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Abstract

With the rise of Intelligent Virtual Assistants (IVAs), there is a
necessary rise in human effort to identify conversations con-
taining misunderstood user inputs. These conversations un-
cover error in natural language understanding and help pri-
oritize and expedite improvements to the IVA. As human re-
viewer time is valuable and manual analysis is time consum-
ing, prioritizing the conversations where misunderstanding
has likely occurred reduces costs and speeds improvement. In
addition, less conversations reviewed by humans mean less
user data is exposed, increasing privacy. We present a scal-
able system for automated conversation review that can iden-
tify potential miscommunications. Our system provides IVA
designers with suggested actions to fix errors in IVA under-
standing, prioritizes areas of language model repair, and au-
tomates the review of conversations where desired.
Verint - Next IT builds IVAs on behalf of other companies
and organizations, and therefore analyzes large volumes of
conversational data. Our review system has been in produc-
tion for over three years and saves our company roughly $1.5
million in annotation costs yearly, as well as shortened the re-
finement cycle of production IVAs. In this paper, the system
design is discussed and performance in identifying errors in
IVA understanding is compared to that of human reviewers.

Introduction

Intelligent Virtual Assistants (IVAs) such as Amazon’s
Alexa or Apple’s Siri along with specialized agents for cus-
tomer service and sales support are exploding in popular-
ity (Ram et al. 2018). The continued adoption of IVAs is
contributing to a growing problem. How do we refine an
IVA’s knowledge effectively and efficiently? As IVA use as
well as the number of tasks an IVA is expected to perform
increases, there is a corresponding jump in the number of
human-computer interactions to be reviewed for quality as-
surance. Therefore, discovering a means to expedite review
and analysis of these interactions is critical.

Without scalable and efficient methods of automated con-
versation review, IVA designers must rely solely on human
reviewers to validate expected behavior of the IVAs. As this
is a manual and time consuming process, the reviewers are
only able to view a limited number of interactions. The result
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is also subjective since reviewers may disagree on the user
intention for any given turn in a conversation. In addition,
as the IVA improves, errors in communication appear less
often in a random sample due to their dwindling numbers.
A recent challenge is public outcry over the human review
of IVA conversation logs for the purpose of language under-
standing verification, due to privacy concerns. By the use of
an automated system for conversation review, problematic
interactions can still be surfaced without exposing the entire
set of logs to human reviewers, minimizing privacy invasion.

In this paper we discuss a scalable system to process
all conversations and autonomously mark the interactions
where the IVA is misunderstanding the user. Our system pro-
vides cost savings to companies deploying IVAs by reducing
the time human reviewers spend looking at conversations
with no misunderstandings present. It also enables a shorter
refinement cycle as problems are surfaced quickly and more
reliably than a random sample or confidence metric based
review. The core of our system was originally published
in (Beaver and Freeman 2016; Beaver 2018) and has been in
production as a commercial application for over three years.
Initially created as an application internal to our company,
recently we have made the system available to external part-
ners due to its success at reducing annotation costs.

Background

Common to all IVAs is a Natural Langauge Understanding
(NLU) component (Ram et al. 2018). The NLU maps user
inputs, or conversational turns, to a derived semantic rep-
resentation commonly known as the intent, an interpreta-
tion of a statement or question that allows one to formulate
the ‘best’ response. The collection of syntax, semantics, and
grammar rules that defines how input language maps to an
intent within the NLU is referred to by us as a language
model. The language model may be trained through ma-
chine learning methods or manually constructed by human
experts (Zhao and Eskenazi 2016). Manually constructed
symbolic models requires humans to observe and formal-
ize these language rules while machine-learned models use
algorithms to observe and approximate them.

Regardless of implementation details, to improve the lan-
guage models and for quality assurance, human-computer
interactions need to be continuously reviewed. Improve-
ments include the addition of vocabulary and new rules
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or the revision of existing rules that led to incorrect map-
pings within the language model. For machine-learned mod-
els, identification of incorrect understanding can highlight
confusion within the model and prioritize areas of further
training. The main focus of misunderstanding detection is
on intent classification. It is in the NLU component that
the breakdown of communication will begin, assuming ad-
equate Automatic Speech Recognition (ASR), if speech is
used as an interface. The detection of ASR error and re-
covery is well covered in literature (Ogawa and Hori 2015;
Kim, Ryu, and Lee 2016) and outside the scope of this work.

Existing IVA Refinement Processes

IVAs for customer service are deployed in a specific lan-
guage domain such as transportation, insurance, product
support, or finance. Reviewers are given a sample of recent
conversations collected from a live IVA for quality assur-
ance. The reviewers need to be familiar with any domain
specific terminology. This poses difficulty in the utilization
of crowd-sourced platforms such as Figure Eight1 or Me-
chanical Turk2 as workers must be vetted to ensure they have
proper knowledge of the domain and associated terminol-
ogy. One strategy is to create a series of tests that workers
must pass before accessing the task. Another strategy injects
conversations with known labels to the sample and removes
reviewers that score poorly on them.

The sample to be reviewed can be selected in a variety
of ways. If a particular event is important to analyze, such
a user requesting an escalation to a human, all conversa-
tions containing the event are selected. Such samples are
biased and may miss many other important failure scenar-
ios, so for a more holistic view a random sample can be
taken. Another strategy selects interactions where the NLU
and/or ASR confidence score is lower than some predeter-
mined threshold. In this case, reviewers rely on the system
itself to indicate where error lies. While low confidence is
potentially more effective than a random sample at finding
poor interactions, this requires trusting the very system that
is being evaluated for errors. This also creates a dependency
on the underlying system implementation that makes it diffi-
cult to compare the performance of different IVAs, or, if the
system design is ever modified, the same IVA over time.

Sampled conversations are manually graded in an effort
to find intents which need improvement. The reviewers may
use various grading means, but a star rating system such as
one-to-five stars is common (Kuligowska 2015). The result
of this review process is a set of conversations along with
their grades which are passed to domain experts. Domain
experts are typically trained in NLP and are responsible for
the construction and modification of language models. Only
poorly graded conversations require in-depth analysis by do-
main experts to determine the necessary changes to the lan-
guage models. The faster this review-correction cycle com-
pletes, the more quickly the IVA can adapt to changes in
domain language or product or website changes that require
additional knowledge.

1https://www.figure-eight.com
2https://www.mturk.com

Related Works

The QART system presented in (Roy et al. 2016) moni-
tors live customer service dialogs and provides supervisors
with visualizations and summaries of ongoing chats. It em-
ployed features in the categories of customer behavior (emo-
tion and sentiment), conversational characteristics (devia-
tion from typical structure, number of turns, average delays),
and organizational compliance (greeted customer, used cus-
tomer name, assurance, etc.). As the QART system is moni-
toring human-human chats there is no concept of intents nor
does it directly detect misunderstanding. However, change
in sentiment and emotion proved useful for indicating mis-
understanding occurred and was implemented in our system.

In (Jiang et al. 2015), a model to predict intent classifi-
cation quality of an IVA using numerous ASR, dialog, and
tactile features is given. Users were asked to complete tasks
with the IVA and then were given a survey to rate their sat-
isfaction with the experience, the quality of speech recogni-
tion, and the quality of intent understanding. Authors then
compared sequences of user actions to request and response
features. The authors rely on the user rating to determine
the intent classification accuracy which can be biased by the
IVA response. Poor response wording can appear to the user
as a misunderstanding when, in reality, the NLU component
understood the intent but the generated response was inac-
curate. Regardless, features correlated to intent classification
errors, such as turn similarity and repeated responses, have
been incorporated into our system.

System Design and Components

The core of our system is a learned model of features for
predicting intent classification errors in conversational turns.
This model is used to generate a score per turn representing
the risk of intent misclassification. This risk score is used to
rank turns for priority review where humans vote on if each
turn was misunderstood. The system can also vote if the turn
was misunderstood to reduce or eliminate the need for hu-
man voting. The voting outcomes generate suggested actions
to fix the human-identified errors in the language model. The
commercial name of this system is Trace AI.

Trace is designed with three primary functions. The first is
detecting features of intent error and aggregating these fea-
tures into a risk score. The risk analysis engine applies var-
ious heuristics and classifiers to detect indications of mis-
understanding in each conversational turn and score them
between [0, 1]. As each indication is independently scored,
and each conversation is independent, this task is done in
parallel on a compute cluster for scalability.

Once each turn is annotated with all applicable risk indi-
cators, the risk score for a particular turn is calculated as the
weighted sum of all indicator scores in that turn. Weights
are initialized to 0.5 and tuned over time using odds ratios.
The odds ratio represents the odds that an outcome will oc-
cur given a particular exposure, compared to the odds of the
outcome occurring in the absence of that exposure (Szumi-
las 2010). As reviewers grade turn-intent mappings, the odds
of each risk indicator predicting a misunderstanding is re-
calculated and the weight of that risk indicator is adjusted,
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Figure 1: The Trace voting interface used by reviewers

improving the scoring model. As indicators may be domain-
dependent, weights are adjusted per domain.

The other two functions of Trace are provided by a
Django web application with interfaces for two types of
users. The first type are the domain experts who create
projects, linked to a live IVA, and select a time range over
which to do analysis. Once they have defined a project and
a time range for review, Trace prioritizes all conversational
turns within that range by their risk score. The second type
are the human reviewers whose work flow involves logging
into a project (a collection of conversations from a live IVA)
and reviewing turns that have been prioritized by risk score.
They read each turn in the context of the conversation and
vote on whether or not they agree with the intent chosen by
the NLU in the live IVA. If a reviewer does not feel they
have enough information or domain knowledge to decide,
they may also vote Unsure. A turn is shown to a minimum
of three reviewers to reduce subjectivity and provide domain
experts with a sense of inter-reviewer agreement.

Trace is implemented entirely in Python and deployed as
four components on Amazon Web Services3. The compo-
nents are a t3.xlarge webserver, two r5.2xlarge Celery nodes,
three r5.2xlarge MongoDB nodes, and six m4.10xlarge
Slurm4 HPC nodes. This single deployment is sufficient to
support analysis on the 40+ live IVAs we currently maintain.

The Reviewer Interface

A screen shot of this interface is shown in Figure 1. In the
left-hand column the intent the reviewer is currently voting
on is displayed along with additional information to give in-
sight. The label of the intent is displayed at the top, followed
by a text description of its purpose, which is maintained by
the domain experts. If the reviewers do not fully understand
the purpose of an intent, they can submit questions to the do-
main experts by clicking on the comment bubble below the

3https://aws.amazon.com/ec2/instance-types
4https://slurm.schedmd.com/

Circumstance Recommended Action

A turn-to-intent map
is voted to be correct

None. These are added as train-
ing and regression samples for
Trace.

A turn-to-intent map
is voted to be incor-
rect

Fix or retrain the language
model to prevent the turn from
reaching the associated intent.

The reviewer major-
ity votes Not Sure

Determine if the intent was ap-
propriate for the turn or if a new
intent should be created.

There is no reviewer
consensus

Determine if the intent was ap-
propriate for the turn or if a new
intent should be created.

Voters are conflicted
as they approved the
turn in more than one
intent

Clarify definitions of both in-
tents and re-release for voting.

Table 1: Voting outcomes and recommended actions

description text. The experts can then update the description
to clarify the purpose of the intent so that voting is accurate.

Next, a set of sample questions that have been previously
human-validated to belong to this intent are displayed. This
is to give the reviewer some intuition on the language in-
tended for the current intent. Following that is a list of re-
lated intents to help the reviewer decide if a more suitable
intent exists in the language model. Both lists are search-
able to speed analysis. Finally, controls to navigate through
the intents to be reviewed and, at the bottom, metrics on how
many turns have been completed by the current reviewer and
all reviewers combined on the displayed intent are shown.

On the right-hand side the user turn is shown followed
by voting buttons. Keyboard shortcuts are provided to speed
voting. The entire conversation with the current turn high-
lighted is displayed to give the reviewer the conversational
context needed to determine if the responding intent was ap-
propriate. Notice that nowhere does the actual response text
from the IVA appear. The response is not shown in order to
separate the evaluation of the NLU component from that of
the natural language generation (NLG) component. Recall
that in this work we are primarily interested in the evalua-
tion and improvement of the language model, therefore this
isolation is necessary. Once it has been established that the
NLU is performing acceptably the NLG can be evaluated
separately, which is outside the scope of Trace.

The Analysis Interface

After the risk analysis and voting processes are complete,
Trace provides voting data and additional recommendations
to the domain experts to facilitate language model develop-
ment. To optimize domain experts’ time, Trace uses the re-
viewer voting outcomes to determine a recommended action
per turn, shown in Table 1 and visualized in Figure 2. These
actions help the domain experts quickly determine what to
do with the voting results for a particular turn.

To prioritize language model repair work by the impact it
will have on the live IVA, the set of turns and their voting
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Figure 2: Analysis interface within Trace used by domain
experts to view voting results and reviewer agreement.

Figure 3: Trace presents the ratio of misunderstood to cor-
rect inputs per intent to prioritize work. The red bar is the
count of misunderstood inputs assigned to that intent in the
live IVA. The grey bar is the count of correct inputs.

outcomes are first grouped by responding intent and then or-
dered by the frequency of response within the conversation
logs. A screen shot of this prioritization from the analysis
interface is shown in Figure 3. By looking at this chart, do-
main experts can quickly determine which malfunctioning
intents have a greater impact on user experience. If two in-
tents have a similar ratio of misunderstood inputs, the intent
with the higher response frequency would be prioritized for
repair as its malfunction will have a larger impact on overall
user experience.

To help domain experts quickly analyze the voting results
and voter consensus the analysis interface provides the tab-
ular view shown in Figure 2. The filters at the top provide
the ability to explore the results from many angles such as
per intent, per voter, date range, recommended action, etc.
In the left hand column the original user turn text is dis-
played. In the next column is the intent that the reviewers
evaluated the text against. The “Input Type” column shows
whether the intent evaluated was from the current NLU or
a different source, such as regression tests used in develop-
ing the language model or live chat logs. Trace is designed
in such a way that it can perform misunderstanding analysis

on any textual data labeled with intent or topic. The “Voting
Results” column provides a visual indicator of the voting
outcome and inter-reviewer agreement. The final column on
the right hand side is the recommended action from Table 1.
Filtering this table by an action type will quickly surface all
turns where a particular action should be performed.

From this view the domain experts can quickly find ar-
eas of the language model that need attention and export the
text data with any detected risk indicators and voting results.
They can then use this data along with the NLU-specific
means to make the necessary changes in the language model.

Indicators of Intent Error

This section describes the individual indicators of intent er-
ror that the risk analysis engine tests for. These were derived
from literature review on miscommunication in conversation
combined with our own emperical evidence from 18 years of
IVA development. Further discussion on these indicators and
how they are detected was presented in (Beaver 2018).

Conversation Level Features

The following features apply risk equally across all turns
within the single conversation where they are present. These
features are used to detect miscommunication over the
course of the conversation and elevate the risk score for
turns in conversations where miscommunication was likely
to have occurred.

I Don’t Know (IDK) in conversation
An IDK occurs when the language model does not find an
intent that satisfies the user query with a high enough con-
fidence. The IVA may respond with something like “I’m
sorry, I didn’t understand you.” If a conversation contains
one or more IDK responses, this may indicate that the user
is talking about some subject the IVA has no knowledge of.

same intent(s) hit
The same intent is hit more than once within the conversa-
tion. This is an indication of risk within a customer service
conversation because it is unlikely the user would want to
see the same response repeated. If these are successive in a
conversation they are considered to be sequential hits. This
usually indicates that the response to the first input did not
satisfy the user; he or she is rewording the question to get a
different response. If the system has the initiative, this may
mean that the system is repeating a prompt, a common indi-
cation of miscommunication (Aberdeen and Ferro 2003).

tie in conversation
The responding intent for one or more turns in the conver-
sation had a nearly identical score as one or more different
intents. This indicates confusion in the NLU around the in-
put language for the tying intents. If a conversation contains
such ties it may surface subject matter that is not well de-
fined in the language model.

user rating scores
Users may be asked for feedback on how helpful the IVA
was for their session. However, feedback is not entirely re-
liable as we have observed users who give negative feed-
back if the IVA rightly upholds business rules. For example,
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business rules may prevent transferring a ticket to a different
passenger, and, when a user attempts to do so, the IVA will
not let them. In retribution the user grades the conversation
poorly but the IVA was not at fault. The user may also say
the IVA was unhelpful when the NLU was indeed working
correctly, but the response text was poorly worded. There-
fore this feedback is only a measure of risk in our system
and not the final determination as in (Jiang et al. 2015).

conversation should escalate
An escalation occurs when a user requests an alternative
channel for the completion of a task. Whether or not there
was explicit user request for an escalation in the conversa-
tion, an algorithm (Freeman and Beaver 2017) has deter-
mined that the conversation should have been escalated due
to IVA failures to complete the task at hand.

sentiment change over time
The user began the conversation with positive or neutral sen-
timent, but by the end of the conversation their sentiment
was negative. This may be caused by either the IVA prevent-
ing them from completing a task due to business rules, or
due to IVA misunderstanding.

Turn Level Features

The following features only apply risk to a single turn. How-
ever, they may still use features of the conversational context
in their determination.

triggers IDK response
If the response to this turn is an IDK, this may indicate that
the user has asked about a subject the IVA does not have
knowledge of.

contains backstory
Users may give backstory on their task that is unnecessary
for determining the correct intent. The presence of this lan-
guage can add confusion in the NLU and result in an intent
error (Beaver, Freeman, and Mueen 2020). For example, a
user may tell the IVA that he or she needs to fly to Boston
for a son’s graduation party. The fact that the user has a son
and is attending his graduation party is irrelevant to the task.
The additional language can interfere with determining the
user’s primary task of booking a flight. We apply (Kim, Ryu,
and Lee 2016) to segment intents in the text, and if the NLU
is unable to determine the intent of a segment, we consider
it the presence of out-of-domain/unnecessary language.

precedes corrections
The following user turn contains error correction language,
such as ”no, ..”, “I said ..”, “.. not what I ..” (Bulyko et al.
2005; Freeman and Beaver 2017).

abandonment
The user left the conversation immediately after the IVA
asked them a question. This indicates that the IVA did not
have all the information it needed to complete the task, but
the user abandonment indicates it was likely trying to ac-
complish the wrong task and the user left in frustration.

contains multiple intents
If multiple intents are present it can add confusion to the
NLU. We assume the IVA under review does not support

multiple intents within a single turn as multi-intent parsing
is still an unsolved problem for IVAs (Khatri et al. 2018).
Using the method given in (Kim, Ryu, and Lee 2016), we
detect if multiple intents are present in the user turn.

triggers sequential hit or impasse
The turn hit the same intent as the previous turn. This usu-
ally indicates that the previous response did not satisfy the
user, so he or she is rewording the question to get a differ-
ent response but failed to do so. An impasse occurs when
the same intent is returned more than two times in a row.
In which case the IVA may respond with something like “I
think you are asking for more information than I have.”

precedes escalation
As escalations may be due to previous IVA failures, risk is
assigned to the turn preceding any escalation request.

precedes unhelpful
The input directly preceded a turn stating the unhelpfulness
of the IVA. This is a common reaction when the user is frus-
trated at the inability to make progress in their task.

precedes profanity
The input directly preceded an interaction containing pro-
fanity. With a customer service or product support IVA, pro-
fanity is usually a sign of user frustration or irritation.

precedes negative sentiment
If a turn contains negative sentiment, this may be due to the
user’s reaction to the previous IVA response. Therefore, risk
is assigned to the preceding user turn.

restated
If a turn is very similar to one or more following turns, this
may indicate the user was dissatisfied with the response and
rewords the question. Similarity is defined as a rephrasing
of the same question or statement as measured by cosine
similarity of sentence vectors; it may not have triggered the
same intent in the IVA (Jiang et al. 2015).

precedes IDK
We have observed that IDKs may follow misunderstood
turns. This type of IDK can happen when the user reacts
in surprise or frustration (“What??”) or changes the subject
to complaining about the IVA due to the misunderstanding
(“This is the dumbest thing I have ever used!”).

triggers tie
The responding intent had a nearly identical score as one or
more different intents. This indicates confusion in the lan-
guage model around the input language.

contains unknown words
The user turn contains words that are out of vocabulary for
the underlying language model. This may indicate that the
user is talking about some subject the IVA does not have
knowledge of.

should escalate point
There was no explicit user request for escalation in the con-
versation, but an algorithm (Freeman and Beaver 2017) de-
termined that the conversation should have escalated at this
point in the conversation due to task failures.
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Dataset # Conv Total User
Turns

Textual
User Turns

Majority
Agreement

Train 2,030 13,930 7,270 6,331
Telecom 1,342 20,485 7,313 5,252
Airline 1,611 9,103 9,103 6,978
Average 1,661 14,506 7,895 6,187

Table 2: Dataset statistics for the evaluation data.

Evaluation

The purpose of Trace is to reduce the human burden and
costs in maintaining conversational agents. To demonstrate
its utility, we measure it’s performance in automating the
reviewer voting process on real datasets from three live IVAs
as well as performing a cost analysis of human review.

Data

Due to annotation budget for this study, we limited our aver-
age user turns per dataset to 8,000. All turns in a conversa-
tion need to be reviewed. However, conversations have vary-
ing numbers of turns and, with multi-modal IVAs, not all
user turns consist of natural language. For example, some
user turns in a conversation may be events such as user in-
terface clicks or web page navigations which the IVA re-
sponds to. Using the average natural language turns per con-
versation we estimated the sample size per domain. We then
selected a random sample of full conversations, using the es-
timated sample size per domain, from the conversation logs
of a live virtual agent we maintain in each domain.

All natural language turns were selected for voting and
released to a group of 14 voters. Three votes per turn was re-
quired to control for subjectivity. Voters were all employees
of Verint - Next IT who were trained on the Trace user inter-
face and voting process prior to actually voting, and many
were domain experts. After voting, the average number of
turns per dataset with a clear majority (agree or disagree
with the intent chosen by the live IVA) was 6, 187. If there
was no clear majority, the turn was not used for evaluation.
Although all three datasets had 14 voters, not all 14 were the
same people; there were 17 unique voters overall.

Evaluation dataset statistics are given in Table 2. Total
User Turns involve all forms of user input including clicking
on controls and web page navigation events. Textual User
Turns are only those that were processed by the NLU com-
ponent for intent classification. As we are only interested
in the discovery of error in the NLU, it is these user turns
that are evaluated by humans. Majority Agreement are the
number of Textual User Turns where a majority (at least 2)
of the three voters agreed. Note that voters can choose Not
Sure (see Figure 1) so a majority is not guaranteed.

From these counts we can see that the Telecommunica-
tions IVA is very interactive, less than half of user turns
are actually in the form of natural language. This IVA re-
sponds to many user activities besides typed or spoken in-
put. In contrast, the Airline IVA does not accept anything
but typed or spoken input. The Train IVA appears a good
balance of the two interaction styles. The Train IVA had
the highest level of overall voter agreement, at 87%. The

Airline had less at 76.7% followed by the Telecommunica-
tions IVA with 71.8% agreement. Inspecting the conversa-
tions and IVA knowledge bases, it appears these differences
are due to the complexity of the IVA and the number of
intents understood. The Train IVA has 930 distinct intents
in its knowledge base, compared to 1,223 for the Airline
IVA and 2,173 for the Telecommunications IVA. Not sur-
prisingly, the increase in possible intents to select from ap-
pears to decrease voter agreement on the correctness of an
intent chosen by the IVA.

Comparison Metrics

Due to the multiple layers of random sampling used to create
the datasets and gather the votes, fairly comparing humans
to each other and Trace can be difficult. As the human vot-
ers did not see all of the user turns in a dataset, but were
merely given a subset of turns ensuring each turn had three
votes each, we cannot calculate a recall, and therefore a F1
score, for the humans. Furthermore, no two humans saw the
exact same subset of the turns to ensure a pair of voters who
only choose one value (always vote Yes, for example) could
generate an inaccurate majority on an entire subset. There-
fore, to compare the human reviewers to each other and to
Trace we considered only the class unweighted (micro) and
class weighted (macro) precision. The equations for both in
the binary case are given where tp = true positive and fp =
false positive:

PMicro =
tpYes + tpNo

tpYes + tpNo + fpYes + fpNo
(1)

PMacro =
1

2
(

tpYes

tpYes + fpYes
+

tpNo

tpNo + fpNo
) (2)

The micro-averaged precision gives a sense of how many
“correct” votes a reviewer made over the sample size they
reviewed. Equal weight is given to each turn classification
decision without regard to class imbalance (Schütze, Man-
ning, and Raghavan 2008). However, as the two classes are
very imbalanced (only 14.45% are class No averaged over
the three datasets) this can be misleading if viewed alone.

In contrast, the macro-averaged precision gives a sense
of effectiveness on small classes (Schütze, Manning, and
Raghavan 2008). Taking these two measurements together
we can get a sense of a classifier’s (human or machine)
performance overall and performance equally favoring the
under-represented class of misunderstandings.

Automating Reviewer Voting

Beyond prioritizing human reviewer time we wish to auto-
mate the entire voting process where possible. To do this
we train a binary classifier to vote Yes or No for each
<turn, intent> pair identical to the reviewer task. Humans
would not be entirely replaced however, as the risk indicator
weights and voting classifier would need periodic retraining
to account for changes in the set of intents within the lan-
guage model. In this way, Trace is a human-in-the-loop sys-
tem which automates many of the human review tasks with-
out entirely replacing the valuable human decision making.
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To select the voting classifier, we performed an extensive
evaluation of various classification methods on each dataset.
The voting classifiers were trained using the unweighted risk
indicator values as features and the majority decision as the
outcome. If voters agreed that turn t belongs to the intent
assigned by the IVA, the class is 1. If they disagree, the class
is 0. For each turn with a voter consensus we add a row to a
feature matrix M , with a column for each risk indicator and
a final column for the class.

M =

⎛
⎜⎜⎝

backstory restated class

t1 0 1 · · · 1
t2 0 0 · · · 0
...

...
...

. . .
...

tn 1 0 · · · 1

⎞
⎟⎟⎠

This feature matrix M is then used to train a binary clas-
sification model using a stratified 30-fold cross validation.
When a new turn is under review, the risk indicators present
are represented as a vector and fed to the voting classifier to
predict the majority vote of Yes or No. The classifiers were
trained and evaluated on each dataset in isolation. The classi-
fication method with the highest combined precision across
all three datasets and fastest training time training time was
chosen. Training time and scaling are important consider-
ations as Trace is continually retraining these models per
dataset as human voting data is added. Our final selection
for the voting classifier was a Random Forest model with 30
estimators, which required on average 2 seconds to train.

Voting Classifier Evaluation

Having selected a voting classifier, we compare its perfor-
mance on each dataset to the human voters in Table 3. For
each voter, we calculated the micro and macro precision of
their votes to the majority vote. It is obvious from this table
that as the IVA complexity increases, TMacro compared to
HMacro suffers, although TMicro does not seem as affected
indicating the performance on class Yes still holds.

There is a bias favoring the humans here in that the gold
standard was produced by the majority of human reviewers.
The bias arises when a third reviewer votes on a user turn
where there exists one Yes and one No vote. In this case the
third reviewer is forming the majority either way they vote
and cannot be penalized.

In light of this, the human voter precision scores given
may be higher than a true outside observer predicting the
existing majority vote as Trace does. It is dangerous to try
to correct for this by ignoring votes that form majority how-
ever, as turns will not be scored for the two humans choos-
ing the majority, but will be scored against the one that
didn’t. This gives more chances for penalty than reward.
We also cannot only consider turns where all three reviewers
agree as the human performance will always be perfect and
turns with some disagreement are potentially harder cases
we want to evaluate Trace on. Therefore, we only note that
the bias exists and favors the human voters.

Annotation Cost Savings

In production, we use an annotation service (under NDA)
which costs our company $0.10 per turn. For our Telecom

Dataset HMacro TMacro HMicro TMicro

Airline 0.85±0.24 0.74 0.93±0.12 0.89
Telecom 0.82±0.24 0.59 0.89±0.16 0.86
Train 0.79±0.28 0.74 0.84±0.38 0.83

Table 3: Human (H) voter mean precision ± 95% on major-
ity agreement compared with Trace (T ) voting classifier that
a turn’s intent was misclassified, by domain.

IVA, which responds to 1.8 million user turns per month, re-
viewing 5% for quality control requires 90,000 turns to be
reviewed every month. Recall this is a very difficult domain
in which there are over 2,000 unique intents and complex
intent classification logic, and is the domain in which Trace
performed poorly. At $0.10 per turn the annotation cost for
90,000 is $9,000 per month for just one subjective review
per turn. Using crowd-source platforms such as Mechani-
cal Turk would cost $0.54 per turn using qualified workers5

and paying them $0.10 per turn, which would greatly inflate
monthly annotation costs. In addition, this IVA has a histori-
cal intent error rate of 14.35%, meaning only 12,915 turns of
the 90,000 actually need review, assuming the 5% is a truly
random sample. We wish to minimize reviewing turns with
no error as they are not used for IVA improvement directly.

Using Trace to prioritize the data for review by the risk
score, as the voting classifier is not trustworthy in this do-
main (see Table 3), we have measured 28% of the riskiest
5% in a month to be actually misunderstood. This doubles
the number of turns that truly needed review in the sample,
and therefore we find a similar number of misunderstandings
in a 2.5% sample from Trace as in a 5% random sample, sav-
ing 50% in monthly annotation costs for a single IVA.

In some domains with less complex language models,
such as the Train IVA, Trace has similar performance to
the average human reviewer (see Table 3). In these cases we
have been able to eliminate the human voters, with the ex-
ception of periodic batches to tune the risk indicator weights
and voting classifier. The annotation cost savings for these
IVAs have been closer to 90%. Considering that the Telecom
IVA is a worst-case for Trace and that we maintain 40+ pro-
duction IVAs and growing, by introducing Trace company-
wide we save nearly 75% in monthly annotation costs, or
roughly $1.5 million yearly, over random samples.

Scalability

To measure the limits of the architecture, we conducted a
scaling test. We start with a single 40-core compute node
enabled and feed Trace 400k turns, roughly 1 week of con-
versations from the live Telecom IVA, and measure the wall
clock time to complete the risk analysis and apply the voting
classifier to all turns. Then the entire system was restarted to
clear out any caches. After restarting, an additional compute
node is added to the cluster and the test is repeated.

In Figure 4, we see the results of this scaling test. With a
single compute node, it takes roughly 5.5 hours to process 1

5https://requester.mturk.com/pricing
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Figure 4: The performance impact on processing 400k turns
increasing the compute cluster one 40-core node at a time.

week of data. With six compute nodes, Trace can process the
data in roughly one hour, at which point MongoDB and the
network overhead begins to bottleneck linear scaling. With
six compute nodes in our production Slurm cluster, the ar-
chitecture has proven capable of processing the conversation
data influx of 40+ live IVAs concurrently.

Conclusion

We have presented Trace, a system to prioritize human re-
viewer time and reduce annotation costs associated with
maintaining production IVAs at scale. In addition, by min-
imizing the amount of human review necessary, we reduce
the amount of user data exposed through the review process.
In the best case, where review can be reduced to periodic
system reinforcement, the vast majority of conversations are
not seen by humans, while still ensuring IVA quality.

We discussed the design of the system as it is presented to
the reviewers and domain experts, and how it can help do-
main experts prioritize their time for language model repairs
that will have the largest impact on user experience.

Trace relies greatly on previous research in human-
computer interfaces, communication, and natural language
processing in the development of it’s indications of risk. To
our knowledge there exists no other similar application for
the improvement of IVAs. Trace has been used in a produc-
tion capacity for over three years, processing hundreds of
millions of conversational turns per year.

Trace presents voting results and actions to the domain ex-
perts through the same interface regardless if the voter was
human or machine (see Figure 2) and Trace always votes
on every turn. Therefore, the source of votes can be cho-
sen based on current system performance in a particular lan-
guage domain or human reviewer availability. As Trace is
implemented as a web application, domain experts can eas-
ily use internal or external annotation sources for voting.

Our system uses only conversational features for misun-
derstanding detection and is not dependent on the implemen-
tation details of the underlying IVA or the domain of lan-
guage it is deployed in. This, combined with the flexibility
of annotation sources, its ability to scale to real-world vol-
umes of data, and its proven ability to lower costs make it
a beneficial application to our company, and any company
that maintains enterprise IVAs or chatbots.
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