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Abstract

Fine-grained classification is a challenging problem, due to
subtle differences among highly-confused categories. Most
approaches address this difficulty by learning discriminative
representation of individual input image. On the other hand,
humans can effectively identify contrastive clues by compar-
ing image pairs. Inspired by this fact, this paper proposes
a simple but effective Attentive Pairwise Interaction Net-
work (API-Net), which can progressively recognize a pair
of fine-grained images by interaction. Specifically, API-Net
first learns a mutual feature vector to capture semantic dif-
ferences in the input pair. It then compares this mutual vec-
tor with individual vectors to generate gates for each input
image. These distinct gate vectors inherit mutual context on
semantic differences, which allow API-Net to attentively cap-
ture contrastive clues by pairwise interaction between two im-
ages. Additionally, we train API-Net in an end-to-end manner
with a score ranking regularization, which can further gener-
alize API-Net by taking feature priorities into account. We
conduct extensive experiments on five popular benchmarks
in fine-grained classification. API-Net outperforms the re-
cent SOTA methods, i.e., CUB-200-2011 (90.0%), Aircraft
(93.9%), Stanford Cars (95.3%), Stanford Dogs (90.3%), and
NABirds (88.1%).

1 Introduction

Over the past years, CNNs have achieved remarkable suc-
cesses for visual recognition (He et al. 2016; Huang et al.
2017). However, these classical models are often limited to
distinguish fine-grained categories, due to highly-confused
appearances. Subsequently, a number of fine-grained frame-
works have been proposed by finding key part regions (Fu,
Zheng, and Mei 2017; Zheng et al. 2017; Yang et al. 2018),
learning patch relations (Lin, RoyChowdhury, and Maji
2015; Cai, Zuo, and Zhang 2017; Yu et al. 2018), etc. But
most of them take individual image as input, which may
limit their ability to identify contrastive clues from different
images for fine-grained classification.
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Figure 1: Motivation (Best view in color). Caspian Tern and
Elegant Tern are two highly-confused bird species. Humans
often distinguish them by pairwise comparison, instead of
checking each individual image alone. First, humans would
exploit contrastive clues (e.g. body and mouth) from the im-
age pair, and then check each image with these mutual con-
texts to further discover distinct attentions on each image.
Finally, humans recognize both images via comparing sub-
tle differences jointly. To mimic this capacity, we propose a
novel API-Net. More details can be found in Section 1.

On the contrary, humans often recognize fine-grained ob-
jects by comparing image pairs (Bruner 2017), instead of
checking single images alone. For example, Caspian Tern
and Elegant Tern are two highly-confused bird species, as
shown in Fig. 1. If we only check individual image alone,
it is difficult to recognize which categories it belongs to, es-
pecially when the bird is self-occluded with a noisy back-
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ground. Alternatively, we often take a pair of images to-
gether, and summarize contrastive visual appearances as
context, e.g., body, mouth and etc. Then, we check individ-
ual images with these mutual contexts, so that we can further
understand distinct aspects of each image, e.g.,

the body of the bird is an important part for the left im-
age, while the mouth of the bird is a key characteristic for
the right image. With such discriminative guidance, we pay
different attentions to the body and the mouth of two birds.
Note that, for each bird in the pair, we not only check its
prominent part but also have a glance at the distinct part
found from the other bird. This comparative interaction can
effectively tell us that, Caspian Tern has a fatter body, while
Elegant Tern has a more curved mouth. Consequently, we
recognize both images jointly.

To mimic this capacity of human beings, we introduce a
novel Attentive Pairwise Interaction Network (API-Net) for
fine-grained classification. It can adaptively discover con-
trastive clues from a pair of fine-grained images, and atten-
tively distinguish them via pair interaction.

More specifically, API can effectively recognize two fine-
grained images, by a progressive comparison procedure like
human beings. To achieve this goal, API-Net consists of
three submodules, i.e., mutual vector learning, gate vector
generation, and pairwise interaction. By taking a pair of fine-
grained images as input,

API-Net first learns a mutual vector to summarize con-
trastive clues of input pair as context. Then, it compares mu-
tual vector with individual vectors. This allows API-Net to
generate distinct gates, which can effectively highlight se-
mantic differences respectively from the view of each indi-
vidual image.

Consequently, API-Net uses these gates as discriminative
attentions to perform pairwise interaction. In this case, each
image can generate two enhanced feature vectors, which
are activated respectively from its own gate vector and the
gate vector of the other image in the pair. Via an end-to-end
training manner with a score-ranking regularization, API-
Net can promote the discriminative ability of all these fea-
tures jointly with different priorities. Additionally, it is worth
mentioning that, one can easily embed API into any CNN
backbones for fine-grained classification, and flexibly un-
load it for single-input test images without loss of gener-
alization capacity. Such plug-and-play property makes API
as a preferable choice in practice. Finally, we evaluate API-
Net on five popular benchmarks in fine-grained recognition,
namely CUB-200-2011, Aircraft, Stanford Cars, Stanford
Dogs and NABirds. The extensive results show that, API-
Net achieves the state-of-the-art performance on all these
datasets.

2 Related Works

A number of research works have been recently proposed
for fine-grained classification. In the following, we mainly
summarize and discuss those related works.

Object Parts Localization. These approaches mainly uti-
lize the pre-defined bounding boxes or part annotations to
capture visual details in the local regions (Zhang et al. 2014;

Lin et al. 2015). However, collecting such annotations is
often labor-intensive or infeasible in practice. Hence, sev-
eral weakly-supervised localization approaches have been
recently proposed by designing complex spatial attention
mechanisms (e.g., RA-CNN (Fu, Zheng, and Mei 2017),
MA-CNN (Zheng et al. 2017)), learning a bank of discrim-
inative filters (Wang, Morariu, and Davis 2018), guiding
region detection with multi-agent cooperation (Yang et al.
2018), etc. But these approaches mainly focus on mining
local characteristics of fine-grained images. Consequently,
they may lack the capacity of discriminative feature learn-
ing.

Discriminative Feature Learning. To learn the repre-
sentative features, many approaches have been exploited
by patch interactions (Lin, RoyChowdhury, and Maji 2015;
Cai, Zuo, and Zhang 2017; Yu et al. 2018). A well-known
approach is B-CNN (Lin, RoyChowdhury, and Maji 2015),
which performs bilinear pooling on the representations of
two local patches in an image. Following this direction, sev-
eral high-order approaches have been proposed via polyno-
mial kernel formulation (Cai, Zuo, and Zhang 2017), cross-
layer bilinear representation (Yu et al. 2018), etc. However,
these approaches take a single image alone as input, while
neglecting comparisons between different images, i.e., an
important clue to distinguish highly-confused objects.

Metric Learning. Metric learning refers to the method
that uses similarity measurements to model relations be-
tween image pairs (Kulis and others 2013). It has been
widely used in Face Verification (Schroff, Kalenichenko,
and Philbin 2015), Person ReID (Hermans, Beyer, and Leibe
2017) and so on. Recently, it has been introduced for fine-
grained classification, e.g., triplet loss design (Zhang et
al. 2016a), pairwise confusion regularization (Dubey et al.
2018a), multi-attention multi-class constraint (Sun et al.
2018), etc. However, these approaches mainly leverage met-
ric learning to improve sample distributions in the feature
space. Hence, they often lack the adaptation capacity, w.r.t.,
how to discover visual differences between a pair of images.

Different from previous approaches, our API-Net can
adaptively summarize contrastive clues, by learning a mu-
tual vector from an image pair. As a result, we can leverage
it as guidance, and attentively distinguish two fine-grained
images via pairwise interaction.

3 Attentive Pairwise Interaction

In this section, we describe Attentive Pairwise Interaction
Network (API-Net) for fine-grained classification. Our de-
sign is partially inspired by the observation that, instead of
learning visual concepts alone with individual image, hu-
mans often compare a pair of images jointly to distinguish
subtle differences between similar objects (Bruner 2017).

To imitate this capacity, we simultaneously take a pair of
images as input to API-Net, and progressively distinguish
them by three elaborative submodules, i.e., mutual vector
learning, gate vector generation, and pairwise interaction.
The whole framework is demonstrated in Fig. 2.

Mutual Vector Learning. First, we feed two fine-grained
images into a CNN backbone, and extract their D-dimension
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Figure 2: The framework of API-Net (Best view in color). API can progressively recognize a pair of fine-grained images,
based on a novel human-like learning procedure. It consists of three submodules. 1. Mutual Vector Learning. API learns a
mutual vector xm from individual x1 and x2 (Eq. 1). In this case, it can summarize contrastive cues in the pair. 2. Gate Vector
Generation. API further compares xm with x1 and x2 , and generates two distinct gate vectors gi (Eq. 2). These gates allow
API to discover distinct clues respectively from the view of each individual image. 3. Pairwise Interaction. API performs
pairwise interaction with guidance of gate vectors (Eq. 3-6). Via training API-Net with a score-ranking regularization, we
can distinguish all these features jointly with the consideration of feature priorities (Eq. 8-10). Additionally, API is a practical
plug-and-play module, i.e., one can combine API with CNNs during training, and flexibly unload it for single-input test images.

feature vectors respectively, i.e., x1 and x2 ∈ R
D. Then, we

learn a mutual vector xm ∈ R
D from individual x1 and x2,

xm = fm([x1,x2]), (1)

where fm(·) is a mapping function of [x1,x2], e.g., a sim-
ple MLP works well in our experiments. Since xm is adap-
tively summarized from both x1 and x2, it often contains
feature channels which indicate high-level contrastive clues
(e.g. body and mouth of two birds in Fig.1) in the pair.

Gate Vector Generation. After learning the mutual vec-
tor xm, we propose to compare it with x1 and x2. The main
reason is that, we should further generate distinct clues re-
spectively from the view of each individual image, in order
to distinguish this pair afterwards.

In particular, we perform channel-wise product between
xm and xi, so that we can leverage xm as guidance to find
which channels of individual xi may contain contrastive
clues. Then, we add a sigmoid function to generate the gate
vector gi ∈ R

D,

gi = sigmoid(xm � xi), i ∈ {1, 2}. (2)

As a result, gi becomes a discriminative attention which
highlights semantic differences with a distinct view of each
individual xi, e.g., the body of the bird is important in one
image of Fig.1, while the mouth of the bird is a key in the
other image. In our experiments, we evaluate different gat-
ing strategies and show effectiveness of our design.

Pairwise Interaction. Next, we perform pairwise inter-
action by gate vectors. Our design is partially motivated by
the fact that, to capture subtle differences in a pair of fine-
grained images, human check each image not only with its
prominent parts but also with distinct parts from the other

image. For this reason, we introduce an interaction mecha-
nism via residual attention,

xself
1 = x1 + x1 � g1, (3)

xself
2 = x2 + x2 � g2, (4)

xother
1 = x1 + x1 � g2, (5)

xother
2 = x2 + x2 � g1. (6)

As we can see, each individual feature xi in the pair pro-
duces two attentive feature vectors, i.e., xself

i ∈ R
D is high-

lighted by its own gate vector, and xother
i ∈ R

D is activated
by the gate vector of the other image in the pair. In this case,
we enhance xi with discriminative clues that come from
both images. Via distinguishing all these features jointly, we
can reduce confusion in this fine-grained pair.

Training. After obtaining four attentive features xj
i in the

pair (where i ∈ {1, 2}, j ∈ {self, other}), we feed them
into a softmax classifier,

pj
i = softmax(Wxj

i + b), (7)

where pj
i ∈ R

C is the prediction score vector, C is the num-
ber of object categories, and {W,b} is the parameter set of
classifier. To train the whole API-Net effectively, we design
the following loss L for a pair,

L = Lce + λLrk, (8)

where Lce is a cross entropy loss, and Lrk is a score ranking
regularization with coefficient λ.

1) Cross Entropy Loss. The main loss is the cross en-
tropy loss Lce,

Lce = −
∑

i∈{1,2}

∑
j∈{self,other} y

�
i log(pj

i ), (9)
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where yi is the one-hot label vector for image i in the pair, �
denotes the vector transposition. By using this loss, API-Net
can gradually recognize all the attentive features xj

i , with
supervision of label yi.

2) Score Ranking Regularization. Additionally, we in-
troduce a hinge loss as the score ranking regularization Lrk,

Lrk =
∑

i∈{1,2} max(0,pother
i (ci)−pself

i (ci)+ε), (10)

where pj
i (ci) ∈ R is the score obtained from the predic-

tion vector pj
i , and ci is the corresponding index associated

with the ground truth label of image i. Our motivation of
this design is that, xself

i is activated by its own gate vec-
tor. Hence, it should be more discriminative to recognize the
corresponding image, compared with xother

i .
To take this knowledge into account, we use Lrk to

promote the priority of xself
i , i.e., the score difference

pself
i (ci)−pother

i (ci) should be larger than a margin ε. With
such a regularization, API-Net learns to recognize each im-
age in the pair by adaptively taking feature priorities into
account.

3) Pair Construction. Eq. (8) defines the loss for a train-
ing pair. Next, we explain how to construct multiple pairs
in a batch for end-to-end training. Specifically, we randomly
sample Ncl classes in a batch. For each class, we randomly
sample Nim training images. Then, we feed all these im-
ages into CNN backbone to generate their feature vectors.
For each image, we compare its feature with others in the
batch, according to Euclidean distance. As a result, we can
construct two pairs for each image, i.e., the intra / inter pair
consists of its feature and its most similar feature from in-
tra / inter classes in the batch. This design allows our API-
Net for learning to distinguish which are highly-confused
or truly-similar pairs. We also investigate different construc-
tion strategies in our experiments. Consequently, there are
2 × Ncl × Nim pairs in each batch. We pass them into our
API module, and summarize the loss L over all these pairs
for end-to-end training.

Testing. We would like to emphasize that, API is a practi-
cal plug-and-play module for fine-grained classification. In
the training phase, this module can summarize contrastive
clues from a pair, which can gradually generalize the dis-
criminative power of CNN representations for each individ-
ual image. Hence, in the testing phase, one can simply un-
load API for single-input test images, without much loss of
generalization. Specifically, we feed a test image into the
CNN backbone to extract its feature x� ∈ R

D. Then, we
directly put x� into softmax classifier (Eq. 7). The result-
ing score vector p� ∈ R

C is used for label prediction. By
doing so, our testing manner is just the same as that of a
plain CNN, which largely boosts the value of API-Net for
fine-grained classification.

4 Experiments

Data Sets. We evaluate API-Net on five popular fine-grained
benchmarks, i.e., CUB-200-2011(Wah et al. 2011), Air-
craft(Maji et al. 2013), Stanford Cars(Krause et al. 2013),
Stanford Dogs(Khosla et al. 2011) and NABirds (Van Horn

et al. 2015). Specifically, CUB-200-2011 / Aircraft / Stan-
ford Cars / Stanford Dogs / NABirds consists of 11,788 /
10,000 / 16,185 / 20,580 / 48,562 images, from 200 bird /
100 airplane / 196 car / 120 dog / 555 bird classes. We use
the official train & test splits for evaluation.

Implementation Details. Unless stated otherwise, we im-
plement API-Net as follows. First, we resize each image as
512 × 512, and crop a 448 × 448 patch as input to API-
Net (train: random cropping, test: center cropping). Fur-
thermore, we use ResNet-101 (pretrained on ImageNet) as
CNN backbone, and extract the feature vector xi ∈ R

2048

after global pooling average operation. Second, for all the
datasets, we randomly sample 30 categories in each batch.
For each category, we randomly sample 4 images. For each
image, we find its most similar image from its own class and
the rest classes, according to Euclidean distance between
features. As a result, we obtain an intra pair and an inter pair
for each image in the batch. For each pair, we concatenate
x1 and x2 as input to a two-layer MLP, i.e., FC(4096→512)-
FC(512→2048). Consequently, this operation generates the
mutual vector xm ∈ R

2048. Finally, we implement our net-
work by PyTorch. For all the datasets, the coefficient λ in
Eq. (8) is 1.0, and the margin ε in the score-ranking regular-
ization is 0.05. We use the standard SGD with momentum of
0.9, weight decay of 0.0005. Furthermore, the initial learn-
ing rate is 0.01 (0.001 for Stanford Dogs), and adopt cosine
annealing strategy to adjust it. The total number of train-
ing epochs is 100 (50 for Stanford Dogs). Besides, during
training phase, we freeze the conv layers and only train the
newly-added fully-connected layers in the first 8 epochs(12
epochs for Standord Dogs).

4.1 Ablation Studies

To investigate the properties of our API-Net, we evaluate
its key designs on CUB-200-2011. For fairness, when we
explore different strategies of one design, others are set as
the basic strategy stated in the implementation details.

Basic Methods. First of all, we compare our API-Net
with Baseline, i.e., the standard ResNet-101 without our API
design. As expected, API-Net largely outperforms it in Table
1, showing the effectiveness of API module.

Mutual Vector. To demonstrate the essentiality of xm in
Eq. (1), we investigate different operations to generate it.
(I) Individual Operation. The key of xm is to learn mu-
tual information from both images in the pair. For com-
parison, we introduce a baseline without it. Specifically,
we replace mutual learning in Eq. (1) by individual learn-
ing x̃i = fm(xi), and use x̃i to generate the gate vector
gi = sigmoid(x̃i) where i ∈ {1, 2}. (II) Compact Bilin-
ear Pooling Operation. We generate xm by compact bilin-
ear pooling (Gao et al. 2016) between x1 and x2. (III) Ele-
mentwise Operations. We perform a number of widely-used
elementwise operations to generate xm, including Subtract
Square xm = (x1 − x2)

2, Sum xm = x1 + x2, and Prod-
uct xm = x1 � x2. (IV) Weight Attention Operation. We
use a two-layer MLP to generate the weight of x1 and x2,
i.e., [w1, w2] = softmax(fw([x1,x2])), where the output
dimension of the 1st FC layer is 512. Then, we use the nor-
malized weight vector as attention to generate the mutual
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Method Baseline API-Net
Accuracy 85.4 88.6

Table 1: Comparison with basic methods. Baseline is the
standard ResNet-101 without our API design.

Mutual Vector Accuracy
Individual 87.9
Compact Bilinear Pooling 88.2
Subtract Square 88.3
Sum 88.5
Product 88.4
Weight Attention 88.4
MLP 88.6

Table 2: Different operations of mutual vector (CUB-200-
2011). More details can be found in Section 4.1.

Gate Vector Accuracy Interaction Accuracy
Single 87.7 Lce 88.1
Pair 88.6 Lce + Lrk 88.6

Table 3: Different strategies of gate vector and interaction
(CUB-200-2011). More details can be found in Section 4.1.

vector, i.e., xm =
∑

wixi. (V) MLP Operation. It is the
mapping function described in the implementation details.
As shown in Table 2, the Individual operation (i.e., the set-
ting without xm) performs worst. Hence, it is necessary to
learn mutual context by xm, which often plays an important
role in finding distinct clues for individual image. Moreover,
the performance of xm operations is competitive. We choose
the simple but effective MLP to generate the mutual vector
in our experiments.

Gate Vector. We discuss different approaches to generate
the gate vector. (I) Single. Since xm inherits mutual char-
acteristics from both x1 and x2, a straightforward choice
is to use gm = sigmoid(xm) as a single gate vector.
Subsequently, one can train API-Net with attentive features
xself
i = xi + xi � gm, where i ∈ {1, 2}. (II) Pair. This is

the proposed setting in Eq. (2). As shown in Table 3, the Pair
setting outperforms the Single setting. It illustrates that, we
have to discover discriminative clues from the view of each
image, by comparing xi with xm.

Interaction. We explore different interaction strategies.
(I) Lce. We train API-Net only with cross entropy loss Lce.
In this case, score-ranking regularization Lrk is not used for
training. (II) Lce+Lrk. We train API-Net with the proposed
loss L. In Table 3, our proposed loss performs better. It il-
lustrates that, Lrk can further generalize pairwise interaction
with different feature priorities.

Pair Construction. We investigate different strategies to
construct input image pairs. (I) Random. We randomly sam-
ple 240 image pairs in a batch. (II) Class-Image. We sam-
ple 240 image pairs, according to class (i.e., Intra / Inter)
and Euclidean distance between features (i.e., Similar(S) /
Dissimilar(D)). This can generate 8 Class-Image settings in
Table 4. For example, we randomly sample 30 classes in a
batch. For each class, we randomly sample 4 images. For
each image, we construct 2 pairs, i.e., the intra / inter pair
consists of this image and its most similar image from intra

Pair Construction Intra Inter Accuracy
Random - - 86.4

Class-Image

- D 85.4
- S 87.2
D - 87.1
S - 87.6
D D 87.0
S D 87.4
D S 88.3
S S 88.6

Table 4: Different strategies of pair construction (CUB-200-
2011). Random: We randomly sample 240 image pairs in a
batch. Class-Image: We sample 240 image pairs in a batch,
according to class (i.e., Intra / Inter) and Euclidean distance
(i.e., Similar(S) / Dissimilar(D)). This can generate 8 Class-
Image settings. For example, we randomly sample 30 classes
in a batch. For each class, we randomly sample 4 images.
For each image, we construct 2 pairs, i.e., the intra / inter
pair consists of this image and its most similar image from
intra / inter classes. This is denoted as Intra(S) & Inter(S).
More explanations can be found in Section 4.1.

Class Size (Ncl) Ncl=10 Ncl=20 Ncl=30
Accuracy 83.5 87.0 88.6

Image Size (Nim) Nim=2 Nim=3 Nim=4
Accuracy 88.1 88.2 88.6

(Ncl, Nim) (24, 5) (30, 4) (40, 3)
Accuracy 87.7 88.6 88.2

Table 5: Class Size & Image Size (CUB-200-2011). After
choosing Intra(S) & Inter(S) in the Class-Image rule, we
further explore the number of sampled classes and images
in each batch. When varying the class/image size, we fix the
image/class size as 4/30.

/ inter classes. This is denoted as Intra(S) & Inter(S). The
results of different settings are shown in Table 4. First, most
Class-Image settings outperform the Random setting. It il-
lustrates that, one should take the prior knowledge of class
and similarity into account, when constructing image pairs.
Second, Inter(S) outperforms Inter(D), no matter which the
intra setting is. The reason is that, each pair in Inter(S) / In-
ter(D) consists of two most similar / dissimilar images from
different classes, i.e., the pairs in Inter(S) increases the dif-
ficulty of both being recognized correctly at the same time.
By checking such pairs in Inter(S), API-Net can be trained
to distinguish subtle semantic differences. Third, the per-
formance is competitive between Intra(S) and Intra(D), no
matter which the inter setting is. This is mainly because in-
tra pairs are with the same label. API-Net does not need to
put much effort to recognize why these pairs are similar. Fi-
nally, the settings with both intra and inter pairs outperform
those with only intra or inter pairs. It is credited to the fact
that, API-Net can gradually distinguish which are highly-
confused or truly-similar pairs, by leveraging both intra and
inter pairs. We choose the setting with the best performance,
i.e., Intra(S) & Inter(S) in our experiment.

Class Size & Image Size. After choosing Intra(S) & In-
ter(S) in the Class-Image setting, we further explore the
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Method Backbone Extra S. CUB
DeepLAC (Lin et al. 2015) AlexNet Yes 80.3
Part-RCNN (Zhang et al. 2014) Yes 81.6
PA-CNN (Krause et al. 2015) VGGNet-19 Yes 82.8
MG-CNN (Wang et al. 2015) Yes 83.0
FCAN (Liu et al. 2016)

ResNet-50
Yes 84.7

TA-FGVC (Li et al. 2018a) Yes 88.1
HSE (Chen et al. 2018) Yes 88.1
PDFR (Zhang et al. 2016b)

VGGNet-16

No 84.5
Grassmann Pool(Wei et al. 2018) No 85.8
KP (Cui et al. 2017) No 86.2
HBP (Yu et al. 2018) No 87.1
G2DeNet (Wang, Li, and Zhang 2017) No 87.1
MG-CNN (Wang et al. 2015)

VGGNet-19

No 81.7
B-CNN (Lin, RoyChowdhury, and Maji 2015) No 84.1
RACNN (Fu, Zheng, and Mei 2017) No 85.3
MACNN (Zheng et al. 2017) No 86.5
Deep KSPD (Engin et al. 2018) No 86.5
ST-CNN (Jaderberg et al. 2015) GoogleNet No 84.1
FCAN (Liu et al. 2016)

ResNet-50
No 84.3

DFL-CNN (Wang, Morariu, and Davis 2018) No 87.4
NTS-Net (Yang et al. 2018) No 87.5
MAMC (Sun et al. 2018)

ResNet-101
No 86.5

TripletNet (Hoffer and Ailon 2015) No 86.6
iSQRT-COV (Li et al. 2018b) No 88.7
MaxEnt (Dubey et al. 2018b) DenseNet-161 No 86.5
PC (Dubey et al. 2018a) No 86.9
Our API-Net ResNet-50 No 87.7
Our API-Net ResNet-101 No 88.6
Our API-Net DenseNet-161 No 90.0

Table 6: Comparison with The-State-of-The-Art (CUB-200-
2011). Extra S.: Extra Supervision.

Method Backbone Extra S. Aircraft
BoT (Wang et al. 2016) VGGNet-16 Yes 88.4
MG-CNN (Wang et al. 2015) VGGNet-19 Yes 86.6
KP (Cui et al. 2017)

VGGNet-16

No 86.9
LRBP (Kong and Fowlkes 2017) No 87.3
G2DeNet (Wang, Li, and Zhang 2017) No 89.0
Grassmann Pool(Wei et al. 2018) No 89.8
HBP (Yu et al. 2018) No 90.3
DFL-CNN (Wang, Morariu, and Davis 2018) No 92.0
B-CNN (Lin, RoyChowdhury, and Maji 2015)

VGGNet-19

No 84.1
RACNN (Fu, Zheng, and Mei 2017) No 88.4
MACNN (Zheng et al. 2017) No 89.9
Deep KSPD (Engin et al. 2018) No 91.5
NTS-Net (Yang et al. 2018) ResNet-50 No 91.4
iSQRT-COV (Li et al. 2018b) ResNet-101 No 91.4
PC (Dubey et al. 2018a) DenseNet-161 No 89.2
MaxEnt (Dubey et al. 2018b) No 89.8
Our API-Net ResNet-50 No 93.0
Our API-Net ResNet-101 No 93.4
Our API-Net DenseNet-161 No 93.9

Table 7: Comparison with The-State-of-The-Art (Aircraft).
Extra S.: Extra Supervision.

number of sampled classes and images in each batch. When
varying the class/image size, we fix the image/class size as
4/30. The results are shown in Table 5. One can see that,
API-Net is more sensitive to class size than image size. The
main reason is that, more classes often produce richer di-
versity of images pairs. We choose the best setting in our
experiment, i.e., class size=30 and image size=4.

4.2 Comparison with The-State-of-The-Art

We compare API-Net with a number of recent works on
five widely-used benchmarks in Table 6-10. First, API-Net
outperforms the object-part-localization approaches such as
RACNN (Fu, Zheng, and Mei 2017) and MACNN (Zheng
et al. 2017), showing the importance of API-Net for dis-
criminative feature learning. Second, API-Net outperforms
the patch-interaction approaches such as B-CNN (Lin, Roy-
Chowdhury, and Maji 2015), HBP (Yu et al. 2018). It
demonstrates that, we need to put more efforts to distinguish
two different images jointly, instead of learning with indi-

Method Backbone Extra S. Cars
BoT (Wang et al. 2016) VGGNet-16 Yes 92.5
PA-CNN (Krause et al. 2015) VGGNet-19 Yes 92.8
FCAN (Liu et al. 2016) ResNet-50 Yes 91.3
KP (Cui et al. 2017)

VGGNet-16

No 92.4
G2DeNet (Wang, Li, and Zhang 2017) No 92.5
Grassmann Pool(Wei et al. 2018) No 92.8
HBP (Yu et al. 2018) No 93.7
DFL-CNN (Wang, Morariu, and Davis 2018) No 93.8
B-CNN (Lin, RoyChowdhury, and Maji 2015)

VGGNet-19

No 91.3
RACNN (Fu, Zheng, and Mei 2017) No 92.5
MACNN (Zheng et al. 2017) No 92.8
Deep KSPD (Engin et al. 2018) No 93.2
FCAN (Liu et al. 2016) ResNet-50 No 89.1
NTS-Net (Yang et al. 2018) No 93.9
MAMC (Sun et al. 2018) ResNet-101 No 93.0
iSQRT-COV (Li et al. 2018b) No 93.3
PC(Dubey et al. 2018a) DenseNet-161 No 92.9
MaxEnt (Dubey et al. 2018b) No 93.0
Our API-Net ResNet-50 No 94.8
Our API-Net ResNet-101 No 94.9
Our API-Net DenseNet-161 No 95.3

Table 8: Comparison with The-State-of-The-Art (Stanford
Cars). Extra S.: Extra Supervision.

Method Backbone Extra S. Dogs
TA-FGVC (Li et al. 2018a) ResNet-50 Yes 88.9
PDFR (Zhang et al. 2016b) AlexNet No 72.0
DVAN (Zhao et al. 2017) VGGNet-16 No 81.5
B-CNN (Lin, RoyChowdhury, and Maji 2015) VGGNet-19 No 82.1
RACNN (Fu, Zheng, and Mei 2017) No 87.3
FCAN (Liu et al. 2016) ResNet-50 No 84.2
MAMC (Sun et al. 2018) ResNet-101 No 85.2
MaxEnt (Dubey et al. 2018b) DenseNet-161 No 83.6
PC (Dubey et al. 2018a) No 83.8
Our API-Net ResNet-50 No 88.3
Our API-Net ResNet-101 No 90.3
Our API-Net DenseNet-161 No 89.4

Table 9: Comparison with The-State-of-The-Art (Stanford
Dogs). Extra S.: Extra Supervision.

Method Backbone Extra S. NABirds
Van et al. (Van Horn et al. 2015) AlexNet Yes 75.0
Branson et al. (Branson et al. 2014) AlexNet No 35.7
PC (Dubey et al. 2018a) DenseNet-161 No 82.8
MaxEnt (Dubey et al. 2018b) No 83.0
Our API-Net ResNet-50 No 86.2
Our API-Net ResNet-101 No 86.6
Our API-Net DenseNet-161 No 88.1

Table 10: Comparison with The-State-of-The-Art
(NABirds). Extra S.: Extra Supervision.

vidual image alone. Third, API-Net outperforms the metric-
learning approaches such as PC (Dubey et al. 2018a). Partic-
ularly, we also re-implement TripletNet (Hoffer and Ailon
2015) in Table 6, a classical approach optimized by extra
triplet loss, and compare it with API-Net. They all illustrate
that, we should further exploit how to discover differential
visual clues in the image pair, instead of straightforwardly
regularizing the sample distribution in the feature space.
Fourth, API-Net even outperforms the approaches with ex-
tra supervision such as localization annotations (Zhang et
al. 2014), super-category labels (Chen et al. 2018), or text
(Li et al. 2018a). It shows the effectiveness of API mod-
ule. Finally, without complex architectures and multi-stage
learning in the previous works, our API module can be eas-
ily integrated into the standard CNN training procedure and
serve as a plug-and-play unit for discovering subtle visual
differences. Hence, API-Net is a concise and practical deep
learning approach for fine-grained classification.
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Figure 3: Visualization. As shown in red-dashed boxes, many feature maps of Baseline are confused or noisy, e.g., the object
regions are blurring, or certain background regions are activated. On the contrary, our API-Net can effectively discover and then
distinguish discriminative clues via attentive pairwise interaction. More explanations can be found in Section 4.3.

4.3 Visualization

We further visualize API-Net in Fig. 3. First, we choose
two pairs from the highly-confused categories in CUB-200-
2011, i.e., Caspian Tern (CT) vs. Elegant Tern (ET), and
Le Conte Sparrow (LCS) vs. Nelson Sharp Tailed Spar-
row (NSTS). Second, we feed each pair into API-Net, and
find top-5 activated channels of gate vectors g1 and g2. Sub-
sequently, we show the corresponding feature maps (14×14)
before global pooling. Additionally, we show the corre-
sponding feature maps in Baseline, i.e., ResNet-101 without
attentive pairwise interaction.

As shown in red-dashed boxes of Fig. 3, many feature
maps of Baseline are confused or noisy, e.g., the object re-
gions are blurring, or certain background regions are ac-
tivated. On the contrary, our API-Net can effectively dis-
cover distinct features, e.g., g1 mainly focuses on the body
of Caspian Tern, while g2 mainly focuses on the mouth of
Elegant Tern. These contrastive clues allow API to correctly
distinguish such two birds.

Additionally, it is interesting to mention that, API-Net can
automatically pay attention to discriminative object parts in
the feature maps, even though it mainly works on high-level
feature vectors. This observation indicates that, CNN can be
well generalized via attentive pairwise interaction. As ex-
pected, our API-Net successfully recognizes all these pairs,
while Baseline makes wrong predictions.

5 Conclusion

In this paper, we propose a novel Attentive Pairwise Interac-
tion Network (API-Net) for fine-grained classification. It can
adaptively discover contrastive cues from a pair of images,
and attentively distinguish them via pairwise interaction.
The results on five popular fine-grained benchmarks show
that, API-Net achieves the state-of-the-art performance.
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