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Abstract

We present a commercially deployed machine learning sys-
tem that automates the day-ahead nomination of the expected
grid loss for a Norwegian utility company. It meets several
practical constraints and issues related to, among other things,
delayed, missing and incorrect data and a small data set. The
system incorporates a total of 24 different models that per-
forms forecasts for three sub-grids. Each day one model is
selected for making the hourly day-ahead forecasts for each
sub-grid. The deployed system reduces the MAE with 41%
from 3.68 MW to 2.17 MW per hour from mid July to mid
October. It is robust and reduces manual work.

Introduction

Every day at noon utility companies in the Nordics have
to nominate to Nord Pool1 how much electricity that is ex-
pected to be lost in the power grid for each hour the next day.
This is called day-ahead nomination of grid losses. The grid
loss is correlated with the length of the path that the electric-
ity is routed and the amount of electricity that is transported
through the power grid. The path through the power grid
changes daily and seemingly stochastically. The electricity
is routed based on operational decisions made by the power
grid operator. The consumption also changes every hour ac-
cording to the weather, the season, time of the day, day of
the week and whether or not it is a holiday.

The power company TrønderEnergi Kraft AS nominates
losses day-ahead for the utility TrøndeEnergi Nett as a ser-
vice. In the past, the losses were forecasted using a numer-
ical method based on relatively simple heuristics and an
off-the-shelf energy consumption forecasting model. Man-
ual work was required to recalculate constants part of the
numerical method, and the output of the forecasts were from
time to time adjusted manually if they looked off to the oper-
ators. The quality of these adjustments depended on the ex-
perience of the operators, and hence they were only as good
as the experts making these. As the forecasting using the nu-
merical method and the adjustments were done manually by
a small set of operators, it was not very robust to changes.
Although not very time-consuming, using it required manual
work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.nordpoolgroup.com

Figure 1: The graph at the top shows grid loss over one year,
while the one on the bottom shows grid loss over one week.

In this paper, we present a system that has been de-
ployed to automate the day-ahead prediction of grid losses
for TrønderEnergi Nett. The deployed system reduces the
MAE with 41% from 3.68 MW to 2.17 MW per hour for
the period July 17 to Oct 21, 2019. The results translate to
a reduced imbalance cost of about 15 000$ per year for a
relatively small part of the power grid in Norway. Other ad-
vantages include reducing financial risk that the utility is ex-
posed to because of the imbalance between the nominated
loss and the actual loss in the grid, reduced manual work
(∼100 hours/year) and structured nomination not relying on
individuals. Reducing manual work reduces the potential for
human errors. Automation also frees time for the operators
that can be spent on other, more valuable tasks. It also stan-
dardize the process, so that it relies less on the expertise and
experience of individual operators.

Power Grids, Losses and Electricity Markets

The power grid transports electricity from the producers
to the customers and is divided into the transmission net-
work and the distribution network. The transmission net-
work transports electricity from the generation site, such as
an electrical power plant, to electrical substations, while the
distribution network distributes the electricity from the elec-
trical substations to the customers. The transmission system
operator (TSO) operates the transmission network while the
distribution system operator (DSO) operates the distribution
network. In the Nordics, the state owned public utilities Stat-
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nett, Fingrid, Svenska kraftnät and Energinet are the TSOs
responsible for the national transmission networks. The dis-
tribution networks are typically owned by local utility com-
panies, such as TrønderEnergi Nett.

Grid loss is defined to be the difference in electricity
between what has been produced by the power plants and
what has been sold to the customers. Grid losses can be
divided into technical and non-technical losses. Technical
losses are due to both transport and transformation and show
themselves as reduced voltage. Some of these are variable
while others are fixed. The fixed losses do not depend on
the amount of electricity that is transported, but the applied
voltage. The variable losses vary with the current carried
by the conductor and depend on the resistance, as the re-
sistance causes energy to be absorbed by the conductor.
Non-technical losses include theft and failing electricity me-
ters. The physics of grid losses are well understood and can
be calculated quite accurately given the grid configuration.
Still, as these are not known or changes all the time, calcu-
lating grid losses is not straight forward. Parts of the losses
are in the transmission network and parts in the distribution
network. The utilities are responsible for the losses in their
networks, and they have to nominate the expected loss day-
ahead to the market so that the electricity price can be de-
cided. We assume that all electricity is accounted for and
that there is no theft, as the theft or commercial losses are
very small in Norway (NVE 2016).

Electricity is sold in several different physical markets. In
these markets, the sellers have to produce the agreed upon
amount and the buyers have to buy the amount they bid for.
The electricity price in the Nordics is decided in the Nord
Pool spot price market. The spot price is decided based on an
auction where producers and customers make bids on how
much electricity they can produce or consume and to which
price. The auction closes at noon the day before production
starts, and the spot price for each hour the next day is pre-
sented 42 minutes later.

As wind and solar power are variable power sources that
cannot be dispatched on demand and vary from hour to hour,
the amount of electricity that they will produce is highly
uncertain and hard to forecast day-ahead. As shown in 1,
consumption also varies from day to day and is affected
by, among others, the weather and season. As mentioned
above, the grid loss is correlated with the amount of energy
in the power grid. Hence, the total energy demand, which
includes consumption and loss, is also hard to forecast. The
uncertainty in both the production and the demand results in
forecasting errors which again result in deviation from the
nominated positions. These deviations result in imbalances
that are settled in the imbalance marked by the TSO on be-
half of the non-compliant parties. The TSO buys position
changes from portfolio owners with flexible assets, and the
imbalance price is set uniformly for each hour determined
by the bid/ask price of the last activated asset. The imbal-
ance price is highly unpredictable, and the imbalance price
has a two-price logic which ensures that anyone causing im-
balance always will be worse off compared to the day-ahead
market price. Often the imbalance price is fairly similar to
the spot price, which on average is around 30EUR/MWh,

but the upper limit is 5000 EUR/MWh. Thus, producers and
consumers benefit from improving their forecasts, as nomi-
nating with a low error leads to a reduced risk of paying high
imbalance prices and thus lowers the imbalance cost.

Problem Description and Baseline

Grid loss is represented as a time-series with 1 hour granu-
larity, where each value is the average loss in the network
over the past hour. The objective is to nominate the grid
losses for the next day at noon, so we need to forecast grid
loss for 24 hours of the next day before noon. Formally, at
time t, noon, for network n, the objective is to nominate the
24 future losses Ln,t+Δ where Δ ∈< 13, ..., 36 >, alterna-
tively annotated as Ln,t = (Ln,t+13, ..., Ln,t+36). Forecasts
are annotated with ,̂ so the grid load forecasts are denoted
L̂n,t+Δ or L̂n,t. The grid losses that we forecast are the
losses in the distribution network that TrønderEnergi Nett
is responsible for. This distribution network is composed of
three non-overlapping sub-networks, and hence:

Lt+Δ = L1,t+Δ + L2,t+Δ + L3,t+Δ, (1)

where Lt+Δ is the grid loss for the whole distribution net-
work, L1,t+Δ, L2,t+Δ and L3,t+Δ are the grid losses for
each of the sub-networks for hour t+Δ. Lt+Δ is the actual
loss in the distribution network, and Et+Δ is the error for
hour t+Δ:

Et+Δ = Lt+Δ − L̂t+Δ. (2)
The error is the amount of electricity that has to be traded
in the balancing market for the imbalance price that is de-
cided for that specific hour. Total average energy in a target
network for hour t+Δ can be described as follows:

It+Δ = Ct+Δ + Lt+Δ, (3)

where It+Δ is the average total energy in the target network
(load) for hour t +Δ, Ct+Δ is the average consumption by
customers in the target network for hour t + Δand Lt+Δ

is the grid loss for the target network for hour t + Δ. The
baseline method for estimating the average grid loss for hour
t+Δ is based on the following equation:

L̂t+Δ = L0 + kĈ2
t+Δ, (4)

where L̂t+Δ is the estimated loss for the target network,
L0 is idle loss, k is a constant and Ĉt+Δ is the expected
power consumption in the target network for hour t + Δ.
Both L0 and k are computed numerically by fitting equa-
tion 4 so that equation 3 is correct for historical data. În,t+Δ

is estimated for each hour the next day using an off-the-shelf
demand model that takes as input historical consumption in
the target region and the temperature prognosis for the next
day. Then, based on the expected power consumption, the
grid loss L̂t+Δ for each hour is calculated using equation 4.
L̂t = (Lt+13, ..., Lt+36) is nominated to the spot market
before noon.

A complicating factor is that the DSO is responsible for
the electricity consumption of consumers that do not have
a contract with an electricity retailer. Retailers buy electric-
ity on behalf of many small consumers, and they have to
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nominate the expected consumption. The reasons why some
customers do not have contracts with retailers are: 1) Con-
sumers are in-between retailers; 2) consumers that have not
paid their bill to the retailer and the retailer has stopped sell-
ing them electricity still get electricity until the DSO cut the
supply physically; 3) some consumers did not get a retailer
since the market opened. The consumption by consumers
without a retailer are nominated as part of the day-ahead grid
loss nomination. Predicting this consumption is hard as the
amount of consumers that do not have a retailer is seemingly
stochastic.

Related Work

Grid losses has a high cost for society and work has been
done on identifying and reducing it. (Navani et al. 2008)
gives an overview of technical and non-technical losses
and provides an analysis of the consequence of losses to
the Indian economy. (Bernheim, Hansell, and Martin 2018)
present a system for detecting and localizing non-technical
losses by comparing current and voltage flowing through
different meters at the same time and uses these to see
whether there are un-metered flows between the meters and
the transformer, while (Carquex and Rosenberg 2018) use
state estimation and smart meters to detect and locate theft
in distribution systems. (Glauner et al. 2017) provides an
overview over AI techniques for detecting non-technical
loss. (Kang et al. 2006) and (Leal et al. 2006) use artifi-
cial neural networks to perform analysis and evaluation of
losses in distribution systems. (Agüero 2012) review tech-
nologies, methodologies and operational approaches aimed
at improving the efficiency of power distribution systems.
Both (Han and Li 2019) and (Hu, Harmsen, and Crijns-
Graus 2017) present methods for reducing losses by dis-
tributing resources, as ”decentralized generation can avoid
grid losses and save primary energy”. (Oliveira et al. 2001),
presents a method for computing losses offline after the fact.

Although losses have to be nominated daily, the literature
on methods for predicting grid losses is sparse. To the best of
our knowledge, we have only found two other publications
dealing with predicting grid losses. This should indicate
the novelty of our research presented here. (Sulakov 2017)
presents a system that is used to nominate hourly grid losses
day-ahead in the Bulgarian electricity market. It is a sta-
tistical approach that takes meteorological forecasts, hourly
load forecasts, the net export and forecasts of wind and solar
power production as inputs to forecast the hourly transmis-
sion losses. Corona losses are part of the transmission losses
and (Sulakov 2016b) present a hourly method very similar to
the method presented in (Sulakov 2017) for making hourly
forecasts of corona losses in order to trade imbalances in the
intraday market. (Sulakov 2016a) discusses how the forced
renewables wind and solar impact variable technical losses.

Practical Constraints and Issues

The following issues and constraints must be met:
Delayed grid loss measurements: While the preliminary

estimates of the actual grid loss for each grid are available
the day after, these values are unreliable and are overwritten

Figure 2: Incorrect measurements for grid 2.

for the next 5-6 days. These changes are significant (up to
40% change from day to day), and hence the measured data
cannot be used before these changes are accommodated.

Missing measurements: Due to technical issues, some-
times we do not receive the measured grid loss for days. For
example, for grid 3, measured historical data was unavail-
able at the forecasting hour for a total of 435 hours (20%)
over a period of 90 days. Sometimes these missing measure-
ments are updated later but sometimes, they stay missing. A
robust prediction system needs to make reliable predictions
when measured data is missing.

Incorrect measurements: In the past, detecting incorrect
data was an irregular and manual process. As shown in fig-
ure 2, for two months in 2018, we received incorrect data
with an approximate error of 25-50 MW per hour. The mea-
surements were never corrected, and it took months to detect
this. Depending upon the scale of error, predictions for those
periods can be way off leading to incorrect bidding of grid
losses. The incorrect measurements affect the quality of the
training and test data.

Incorrect measurement detection were not grid spe-
cific: The manual process for detecting errors in the mea-
sured grid loss was based on the sum of the grid losses, so
incorrect data from individual grids were not detected. There
might be scenarios when even the major errors in the sub-
grids might not affect the total grid loss significantly.

Manual retraining: Estimations of L0 and k in equation
4 were typically done manually once in six months. Due to
high seasonal effects and abrupt changes in grid configura-
tions, this was not ideal, and should be done more frequently.

Manual alterations: Predictions from the previous nu-
merical model were regularly changed by the domain ex-
perts. The experts made manual changes when the predic-
tions looked off. Such updates were based on subjective ex-
pert intuitions. Hence, the system in use was unsystematic,
not reproducible and dependent on expert intervention.

Lack of a monitoring infrastructure: Incorrect mea-
surements were not detected because of a lack of monitoring
systems that supported the experts in detecting anomalies.
Performance of forecasts were not monitored either.

Grid specific predictions: Forecasts were made for the
total grid loss of the three separate grids.Individual forecasts
for the three grids are needed to evaluate the imbalance dis-
tribution across the grids, and the DSO were asking for this.

Over-written data: While the historical measurements
for the grid loss are stored and maintained, changes to them
were not tracked. Over a period of 90 days, measurements
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were significantly overwritten for more than 50 hours. This
poses a problem for any model that uses the historical data.

Small dataset: Multi-year datasets are required in order
to properly capture seasonal effects. Unfortunately, we only
had access to less than two years of data.

While some of the above issues can easily be solved by
implementing a machine learning (ML) system that auto-
mates the process, some of the issues, such as delayed, incor-
rect and missing grid loss measurements, over-written his-
torical data and a small data set, need to be solved explicitly.

Grid Loss Forecasting

We chose CatBoost (Prokhorenkova et al. 2018), an open-
source implementation of gradient boosting on decision
trees library, to forecast grid loss for each hour the next day.
CatBoost with minimal hyper-parameter tuning performed
well on our small dataset. Different experiments were con-
ducted to guide design and to evaluate the effect of possible
features.We report results from three of these in more detail
in the subsection Experiments.

Historical measurements of grid loss was identified as
an important feature. Since the correct measurement of the
grid loss was only available six days after the fact, measure-
ments from the same hour the week before was used as one
of the features. Since temperature directly affects the elec-
tricity consumption (heating is extensive during winter) and
thus affects load and grid loss, meteorological forecasts were
used as features. As shown in Figure 1, the grid loss is sea-
sonal in nature and calendar features such as month, week,
day of the week, hour of the day affect the grid loss.

Experiments

In total, we had 19 months of data from Dec 2017 to June
2019. 13 months of these were used for training and cross-
validation and six months were used for testing. We eval-
uated four different algorithms on the training data using
cross-validation. These were: 1) A Multi-layer perceptron
with 5 hidden layers, 2) a decision tree regressor, 3) a gra-
dient boosting regressor ensemble from sci-kit learn and 4)
CatBoost. Their respective mean absolute error (MAE) were
3.07, 1.52, 1.02 and 0.95 MW. Since we did not have enough
data for hyper-parameter optimization, we chose CatBoost
which performed the best with minimal hyper-parameter
tuning. Also, we have important categorical features (sea-
son, month, weekday) that CatBoost handles well. Feature
selection and design decisions were made based on exper-
iments conducted on the training and cross-validation data.
Since grid 3 is relatively new, does not have enough data
and has low impact on total grid loss due to its size, it was
not used for these initial experiments. The model for grid
3 was designed based on the results from the experiments
conducted using data from grid 1 and 2.

Load predictions as a feature: The hypothesis was that
an estimate of the load in a grid could be an important fea-
ture for the grid loss. To test this hypothesis, we used the
load for the same hour one week before as a feature. The
effects were clear, and we then decided to make a load pre-
diction model. A separate CatBoost model was trained for

Model MAE RMSE MAPE
CatBoost 18.728 23.634 3.393
Baseline 46.878 59.496 8.494

Table 1: Comparing the grid load predictions with baseline
(last week’s grid load). Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and Mean Absolute Percent-
age Error (MAPE) were used as error metrics.

Grid Model MAE RMSE MAPE
1 CatBoost 2.374 3.400 15.642
1 CatBoost (with load) 1.803 2.831 11.801
2 CatBoost 1.279 1.679 13.050
2 CatBoost (with load) 1.009 1.440 10.242

Table 2: Effect of including load predictions as a feature on
grid loss predictions

predicting the load for each of the grids. Historical measure-
ments for the load, calendar features and weather predictions
were used as features for this model. Table 1 shows the per-
formance of the load prediction models on the test data com-
pared to last week’s load for the predicted hour. As shown in
Table 2, including the predicted load as a feature for the grid
loss model improved the model and reduced the MAE with
more than 20% for both grids.

Grid-wise losses versus total losses: One of the require-
ments was to provide separate grid loss forecasts for the in-
dividual grids. However, this requirement was not more im-
portant than reducing the error, so we had to identify whether
it was possible to provide forecasts for each grid with the
same or lower error. For this comparison, we trained three
models, one for each grid, and compared the sum of their
output to a model trained with the same set of features pre-
dicting the total loss for all three grids. As shown in Table
3, we found that predicting the grid loss separately for each
grid improved the predictions with 9% reduction of MAE.

Size of training data: We knew that both seasonal effects
and concept drift would affect the prediction. To capture sea-
sonal effects, more data is expected to improve the model.
However, the energy consumption changes with changes in
the grid and consumer behavior. To test what worked best for
the amount of data we had access to, models were trained
with different amount of training data in a sliding window
fashion. For some models, all the historical data was used,
and for other different number of days like 180, 90 was used.
It means for making a grid loss prediction for day d, models
were trained on the data from d− 186 to d− 6 days (due to
delay in target for 6 days) for the training size of 180 days.
As shown in Table 4, using 180 days of training data was the

Prediction model MAE RMSE MAPE
Grid-wise loss 2.160 2.838 5.786
Total loss 2.391 3.011 6.406

Table 3: Predicting the grid-wise loss versus predicting the
sum of the loss from different grids
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Grid Model MAE RMSE MAPE
1 CatBoost, all data 1.700 2.692 11.124
1 CatBoost, 180 days 1.497 2.258 9.800
1 CatBoost, 90 days 1.585 2.454 10.371
2 CatBoost, all data 1.044 1.442 10.596
2 CatBoost, 180 days 0.849 1.143 8.622
2 CatBoost, 90 days 0.880 1.146 8.931

Table 4: The effect of the amount of recent training data on
grid loss predictions.

Grid Model MAE RMSE MAPE
1 CatBoost 1.02 1.12 4.77
1 Baseline (last week) 1.87 2.00 9.85
2 CatBoost 0.95 1.25 8.45
2 Baseline (last week) 1.13 1.50 10.01

Table 5: Comparison of the CatBoost performance and the
baseline, last week’s grid loss, for grids 1 and 2.

optimal choice.

Testing

The best features and training period for each time series
were selected from the cross-validation and the correspond-
ing models were evaluated on the testing period (Jan-June
2019). Table 5 shows that the models for the two grids per-
form better than the baseline. The baseline used in this com-
parison is the grid loss for the same time last week. We can-
not compare to the performance by the old method presented
in equation 4, as it computes the total grid loss for all three
grids.

Handling missing data

In the real-world, predictions need to be made with the data
at hand at a given time. This complexity is often hidden
when working with historical data sets. Training and testing
models on historical data sets provides a good understanding
of how well a model might perform, but it does not prepare
the inference engine for handling missing, incorrect, and
overwritten data. An individual model that performs the best
given all the data might not perform well when some of the
data is missing or incorrect. Table 6 shows an hourly count
of missing features since the model has been deployed. Grid
3 is especially prone to missing data.

Grid Missing feature Count
1 Load prediction 96
1 Measured grid loss 48
2 Load prediction 144
2 Measured grid loss 48
3 Load prediction 193
3 Measured grid loss 435
All Weather data 60

Table 6: Missing features from July 18 to November 6, 2019.

Robustness: A robust system must be able to predict even
if some of features are missing or unreliable. When forecast-
ing grid loss for day-ahead bidding, the cost of not making
a prediction is typically much higher than the cost of mak-
ing a slightly worse prediction. For example, if the tempera-
ture forecast service is down, the model should still be able
to predict the grid loss reliably even though weather fore-
cast is an important feature. To facilitate this robustness in
our system, we trained a set of models using unique subsets
of features we found useful in our experiments. For exam-
ple, in the above scenario when temperature forecasts were
not available, the system could still provide forecasts from
a model trained without these. This model generally had a
worse performance than the model that used temperature as
a feature, but better in the cases where these were missing.

Model selection: Due to multiple models, multiple pre-
dictions are available for the same grid at the same hour.
Hence, a process is needed to select which predictions
should be chosen to be nominated as the grid loss for a given
hour. The model selection is based on availability of fea-
tures and past performance of the models. First, predictions
from models using missing features are discarded. From the
set of remaining models, we select the prediction from the
model that performed the best in the past (same day, last
week). For example, five out of eight models use measured
grid loss from last week as a feature. If grid loss measure-
ments from last week are missing, the system will discard
these five models relying on grid loss and select the pre-
diction to be nominated from the remaining three models.
Finally, the prediction that will be nominated will be cho-
sen from the model that performed better the same day last
week. Model selection is performed independently for each
grid. We compared this way of selecting models to a simple
ensemble method that calculated the average of all the avail-
able models for a particular hour. While the performance
was similar to our model selection method, the ensemble
method performed worse with a MAE of 2.40 versus 2.17
for the non-ensemble method. The period we tested this is
the same as for the deployment period shown in Table 7,
that is July 17 to October 21.

Deployed Application
The result of the project is a service that forecasts hourly grid
losses for the next day. These daily forecasts of the grid loss
are integrated with the current workflows of the operators
through writing to the time-series service where the previ-
ous model wrote its forecasts. In this way, the operators who
manually submit the forecasts as bids to the day ahead mar-
ket follow the same workflow as they have always used. The
predictions should be ready in due time before noon, so that
operators have enough time to submit the nominations.

Architecture

The system has three main parts: 1) Data storage, 2) ML
pipeline and 3) visualization. The deployed application
mainly uses two types of data storage: Object storage and
a relational database. The object storage is used to store
the trained models while the relational database stores fea-
tures, the predictions and values calculated for monitoring
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Figure 3: Grid loss prediction for each grid where d is the
current day. First, we predict the load for the next day d+1
using historical load from d-6, calendar features for d+1 and
weather predictions for d+1. Using these load predictions,
historical loss from d-6 and the same calendar features and
weather predictions, grid loss is predicted for d+1.

purposes. Features include measured data and weather fore-
casts, which are retrieved from external sources, as well as
calendar features and load predictions. We keep track of all
predictions made by all the models, as well as which pre-
dictions that are selected for nomination. Additionally, de-
tected outliers, economic results, spot and imbalance prices
as well as information required for monitoring are stored.
Missing features and changes to the deployment setup and
models are kept track of as well. The training and prediction
workflows read and write to the relational database and the
object storage. Grafana2 is an open source tool analytics and
monitoring solution that supports querying and visualising
metrics from different data sources. We used it for making
dashboards for both the operators and the ML DevOps team
to monitor performance and the status of the system.

Workflow

The production code is organized as workflows, one for
training the models and one for making predictions. The
workflows are deployed in the cloud with Azure Machine
Learning Pipelines3. A workflow consists of several steps
where outputs from one step serve as inputs to the conse-
quent steps. Initially, each step was implemented as a Python
script. In the production environment, this approach had
huge overheads between steps especially when running for
multiple grids. So the workflow was reorganised to a sin-
gle step that executes all the required sub-steps in sequence
for one time series. Since this step was mostly independent
for each grid, we parallelized the execution of this step (and
underlying sub-steps) using Prefect workflow management
system 4. These updates made job execution much faster
in production environment. The training workflow has three
sub-steps: 1) Retrieve data, 2) detect and remove outliers,
and 3) train models using cleaned data. The same workflow
is run for all three grids in parallel. The prediction workflow
consists of five sub-steps: 1) Getting and cleaning data, 2)
detect and remove outliers, 3) make predictions, 4) choose
predictions using model selection, and 5) report predictions.
A breakdown of the prediction sub-step is shown in figure 3.

2https://grafana.com/
3https://docs.microsoft.com/en-us/azure/machine-

learning/service/concept-ml-pipelines
4https://www.prefect.io/

Model MAE RMSE MAPE
New model 2.17 2.97 7.29
Old method 3.68 4.68 12.36

Table 7: Performance of the deployed model compared to
the old model from July 17 to October 21, 2019.

The first implementation of this system was based on
Jupyter Notebooks. Each of the notebooks implemented one
or more of the workflow sub-steps. The notebooks were
scheduled to run in a sequence, timed manually so that the
next notebook was executed after the previous one was com-
pleted. There are several reasons why we decided not to use
this solution in production: 1) Each workflow step imple-
ments a single task, which makes the system easier to test
and maintain, 2) steps in the workflow are not started until
previous ones are completed, which was not possible with
notebooks where each step had to be scheduled manually
causing a lot of trouble, 3) as each sub-step in the workflow
depends only on its inputs and not on the implementation
of other sub-steps, developers can work in parallel, which
simplifies collaboration.

Dashboards

The dashboard for domain experts was created in order to
provide a quick glance of the performance without overload-
ing them with the technical details of the underlying system.
Special attention was given to metrics and plots the domain
experts are already familiar with, such as an overall status of
the incoming measured data, grid loss predictions, compar-
isons with the previous approach and financial savings made
by both the new and the old model. The dashboard was de-
signed in collaboration with the domain experts to ensure
that it fulfilled their requirements. A snapshot of this dash-
board, showing data for the duration of two weeks, is pre-
sented in Figure 4. The plots shown in the figure are: a plot
comparing the actual grid loss, old predictions and new im-
proved predictions (left) and imbalance volumes from both
the old and the new model (right). A second dashboard was
designed for the ML DevOps team for monitoring and eval-
uating model performance. It visualizes the performance of
different models, error metrics and model selection statistics
etc. Both dashboards show statistics for each grid individu-
ally as well as for the total grid loss. A separate notification
system was developed. It sends emails to the operators and
the ML DevOps whenever something unexpected happens
and human intervention is needed, for example, when jobs
fail, prediction error are huge, and outliers are detected.

Deployed Results

Eight different models were trained for each grid, and they
are referenced as M1, ..., M8 (8 models * 3 grids). Each of
these models were trained on subsets of the features from
the experimental setup. Every day, hourly predictions from
these models are stored in the database. During model selec-
tion, one model is selected per grid and its predictions for all
24 hours are nominated day-ahead.
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Figure 4: Snapshot of two plots from the dashboard for the domain experts.

Figure 5: Model performance and model selection. Top: MAPE metric for individual model for each grid, Bottom: Number of
times each model was selected for the final prediction. Blue indicates models for grid 1, orange for grid 2 and green for grid 3.

Model performance: Figure 5 (top) shows the grid-wise
performance (MAPE) of our eight models (M1, M2, .., M8)
with M8 being the baseline, last week’s measurements, and
M1 being the model that uses all features. The other six
models use a subset of the features and are only selected if
the features they do not use are not available. Both for grid
1 and grid 3, model M1 performs the best. For grid 2, the
baseline, M8 performs better than the other models, for the
reasons explained in the maintenance section.

Model selection: Figure 5 (bottom) shows how many
times each of the eight models that are deployed for each
grid are selected during deployment.Although M1, M2, M3,
M4 and M5 have lower MAPE than M6 (and hence better
performance) for grid 3, they are selected fewer times than
M6. As shown in Table 6, historical measurements for grid
3 are missing often and hence the models that use them as a
feature (M1, M2, M3, M4 and M5) are often discarded and
hence not selected for the final predictions.

Table 7 shows the results after deployment of the new
ML system and the old method. The ML system reduces the
MAE with 41%. The performance is measured over a rela-
tively short period of time (about 90 days), which has at least
two disadvantages: 1) the period is too short to give conclu-
sive results and 2) the consumption is generally higher dur-

ing the winter months and hence also the loss.

Maintenance

When erroneous predictions are detected, the domain ex-
perts are consulted to understand the root cause. Multiple
reasons could lead to substantial errors in the predictions,
but the two major ones are: 1) Incorrect measured data:
when we receive incorrect data, the error calculation cannot
be trusted. This data is detected as incorrect and marked in
the database (automatically) so that is it not used for training.
2) Changes in the grid: when sudden big changes happen in
grid configuration or demand, our first few predictions will
be off since they are naive to these changes. Since we train
our models everyday, they will start learning these changes.
Model selection will choose the baseline model M8 (mea-
sured values from last week) if it is a better prediction than
our other models. A big change like this occurred in Grid 2
on August 26, 2019 when a high energy consuming device
was connected to the grid for long term. The models learned
these changes in about 10-12 days. In the meantime, model
selection picked Model 8 (last week measured values) since
it was closest to the measurements. These effects are also
evident in the figure 5.
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Conclusion

We have presented a system for day-ahead forecasting of
hourly grid losses in the distribution grid reduces the MAE
with 41% from 3.68 MW to 2.17 MW compared to the pre-
vious solution. By reducing the error, the system also re-
duces the financial risk. The presented system performs grid
specific predictions for each of the three sub grids sepa-
rately, which provides the transparency to the DSO. It also
does this with improved results over predicting the total grid
loss for all three grids. Delayed, missing or incorrect mea-
surements are handled explicitly by having multiple mod-
els that are trained on the subsets of features, so that the
system will provide results even with delayed and missing
data. Incoming data deemed incorrect will not be used for
future training. The system requires less human intervention
as the predictions do not need manual alterations, avoiding
subjective biases in the predictions and the corresponding
bids. Automatic retraining of the ML models are done ev-
ery night, and the performance is monitored by providing a
monitoring infrastructure visualizing results in dashboards
and firing alarms if something is unusual. The small dataset
is accommodated by the retraining. No data is lost by be-
ing over-written, as the historical data is stored in a sepa-
rate database. Hence, the deployed system meets all the pre-
sented constraints and issues.

While some of our solutions for solving the practical con-
straints are domain specific, others are generalizable to sim-
ilar forecasting problems. Tackling small datasets is impor-
tant and retraining the model regularly will improve the per-
formance over time. Time sensitive systems must handle de-
layed, missing and incorrect data, and training models on
subsets of the features and choosing the models that use
the available features is a reasonable solution. Methods for
detecting incorrect data should be implemented as well al-
though the method we applied is domain specific. Finally,
close collaboration with the domain experts that are respon-
sible for the task at hand when developing the solution will
help ensure a successful deployment.

Since October 21, the previous, numerical solution is no
longer in use. There are several reasons for this: 1) The con-
stants had to be recalculated, which requires manual work;
2) the results were inferior compared to the whole test and
deployment period of the new system (10 months); and 3)
the old system required manual input, which means that we
did not get value from automating the process until we de-
commissioned the previous system. The presented system
can be deployed at all Norwegian DSOs and thus could have
a high societal impact by substantially reducing imbalances
nationally.
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