YouTube-Celebrities(Kim et
al. 2008). By carefully following the employed setting in
SBR (Dong et al. 2018), we regarded our STRRN trained
on the 300VW dataset without any annotations as the base-
line method, where 68 landmarks were employed for evalua-
tion. Even without any every-frame annotations, our method
trained with either of large scale unlabeled video data out-
performs that trained with only 300VW. Moreover, Table 2
tabulates the AUC comparisons at the thresholding RMSEs
at 0.05 and 0.08 on different datasets. From Table 2, the
outperformed results prove that we succeed in reasoning
the meaningful spatial-temporal knowledge from unlabeled
videos, thus making reliable extra annotations for model up-
date.

Ablation Study: To further investigate the ablation exper-
iments of the proposed components in our STRRN, we com-
puted the comparisons of CED curves on various training
strategies with respect to our STRRN. The partition method
for each facial component is consistent with that was defined
in our spatial module. For the baseline method, we selected
the detector HGN (Newell, Yang, and Deng 2016) that was
fine-tuned by our STRRN. Table 3 demonstrates the CED
comparisons and two-fold conclusions can be made from
Table 1) λ=0.4 achieves higher performance than training
by Ltck or Ldet independently, and 2) Ltck is relatively im-
portant than Ldet for robust spatial-temporal relation reason-
ing. Moreover, Table 3 also tabulates the comparisons of our
STRRN versus independent spatial and temporal modules,
which indicates the contributions of the complementary in-
formation of both modules.

Computational Efficiency: Our STRRN requires the
computation complexity of O(N2

R) for the geometry con-
struction, where NR denotes the landmark scalability within
each facial component. According to the 300-W annota-
tion, NR maximally reaches approximate 20× (20 + 1) for

Table 3: Ablation experiments of our STRRN, where the
300VW dataset was employed for evaluation.

Method Cate-1 Cate-2 Cate-3

STRRN ( w/o Ltck) 7.92 5.78 8.78
STRRN ( w/o Ldet, λ=0) 7.92 7.08 8.26
STRRN ( Ltck and Ldet, λ =1.6 ) 7.02 6.91 8.21
STRRN (w/o Temporal Module) 8.76 7.98 8.93
STRRN (w/o Spatial Module) 8.45 7.84 8.76
STRRN (S & T Module, λ = 0.4) 5.03 4.74 6.63

the mouth region. For the efficient training, our architecture
was implemented under the parallel-computing deep learn-
ing Tensorflow. The whole training procedure processes at
about 60ms each frame with a GPU of single NVIDIA GTX
1080 Ti graphic computation card (11G memory). Exclud-
ing the time of the face detection part, our model runs at 30
frames per second on one CPU with the Intel(R) Core(TM)
i5-6500 CPU@3.20GHz and requires around 2G memory
usage for runtime data loading.

Conclusion

In this work, we have investigated into the omni-supervised
face alignment particular for large scale unlabeled video
data. We have proposed a spatial-temporal relational reason-
ing networks method to reason about the spatial-temporal
relation from the unlabeled videos. Extensive experimental
results have showed that our approach have surpassed the
performance of most state-of-the-art methods. How to apply
reinforcement learning (Büchler, Brattoli, and Ommer 2018;
Liu et al. 2019b; Guo, Lu, and Zhou 2018) to address
the 3D face alignment (Jourabloo et al. 2017) with omni-
supervision is desirable in our future works.
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