
The Thirty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-20)

Understanding Chat Messages for Sticker Recommendation in Messaging Apps

Abhishek Laddha, Mohamed Hanoosh, Debdoot Mukherjee, Parth Patwa, Ankur Narang
Hike Messenger

{abhishekl, moh.hanoosh, debdoot, parthp, ankur}@hike.in

Abstract

Stickers are popularly used in messaging apps such as Hike to
visually express a nuanced range of thoughts and utterances
to convey exaggerated emotions. However, discovering the
right sticker from a large and ever expanding pool of stickers
while chatting can be cumbersome. In this paper, we describe
a system for recommending stickers in real time as the user
is typing based on the context of the conversation. We de-
compose the sticker recommendation (SR) problem into two
steps. First, we predict the message that the user is likely to
send in the chat. Second, we substitute the predicted mes-
sage with an appropriate sticker. Majority of Hike’s messages
are in the form of text which is transliterated from users’ na-
tive language to the Roman script. This leads to numerous
orthographic variations of the same message and makes ac-
curate message prediction challenging. To address this issue,
we learn dense representations of chat messages employing
character level convolution network in an unsupervised man-
ner. We use them to cluster the messages that have the same
meaning. In the subsequent steps, we predict the message
cluster instead of the message. Our approach does not de-
pend on human labelled data (except for validation), leading
to fully automatic updation and tuning pipeline for the un-
derlying models. We also propose a novel hybrid message
prediction model, which can run with low latency on low-
end phones that have severe computational limitations. Our
described system has been deployed for more than 6 months
and is being used by millions of users along with hundreds of
thousands of expressive stickers.

1 Introduction

In messaging apps such as Facebook Messenger, WhatsApp,
Line and Hike, new modalities are extensively used to vi-
sually express thoughts and emotions (e.g. emojis, gifs and
stickers). Emojis (e.g., �, �) are used in conjunction with
text to convey emotions in a message (Donato and Paggio
2017). Unlike emojis, stickers provide a graphic alternative
for text messages. Hike stickers are composed of an artwork
(e.g., cartoonized characters and objects) and a stylized text
(See Fig. 1). They help to convey rich expressions along with
the message. Hundreds of thousands of stickers are avail-
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Fig. 1: Sticker Recommendation (SR) UI on Hike and a high
level flow of our 2 step SR system.

able for free download or purchase on sticker stores of pop-
ular messaging apps. Once a user downloads a sticker pack,
it gets added to a palette, which can be accessed from the
chat input box. However, discovering the right sticker while
chatting can be cumbersome because it’s not easy to think
of the best sticker that can substitute your utterance. Apps
like Hike and Line offer type-ahead SR while typing (as
shown in Fig. 1) in order to alleviate this problem. In com-
parison to emoji prediction which predicts a few set of emo-
tions, there are numerous possible utterances in text (in tens
of thousands) and their corresponding stickers which makes
SR problem more complex than emoji prediction (Barbieri,
Ballesteros, and Saggion 2017).

The latency of generating such SR should be in tens of
milliseconds in order to avoid any perceivable delay during
typing. This is possible only if the system runs end-to-end on
the mobile device without any network calls. Furthermore, a
large fraction of Hike users use low-end mobile phones, so
we need a solution which is efficient both in terms of CPU
load and memory requirements.

Prior to this work, SR on Hike app was based on string
matching of the typed text to the tags that were manually
assigned to each sticker. Recall of string matching based
approach is limited by exhaustiveness of tagging. However,
there are many ways of expressing same message in a chat.
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For instance, people often skip vowels in words as they type;
e.g., “where are you” → “whr r u”, “ok” → “k”. This is fur-
ther exacerbated when people transliterate messages from
their native language to Roman script; e.g., phrase “acchha”
(Hindi for “good”) is written in many variants - “accha”,
“acha”, “achha” etc. Another reason for proliferation of such
variants is that certain words are pronounced differently in
different regions. We observe 343 orthographic variants of
“kya kar raha hai” (Hindi for “What are you doing”) in our
dataset. Hence, it is hard for any person to capture all vari-
ants of an utterance as tags.
Decomposing SR: SR can be set up as a supervised task by
directly learning the most relevant stickers for a given con-
text defined by the previous message and the text typed by
the user. However, due to frequent updates in the set of avail-
able stickers and a massive skew in historical usage towards
a handful of popular stickers, it becomes difficult to collect
unbiased data to train such an end-to-end model. Thus, we
decompose the SR task into 2 steps. First, we predict the
message that a user is likely to send based on the chat context
and what the user has typed. Second, we recommend stickers
by mapping the predicted message to stickers that can sub-
stitute it. We automatically update the mapping frequently
based on relevance feedback observed on recommendations
and incorporate new stickers as they are launched.

In this paper, we focus on how to efficiently set up the
message prediction using classification model. For doing so,
we propose following solutions:
•Chat Message Clustering: As described above, a large
number of chat messages are simply variants of each other.
Similar to SmartReply (Kannan et al. 2016) which clusters
the short responses having similar intent, we cluster frequent
messages which are orthographic variants or semantically
similar. But unlike their approach to apply semi-supervised
learning for clustering, we learn an embedding of chat mes-
sage in an unsupervised manner. Then, we perform clus-
tering on the representations with the help of HDBSCAN
(McInnes, Healy, and Astels 2017) algorithm. We investi-
gate various encoders to learn the embeddings and empiri-
cally show that the use of charCNN (Kim et al. 2016) with
transformer (Vaswani et al. 2017) can be highly effective to
capture semantics of chat phrases. The clusters obtained are
used as classes for our message prediction model. This helps
us in drastically reduce the number of classes in the classifier
while keeping most frequent message intent of our corpus.
•Hybrid Message prediction model for low-end smart-
phones: Running inference with a neural network model
(NN) for message prediction proves to be challenging on
low-end mobile devices with severe memory limitations.
(Gysel, Motamedi, and Ghiasi 2016). The size of a NN
model trained for message prediction exceeds the memory
limitation even after quantization. We present a novel hybrid
model, which can run efficiently on low-end devices without
significantly compromising accuracy. Our system is a com-
bination of a NN based model, running on the server, that
processes chat context predicts message cluster, and a Trie
based model that processes typed text input on the client.
The first component is not limited by memory and CPU. Trie
search is an efficient mechanism to retrieve message cluster

based on typed text and can be executed for each character
typed. Hence, the system can satisfy the latency constraints
with this setup. Scores from these two components are com-
bined to produce final scores for message prediction.

Lastly, we demonstrate the efficacy of our proposed sys-
tem on both offline evaluation and real world deployment
performance. We discuss other challenges in deployment
such as multiple languages in India, serving and update fre-
quency of models. In summary, our contributions include:
• We present a novel system for type-ahead SR within a

messaging application. Our deployed system automati-
cally updates and tunes itself using updated online chat
corpus without needing any manual intervention. We de-
compose the SR task in 2 steps: message prediction and
sticker substitution.

• We describe an unsupervised approach to cluster chat
messages with similar semantics. We evaluate different
encoders to learn semantic representation of messages.

• We propose a novel hybrid message prediction model,
which can run efficiently with low latency and low mem-
ory footprint on low-end mobile phones. We demonstrate
that this hybrid model has comparable performance with
a server only NN based message prediction model.

2 Related Work

To the best of our knowledge there is no prior art which stud-
ies the problem of type-ahead SR. However, there are a few
closely related research threads that we describe here.

The use of emojis is widespread in social media. Barbieri
et al. (2018) predict which of the top-20 emojis are likely
to be used in an Instagram post based on the post’s text and
image. Unlike emojis that are majorly used in conjunction
with text, stickers are independent messages that substitute
text. Thus, in order to have effective SR for a given conver-
sational context, we need to predict the likely utterance and
not just the emotion. Since the possible utterances are more
numerous than emotions, our problem is more nuanced than
emoji prediction.

There exists a large body of research on conversational
response generation. Xing et al. (2017), Serban et al. (2016)
design an end-to-end model leveraging a hierarchical RNN
to encode the input utterances and another RNN to decode
possible responses. Zhang et al. (2018) describe a model that
explicitly optimizes for improving diversity of responses.
Yan, Song, and Wu (2016) proposed a retrieval based ap-
proach with the help of a DNN based ranker that combines
multiple evidences around queries, contexts, candidate post-
ings and replies. Smart Reply (Kannan et al. 2016) proposed
a system that suggests short replies to e-mails which are high
quality as well as diverse. Akin to our system, SmartRe-
ply also generates clusters of responses with same intent.
They apply semi-supervised learning to expand the set of
responses starting from a small number of manually labeled
responses for each semantic intent. In contrast, we follow an
unsupervised approach to discover message clusters since
the set of all intents that may correspond to stickers aren’t
readily available. A unique aspect of our system is that we
update the message prediction by incorporating whatever the
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user has typed so far; we need to do this in order to deliver
type-ahead SR.

There is a parallel research thread around learning effec-
tive representations for sentences that can capture sentence
semantics. Skip Thought (Kiros et al. 2015) is an encoder-
decoder model that learns to generate the context sentences
for a given sentence. It includes sequential generation of
words of the target sentences, which limits the target vo-
cabulary and increases training time. Quick Thought (Lo-
geswaran and Lee 2018) circumvents this problem by re-
placing the generative objective with a discriminative ap-
proximation, where the model attempts to classify the em-
bedding of a correct target sentence given a set of sentence
candidates. Recently, Devlin et al. (2018) proposed BERT
which predicts the bidirectional context to learn sentence
representation using transformer (Vaswani et al. 2017). Yang
et al. (2018) proposes the Input-Response model that we
have evaluated in this paper. However, unlike these works,
we apply a CharCNN (Zhang, Zhao, and LeCun 2015;
Kim et al. 2016) in our encoder to deal with the problem
of learning similar representations for phrases that are or-
thographic variants of each other.

3 Chat Message Clustering

As mentioned earlier, we cluster frequent messages in our
chat and use them as classes in the message prediction
model. For covering a large fraction of messages in our chat
corpus with a limited number of clusters, we need to group
all messages with the same intent into a single cluster. This
has to be done without compromising the semantics of each
cluster. In order to efficiently cluster messages, it is critical
to obtain dense vector representations of messages that ef-
fectively capture their meaning.

In this section, we describe an encoder which is used
to convert chat phrases into dense vectors (Mikolov et al.
2013). Then, we explain the network architecture which is
used to train the message embeddings such that we learn
similar representations for messages having same meaning.

3.1 Encoder

The architecture of the encoder is shown in Fig. 2. Input to
the encoder is a message mi, consisting of a sequence of
N words {wi,1, wi,2, . . . , wi,N}, and the output is a dense
vector ei ∈ R

d×1.
To represent a word, we use an embedding composed of

2 parts; a character based embedding aggregated from char-
acter representations, and a word level embedding to learn
context representation. To generate the character based em-
bedding, we use a character CNN (Kim et al. 2016) that
leverages sub-word information to learn similar representa-
tions for orthographic variants of the same word. Let dc be
the dimension of character embedding. For a word wt we
have a sequence of l characters [ct,1, ct,2 . . . , ct,l]. Then the
character representation of wt can be obtained by stacking
the character level embeddings in a matrix Ct ∈ R

l×dc and
applying a narrow convolution with a filter H ∈ R

k×dc of
k width with ReLU non linearity, and a max pooling layer.
A k width filter can be assumed to capture k-gram features

Fig. 2: Illustration of encoder which comprises of a character
based CNN layer for each word and GRU/Transformer layer
at word level.

of a word. We have multiple filters for particular a width k,
that are concatenated to obtain a character level embedding
echarw for word wt. The character level representation of the
word is concatenated with the word-level embedding eword

w
of wt to get a the final word representation ew. Let dw be
the dimenion of word embedding. So, the representation of
a word wt becomes ew ∈ R

(dw+dc)×1. To capture the se-
quential properties of a message, we explore 2 architectures.
Gated Recurrent Unit (GRU) (Chung et al. 2014) is an
improved version of RNN to solve the vanishing gradient
problem. We take the final step representation in the GRU to
be the message embedding ei.
Transformer (Vaswani et al. 2017) is an architecture solely
based on attention to curb the recurrence step in RNN. It
uses multi-headed attention to capture various relationships
among the words. Similar to Yang et al. (2018), we use only
the encoder part of transformer to create our message em-
beddings. We compute the message embedding ei by aver-
aging the words vectors in the final layer of the transformer.

3.2 Model Architecture

Akin to Yang et al. (2018), we use the model architecture
shown in Fig. 3 to train the encoders described in Sec. 3.1.
The input to our model is a tuple, (mi,mi+1), extracted
from a conversation between 2 users. Messages mi and
mi+1 are encoded using the encoder described in Sec. 3.1
and represented as ei and ei+1 respectively. Note that the pa-
rameters of both the encoders are tied, i.e they share weights.
Hence, both ei and ei+1 represent the encoding of mes-
sage in same space. We transform embedding ei+1 to reply
space by applying 2 fully connected layers to obtain the re-
sponse embedding e

′
i+1. Finally, the dot product of the input

message embedding ei and the response embedding e
′
i+1 is

13158



Fig. 3: Model architecture for learning message embedding.

used to score the replies. It maximizes the score of gold re-
ply message higher in comparison to other replies. Within a
batch, each mi+1 serves as the correct response to its corre-
sponding input mi and all other instances are assumed to be
negative replies. It is computationally efficient to consider
all other instances as negative during training because we
don’t have to explicitly encode specific negative examples
for each instance.

3.3 Message Clustering

We cluster frequent messages with the help of the embed-
dings learned as above. Our goal is to have a single cluster
for all the orthographical variations and acronyms of a mes-
sage. We observe that the number of different variants of a
phrase increases with the ubiquity of that phrase. For ex-
ample, “good morning” has ∼ 300 variants while relatively
less frequent phrases tend to have significantly low number
of variants. This poses a challenge when applying a stan-
dard density based clustering algorithm such as DBSCAN
because it is difficult to decide a single threshold for draw-
ing cluster boundaries. To handle this uncertainty, we choose
HDBSCAN to cluster chat messages. This algorithm builds
a hierarchy of clusters and handles the variable density of
clusters in a time efficient manner. After building the hier-
archy, it condenses the tree, extracts the useful clusters and
assigns noise to the points that do not fit into any cluster.
Further, it doesn’t require parameters such as the number of
clusters or the distance between pairs of points to be con-
sidered as a neighbour etc. The only necessary parameter is
the minimum number of points required for a cluster. All the
clusters including the noise points are taken to be the differ-
ent classes in our message prediction step.

4 Message Cluster Prediction

In this section, we describe our approach of predicting the
message cluster that a user is going to send. We use previous
received message in chat as the only context signal. Upon
receiving a message, we predict a message that is a likely
response. As the user starts typing, we update our message
prediction and SR in real time after every character typed.
The prediction latency should be in order of tens of millisec-
onds so that the user’s typing experience is not adversely
affected.

We pose message prediction as a classification problem

where we train a model to score the response messages.
A neural network (NN) based classification model that ac-
cepts the last received message and the typed text as inputs
can be a possible solution, but running inference on such a
model on mobile devices proves to be a challenge (Gysel,
Motamedi, and Ghiasi 2016). The size of the NN model that
needs to be shipped explodes since we have a large input vo-
cabulary and a large number of output classes. The embed-
ding layer that transforms the one-hot input to a dense vector
usually has a size of the order of tens of MBs, which exceeds
the memory limits that we set for our application. To over-
come this issue, we evaluate 2 orthogonal approaches. One
is to apply a quantization scheme to reduce the model size
and the other is to build a hybrid model, composed of a NN
component and a trie-based search.

4.1 Quantized Message Prediction Model

We train a NN for message prediction task where the input
is the last received message and the typed text, the output
is the message cluster scores. Top frequent G message clus-
ters that were prepared in Sec. 3.3 are chosen as classes for
this model. We encode the last received message and typed
text into a dense vector, which is fed as input to a classifi-
cation layer that is a fully connected layer having sigmoid
non-linearity and G output neurons. Details of the training
procedure is described in Sec. 6.4

An active area of research is to reduce the model size
and the inference times of NN models with minimum accu-
racy loss so that they can run efficiently on mobile devices
(Howard et al. 2017; Jacob et al. 2018; Ravi 2017). One ap-
proach is to quantize the floating point representations of the
weights and the activations of the NN from 32 bits to a lower
number of bits. We use a quantization scheme detailed in Ja-
cob et al. (2018) that converts both weights and activations
to 8-bit integers and use a few 32-bit integers to represent bi-
ases. This reduces the model size by a factor of 4. When we
quantize the weights of the network after training the model
with full precision floats, the model accuracy reduce signifi-
cantly. We employ quantize aware training1 to reduce the ef-
fect of quantization on model accuracy. Under this scheme,
we use quantized weights and activation to compute the loss
function of the network during training as well. This ensures
parity during training and inference time. While performing
back propagation, we use full precision float numbers be-
cause minor adjustments to the parameters are necessary to
effectively train the model. After qunatization, we obtain a
model of size ∼ 9 MB .

4.2 Hybrid Message Prediction Model

We build a hybrid message prediction model, where a
resource intensive component is run on the server and its
output is combined with a lightweight on-device model to
obtain message predictions. Algorithm 1 outlines the score
computation of the hybrid model and Fig. 4 demonstrates
the high level flow with an example. The three components
in our hybrid model are detailed below.

1https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/contrib/quantize/README.md
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Fig. 4: Example of hybrid model message cluster prediction.
Message prediction from NN based reply model on server
(1) is combined (3) with trie model prediction on client (2)
for final message prediction score.

Algorithm 1 Message Cluster Prediction

Input: Last message received prev, Typed text typ

1: Compute Preply(G = g|prev) with the reply NN model
and send the message clusters scores to the client.

2: Using text typ as input to Trie model, fetch set of
phrases S that start with typ.

3: Compute trie score for message cluster g as
Ptrie(g|typ) =

∑

ph∈Sg∩S

freq(ph)/
∑

ph∈S

freq(ph) (1)

where Sg is the set of phrases in message cluster g.
4: Combine the scores for message cluster g as:

Q(g|prev, typ) = (w0 + wt ∗ Preply(g|prev))∗
(wp0

e−λnc + wp1Ptrie(g|typ))
(2)

Output: Message cluster scores Q

Reply Model: Similar to the prediction model described in
Sec. 4.1, we build a NN model which takes the last received
message prev as input and outputs reply probabilities
Preply(G = g|prev) for each message cluster g ∈ G. When
a message gets routed to its recipient, the reply model is
queried on the server and the response predictions are sent
to the client along with the message. The message clusters
that have a reply probability Preply(G = g|prev) above a
threshold treply are sent to the clients.
Typed Model: Trie is an efficient data structure for prefix
searches. We retrieve the relevant message clusters for a
given typed text by querying a trie. It stores <phrase> as
key and <(message cluster id, frequency)> tuple as value
at leaf nodes. Phrase to message cluster id mapping is
described in Sec. 3. We add the frequency of the phrases
from our chat corpus as additional information in the trie,
for scoring retrieved entries. The score of a message cluster
retrieved is calculated as shown in Eq. 1. We create a trie
with top frequent 34k phrases and ∼ 7500 message clusters.
In the serialized form, the size of the trie is around 700KB.
This is small enough for us to ship to client devices. Another
advantage of trie is that it is interpretable and makes it easy
for us to incorporate any new phrase, even if they are not

observed in our historical data.
Combiner: A final score for a message cluster
Q(g|prev, typed) is computed from Preply(g|prev),
Ptrie(g|typed) and length of string typed nc as shown in
Eq. 2. The weighting of terms is designed such that as a user
types more characters, contribution from the reply model
vanishes unless the message cluster is not predicted from
the trie. The weights are chosen by trial and error.

5 Message Cluster to Stickers mapping

As mentioned in Sec. 1, we make use of a message clus-
ter to sticker mapping to suggest suitable stickers from the
predicted message clusters. When a sticker is created, it is
tagged with conversational phrases that the sticker can pos-
sibly substitute. We use this meta-data in order to map the
message clusters to stickers. We compute the similarity be-
tween the tag phrases of a sticker and the phrases present in
each message cluster, after converting them into vectors us-
ing the encoder mentioned in Sec. 3. Compared to the histor-
ical approach of suggesting a sticker when the user’s typed
input matches one of its tag phrases, the current system is
able to suggest stickers even if different variations of the tag
phrase are typed by the user, as we have many variations
of a message already captured in the message clusters. We
regularly refresh the message cluster to sticker mapping by
taking into account the relevance feedback observed on our
recommendations. Since generation of message to sticker
mapping is not the main focus of paper, we skip its details.

6 Experiments

In this section, we first describe the dataset used for train-
ing the SR system. Next, we quantitatively evaluate differ-
ent message embeddings on a manually curated dataset. We
show qualitative results after clustering to show the effec-
tiveness of the message embeddings. Then, we present a
comparison of the NN model and the hybrid model for the
message cluster prediction.

6.1 Dataset and pre-processing

To ensure user privacy in data collection, we strip user iden-
tity and replace it with anonymous ids. Further, we randomly
sample 10% of anonymous ids to collect the dataset for a pe-
riod of 5 months, from a particular geography for which we
need to build a model. This will have a mixture of languages
used in that region. This dataset is then pre-processed to ex-
tract useful conversations from the chat corpus. First step
is tokenization, which includes accurate detection of emoti-
cons and stickers, reducing more than 3 consecutive repe-
titions of the same character to 2. After pre-processing the
data, we create tuples of the current and the next message for
training the message embedding models. We get 27m tuples
after performing tokenization. Since stickers are mostly used
to convey short messages, we filter out all the tuples which
have at least one message having more than 5 words. After
filtering, our input vocabulary consist of top frequent 50k
words in our corpus. The dataset is randomly split into train-
ing and validation sets with 520k examples in validation set.
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Fig. 5: Performance of the message embedding models on
phrase similarity task.

We pad characters in words if the character length of word
is less than 10 characters.

6.2 Message Embedding Evaluation

In this subsection, we evaluate the embeddings generated
from different architecture on a manually labeled data. First,
we describe the baselines, training and hyper parameters.

Message embeddings models: We compare the embed-
dings obtained from architecture (Sec. 3.2) and its variants
which are as follows: 1) Trans+CharCNN - Encoder as
shown in Fig. 2 with transformer. 2) Trans - Uses only
word-level embedding eword

m as input to transformer. 3)
GRU+CharCNN - Encoder as shown in Fig. 2 with GRU.
4) GRU - Uses only word-level embedding as input to GRU.

Training and Hyper-parameters: We train our GRU
based models using Adam Optimizer with learning rate
of .0001 and step exponential decay for every 10k steps.
We apply gradient clipping (with value of 5), dropout at
GRU and fully connected layer to reduce overfitting. For
the GRU+CharCNN model, we use filters of width 1, 2, 3, 4
with number of filters of 50, 50, 75, 75 for the convolution
layers. The GRU models use embedding size of 300.

Transformer models are trained using RMSprop optimizer
with constant learning rate of 0.0001. They use 2 attention
layers and 8 attention heads. Within each attention layer, the
feed forward network has input and output size of 256, and
has a 512 unit inner-layer. To avoid overfitting we implement
attention and embedding drop out of 0.1. The convolution
layers of the Trans+charCNN model are similar to those of
GRU+CharCNN model.

Phrase Similarity Task: We create a dataset which con-
sists of phrase pairs labelled as similar or not-similar. For
e.g. (“ghr me hi”, “room me h”), (“majak kr rha hu”, “mjak
kr rha hu”) are labelled as similar while (“network nhi tha”,
“washroom gyi thi”), (“it’s normal”, “its me”) are labelled
as not-similar. Possible similar examples are sampled from
top 50k frequent phrases using 2 methods: a) Pairs close to
each other in terms of minimum edit distance. b) Pairs hav-
ing words with similar word embeddings. Possible negative

Fig. 6: HDBSCAN clusters of top frequent phrases using
message embedding produced by GRU-CharCNN model.
The points represents chat message vectors projected into
2D using TSNE. Read Section 6.3 for more information.

examples are sampled randomly. These pairs were annotated
by 3 annotators. Pairs with disagreement within the annota-
tors were dropped. Finally, the dataset has 3341 similar pairs
and 2437 non-similar pairs.

To evaluate the models, we calculate the cosine similar-
ity between the embedding of phrases in a pair. The ROC
curves of the models are shown in Fig. 5. We observe that
transformer has significant improvement over GRU. This
is due to better capturing of semantics of phrases using
self-attention. CharCNN improves the performance of both,
GRU and Transformer. It is able to capture chat characteris-
tics which occur due to similar sounding sub-words. For e.g.
‘night’ and ‘n8’, ‘see’ and ‘c’ are used interchangeably dur-
ing conversation. CharCNN learns such chat nuances and
hence improves the performance. Trans+CharCNN model
performs the best and shows ≈6% absolute improvement in
terms of AUC over the GRU baseline.

6.3 Message Clustering Evaluation

Fig. 6 shows a qualitative evaluation of clusters obtained
from HDBSCAN algorithm. We select the top 100 clus-
ters based on the number of phrases present in cluster. We
project the phrase embeddings learned from our model in 2-
dimension using TSNE (Maaten and Hinton 2008) for visu-
alization. Fig. 6 shows some randomly picked phrases from
the clusters; phrases from the same cluster are represented
with the same color. We observe that the various spelling
variants and synonyms for a phrase are grouped in a sin-
gle cluster. For example, the ‘good night’ cluster includes
phrases like ‘good nighy’, ‘good nyt’, ‘gud nite’. Our clus-
tering algorithm is able to capture fine-grained semantics of
phrases. For instance, ‘i love u’, ‘i love you’, ‘i luv u’ phrases
belong to one cluster while ‘love u too’, ‘love u 2’ belong to
a different cluster which helps us in showing accurate SR for
both clusters. If a user has messaged ‘i love u’ then show-
ing stickers related to ‘i love u too’ cluster is more relevant
replies as compared to showing ‘i love u’ stickers. Our mes-
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Method # of Character
to be Typed

# of times
inaccurate predictions
shown

Fraction of msg
retrieved

Quantized NN
(100d) 1.58 1.47 0.978

Hybrid 2.84 1.22 0.991

Table 1: Performance of the message prediction models

sage embedding is able to cluster phrases like ‘i love u baby’
and ‘i luv u shona’ in a cluster distinct from the ‘i love u’
cluster. This helps us deliver more precise SR since we have
different stickers in our database for phrases like ‘i love u’
and ‘i love u baby’.

6.4 Message Cluster Prediction Evaluation

We compare our hybrid model and the quantized NN model
on the following metrics. 1) Number of characters that a user
needs to type for seeing the correct message cluster in top 3
positions (# of Character to be typed), 2) How many times
the model has shown a wrong message cluster before pre-
dicting the correct one in first 3 positions (# of times inac-
curate prediction) and 3) Fraction of messages that could be
retrieved by a model in first 3 positions with a prefix of that
message (Fraction of msg retrieved). Lower the number for
the first 2 metrics, the better the model is; while the frac-
tion of messages retrieved should be as high as possible. For
training the message prediction using NN model, we collect
pairs of current and next messages from complete conver-
sation data. Our training data had around 10M such pairs.
We randomly sampled 38k pairs for testing. We curate the
training data by treating all prefixes of the next message as
typed text and its message cluster as the class label. We con-
sider only top 7500 message clusters on the basis of the total
frequency of their phrases. Selected clusters cover 34k top
frequent reply messages in our dataset. The hybrid model is
a combination of 2 models. In the first model, we predict the
next message based on the current message. It is trained di-
rectly from pairs of consecutive messages, (current, next), in
our corpus, where the next message was mapped to its cor-
responding message cluster. In the second model, we build
a trie based on the typed message. We prepare phrase fre-
quency of phrases as mentioned in Sec. 4.2.

Results of the various models are shown in Table 1. The
quantized NN model performs better in terms of # of char-
acters to be typed. This is expected because the NN model
learns to use both inputs simultaneously whereas the com-
biner (last function in hybrid model) used is a simple linear
combination of just three features. The hybrid model per-
forms slightly better in terms of # of times inaccurate rec-
ommendations shown and fraction of messages retrieved.
Compared to the quantized model, the hybrid model needs
approximately one more character to be typed on an aver-
age to get the required predictions. However, the quantized
NN is ∼ 9.2 MB in size, which goes beyond the permissible
memory limits set in our use case. The on-device foot print
for our hybrid model is below 1 MB. Also, the trie based
model can guarantee retrieval of all message clusters, with
some prefix of the message. If the message is not interfered
by another longer but more frequent message, the message

class can be featured in top position itself, with some pre-
fix of the message as input or with full message as input. A
pure NN based model can’t make such guarantees. Hence,
more than 2% improvement in the third metric shown in Ta-
ble 1. Given that this SR interface is one of the heavily used
interfaces for sticker discovery, if a sticker is not retrieved
through this recommendation, the user might think that the
app doesn’t support the message class or the app doesn’t
have such stickers. So, making the retrieval of message clus-
ter close to 100%% is critical for our SR models.

7 Deployed System

There are multiple regional languages spoken in India. We
segregate our data based on geography and train separate
models (both message embedding and message prediction
models) for each state. It ensures that frequent chat phrases
distribution doesn’t get skewed towards one majority spoken
language across India. We obtain the primary language of a
user from the language preferences explicitly set by them or
infer it from their sticker usage.

We decompose our message prediction system in 2 steps.
It helps in reducing the size of the model shipped to client.
It also reduces the download failures on sketchy networks
and data consumption. When a message is being sent from
user A to user B, server fetches the response message clus-
ter scores corresponding to the model assigned to user B. To
maintain high speed of message delivery, we serve the reply
model by caching the top 300k message in each geography
corpus. For running typed model based on trie, we ship the
asset files to client (trie and message cluster to sticker map-
ping). When a user logs in, client checks whether an updated
model is present on server or not. If either trie or sticker
mapping file has been updated, client downloads those files.

We observe that the top phrases in a corpus don’t change
much over time. Only certain event specific (e.g. “cricket
world cup”, “movies”) or festival specific phrases get up-
dated which mainly depend on seasonality. So, we freeze
our message clusters for each geography and don’t retrain
the message embedding model. We only need to update fre-
quency of phrases for message cluster prediction based on
seasonality which we directly fetch from analytics. We don’t
require any model maintenance, since we are using unsuper-
vised approach to generate clusters and only need the fre-
quency of phrases for scoring the message cluster in trie.
Complete pipeline for message prediction has been auto-
mated with anonymous chat corpus. It helps us in extending
to more languages and requires minimal manual efforts.

Using the method mentioned in section 5, we are able to
add a new stickers to the system with the help of very few
tags which would have been already decided at the time of its
creation. The sticker mappings thus created are later scored
and ranked with the help of sticker usage data across users.
User Impact: The proposed system has been deployed in
production on Hike for more than 6 months. Before a full
rollout, we conducted state wise A/B experiment because
models are trained separately for each state. We chose user
sets of size, of the order of tens of thousands as control
and test in each experiment group. A/B tests to compare
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this system with a previous implementation showed an av-
erage ∼ 8% relative improvement in the fraction of users
who send stickers, among those who send a message. Com-
pared to legacy system, proposed SR system also increases
the volume of stickers exchanged.

8 Conclusion & Future Work

In this paper, we present our deployed system for deriv-
ing contextual, type-ahead SR within a chat application. We
decompose the task into two steps. First, we predict the
next message that a user is likely to send based on the last
message and the typed text. Second, we substitute the pre-
dicted message with relevant stickers. We discuss how nu-
merous orthographic variations for the same utterance exist
in Hike’s chat corpus, which mostly contains messages in
a transliterated form. We describe a clustering solution that
can identify such variants with the help of message embed-
ding, which learns similar representations for semantically
similar messages. Message clustering reduces the complex-
ity of the classifier used in message prediction. E.g., by pre-
dicting one of 7500 classes (message clusters), it is able to
cover all intents expressed in ≈34k frequent messages. For
message prediction on low-end mobile phones, we propose a
hybrid model that combines a NN on the server and a mem-
ory efficient trie search on the device for low latency SR. We
show experimentally that the hybrid model is able to predict
a higher fraction of overall messages clusters compared to
a quantized NN. This model also helps in better sticker dis-
covery for rare message clusters. Our described system has
been deployed for 8 Indian languages and serving millions
of users daily with ∼ 8% relative increase in the fraction of
users sending stickers.

In the future, we plan to add character level convolution
network for message prediction on client which is memory
efficient compare to current quantized NN. Sticker mapping
can also be improved by adding other signals like user’s
sticker preference etc. Though we construct the message
clusters to reduce complexity of the message prediction task,
we observe that these message clusters are generic enough to
be used in other application such as conversational response
generation, intent classification etc. (Serban et al. 2016).
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