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Abstract

Visual object detection is a computer vision-based artificial
intelligence (AI) technique which has many practical appli-
cations (e.g., fire hazard monitoring). However, due to pri-
vacy concerns and the high cost of transmitting video data,
it is highly challenging to build object detection models on
centrally stored large training datasets following the current
approach. Federated learning (FL) is a promising approach
to resolve this challenge. Nevertheless, there currently lacks
an easy to use tool to enable computer vision application de-
velopers who are not experts in federated learning to con-
veniently leverage this technology and apply it in their sys-
tems. In this paper, we report FedVision - a machine learn-
ing engineering platform to support the development of fed-
erated learning powered computer vision applications. The
platform has been deployed through a collaboration between
WeBank and Extreme Vision to help customers develop com-
puter vision-based safety monitoring solutions in smart city
applications. Over four months of usage, it has achieved sig-
nificant efficiency improvement and cost reduction while re-
moving the need to transmit sensitive data for three major
corporate customers. To the best of our knowledge, this is the
first real application of FL in computer vision-based tasks.

Introduction

Object detection is one of the most important applications
of computer vision in the field of artificial intelligence (AI).
It has been widely adopted by practical applications such as
safety monitoring. Over the past decade, visual object detec-
tion technologies have experienced significant advancement
as deep learning techniques developed (Ren et al. 2017;
Redmon and Farhadi 2018; Zhao et al. 2018). The prevail-
ing training approach requires centralized storage of training
data in order to obtain powerful object detection models. The
typical workflow of training an object detection algorithm
this way is shows in Figure 1. Under such an approach, each
data owner (i.e. user) annotates visual data from cameras
and uploads these labelled training data to a central database
(e.g., a cloud server) for model training. Once the model has
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Figure 1: A typical workflow for centralized training of an
object detector.

been trained, it can be used to perform inference tasks. In
this way, the users have no control over how the data would
be used once they are transmitted to the central database.
Besides, centralized model training has the following limi-
tations:

1. It is difficult to share data across organizations due to
liability concerns. Increasingly strict data sharing reg-
ulations (e.g., the General Data Protection Regulation
(GDPR) (Voigt and Bussche 2017)) restrict data sharing
across organizations;

2. The whole process takes a long time and depends on
when the next round of off-line training occurs. When
users accumulate new data, they must upload the data to
the central training server and wait for the next round of
training to happen, which they cannot control, in order to
receive an updated model. This also leads to the problem
of lagging feedbacks which delay the correction of any
errors in model inference ; and

3. The amount of data required to train a useful object de-
tector tends to be large, and uploading them to a central
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database incurs significant communication cost.

Due to these limitations, in commercial settings, the fol-
lowing anecdotal conversation between a customer (C) and
an AI solution provider (P) can often be heard:

C : “We need a solution for detecting flames in a factory
floor from surveillance videos to provide early warning
of fire.”

P : “No problem. We will need some data from you to train
a flame detection model.”

C : “Of course. We have a lot of data, both images and
videos with annotations.”

P : “Great! Please upload your datasets to our server.”

C : “Such data contain sensitive information, we can’t pass
them on to a third party.”

P : “We could send our engineers to work with your dataset
on-site, but this will incur additional costs.”

C : “Well, this looks expensive and is beyond our current
budget ... ...”

This challenging situation urges the AI research commu-
nity to seek new methods of training machine learning mod-
els. Federated Learning (FL) (Yang et al. 2019), which was
first proposed by Google in 2016 (Konecný et al. 2016), is a
promising approach to resolve this challenge. The main idea
is to build machine learning models based on distributed
datasets while keeping data locally stored, hence preventing
data leakage and minimizing communication overhead. FL
balances performance and efficiency issues while preventing
sensitive data from being disclosed. In essence, FL is a col-
laborative computing framework. FL models are trained via
model aggregation rather than data aggregation. Under the
federated learning framework, we only need to train a visual
object detection model locally at a data owner’s site, and
upload the model parameters to a central server for aggrega-
tion, without the need to upload the actual training dataset.

However, there currently lacks an easy to use tool to en-
able developers who are not experts in federated learning to
conveniently leverage this technology in practical computer
vision applications. In order to bridge this gap, we report
FedVision - a machine learning engineering platform to sup-
port easy development of federated learning powered com-
puter vision applications. It currently supports a proprietary
federated visual object detection algorithm framework based
on YOLOv3 (Redmon and Farhadi 2018), and allows end-
to-end joint training of object detection models with locally
stored datasets from multiple clients. The user interaction
for learning task creation follows a simplified design which
does not require users to be familiar with the FL technology
in order to make use of it.

The platform has been deployed through a collaboration
between WeBank1 and Extreme Vision2 since May 2019. It
has been used by three large-scale corporate customers to
develop computer vision-based safety monitoring solutions
in smart city applications. After four months of usage at the

1https://www.webank.com/en/
2https://www.extremevision.com.cn/?lang=en US

time of submission of this paper, the platform has helped the
customers significantly improve their operational efficiency
and reduce their costs, while eliminating the need to trans-
mit sensitive data around. To the best of our knowledge, this
is the first industry application of federated learning in com-
puter vision-based tasks.

Application Description

In this section, we describe the system design of FedVision.
The new workflow for training a visual object detection al-
gorithm under FedVision is as shows in Figure 2. It consists
of three main steps: 1) crowdsourced image annotation, 2)
federated model training; and 3) federated model update.

Figure 2: The FedVision workflow for training a visual ob-
ject detection algorithm with data from multiple users.

Crowdsourced Image Annotation

This module is designed for data owners to easily la-
bel their locally stored image data for FL model train-
ing. A user can annotate a given image on his local de-
vice by using the interface provided by FedVision (Fig-
ure 3) to easily specify each bounding box and the cor-
responding label information. FedVision adopts the Dark-
net3 model format for annotation. Thus, each row repre-
sents information for a bounding box in the following form:

{label x y w h}
where “label” denotes the category of objects, (x, y) repre-
sents the center of the bounding box, (w, h) represents the
width and height of the bounding box.

The process only requires the user to be able to visually
identify where the objects of interest (e.g., flames) are in
a given image, use the mouse to draw the bounding box,
and assign it to a category (e.g., fire, smoke, disaster). Users
do not need to possess knowledge about federated learning.
The annotation file is automatically mapped to the appropri-
ate system directory for model training by FedVision. With
this tool, the task of labelling training data can be easily dis-
tributed among data owners in a way similar to crowdsourc-
ing (Doan, Ramakrishnan, and Halevy 2011), and thereby,

3https://pjreddie.com/darknet/
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Figure 3: The image annotation module of FedVision.

reducing the burden of image annotation on the entity coor-
dinating the learning process. It can also be used to support
online learning as new image data arrive sequentially over
time from the cameras.

Horizontal Federated Learning (HFL)

In order to understand the federated learning technologies
incorporated into the FedVision platform, we first introduce
the concept of horizontal federated learning (HFL). HFL,
also known as sample-based federated learning, can be ap-
plied in scenarios in which datasets share the same feature
space, but differ in sample space (Figure 4). In other words,
different parties own datasets which are of the same format
but collected from different sources.

HFL is suitable for the application scenario of FedVi-
sion since it aims to help multiple parties (i.e. data owners)
with data from the same feature space (i.e. labelled image
data) to jointly train federated object detection models. The
word “horizontal” comes from the term “horizontal parti-
tion”, which is widely used in the context of the traditional

tabular view of a database (i.e. rows of a table are horizon-
tally partitioned into different groups and each row contains
the complete set of data features). We summarize the condi-
tions for HFL for two parties, without loss of generality, as

Figure 4: The concept of horizontal federated learning
(HFL) (Yang et al. 2019)
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follows.

Xa = Xb, Ya = Yb, Ia �= Ib, ∀Da,Db, a �= b (1)

where the data features and labels of the two parties,
(Xa,Ya) and (Xb,Yb), are the same, but the data entity iden-
tifiers Ia and Ib can be different. Da and Db denote the
datasets owned by Party a and Party b, respectively.

Under HFL, data collected and stored by each party are
no longer required to be uploaded to a common server to fa-
cilitate model training. Instead, the model framework is sent
from the federated learning server to each party, which then
uses the locally stored data to train this model. After training
converges, the encrypted model parameters from each party
are sent back to the server. They are then aggregated into a
global federated model. This global model will eventually
be distributed to the parties in the federation to be used for
inference in subsequent operations.

Federated Model Training

The FedVision platform includes an AI Engine which con-
sists of the federated model training and the federated model
update modules. From a system architecture perspective, the
federated model training module consists of the following
six components (Figure 5):

1. Configuration: it allows users to configure training infor-
mation, such as the number of iterations, the number of
reconnections, the server URL for uploading model pa-
rameters and other key parameters.

2. Task Scheduler: it performs global dispatch scheduling
which is used to coordinate communications between
the federated learning server and the clients in order to
balance the utilization of local computational resources
during the federated model training process. The load-
balancing approach is based on (Yu et al. 2017) which
jointly considers clients’ local model quality and the cur-
rent load on their local computational resources in an ef-

Figure 5: The system architecture of the federated model
training module.

fort to maximize the quality of the resulting federated
model.

3. Task Manager: when multiple model algorithms are be-
ing trained concurrently by the clients, this component
coordinates the concurrent federated model training pro-
cesses.

4. Explorer: this component monitors the resource utiliza-
tion situation on the client side (e.g., CPU usage, mem-
ory usage, network load, etc.), so as to inform the Task
Scheduler on its load-balancing decisions.

5. FL SERVER: this is the server for federated learning. It
is responsible for model parameter uploading, model ag-
gregation, and model dispatch which are essential steps
involved in federated learning (Bonawitz et al. 2019).

6. FL CLIENT: it hosts the Task Manager and Explorer
components and performs local model training which
is also an essential step involved in federated learning
(Bonawitz et al. 2019).

Federated Model Update

After local model training, the model parameters from each
user’s FL CLIENT are transmitted to the FL SERVER. The
updated model parameters need to be stored. The number
of such model parameter files, and thus the storage size re-
quired, increases with the rounds of training operations. Fed-
Vision adopts Cloud Object Storage (COS) to store prac-
tically limitless amounts of data easily and at an afford-
able cost. The workflow of storing federated object detection
model parameters via COS is shown in Figure 6.

Figure 6: Cloud Object Storage (COS).

FedVision provides a model aggregation approach to
combine local model parameters into a federated object de-
tection model. Details of the federated model training and
federated model update components of the FedVision AI En-
gine are provided in the next section.

Uses of AI Technology

In this section, we discuss the AI Engine of FedVision. We
explain the federated object detection model which is at the
core of the FedVision AI Engine, and the neural network
compression technique adopted by FedVision to optimize
the efficiency of transmitting federated model parameters.
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Figure 7: Flame detection with YOLOv3.

Federated Object Detection Model Training

From the Regions with Convolutional Neural Network fea-
tures (R-CNN) model (Girshick et al. 2014) to the latest
YOLOv3 model (Redmon and Farhadi 2018), deep learning-
based visual object detection approaches have experience
significant improvement in terms of accuracy and efficiency.
From the perspective of model workflow, these approaches
can be divided into two major categories: 1) one-stage ap-
proaches, and 2) two-stage approaches.

In a typical two-stage approach, the algorithm first gen-
erates candidate regions of interest, and then extracts fea-
tures using CNN to perform classification of regions while
improving positioning. In a typical one-stage approach, no
candidate region needs to be generated. Instead, the algo-
rithm treats the problems of bounding box positioning and
classification of the regions as regression tasks. In general,
two-stage approaches produce more accurate object detec-
tion results, while one-stage approaches are more efficient.
As the application scenarios for FedVision prioritize effi-
ciency over accuracy, we adopt YOLOv3, which is a one-
stage approach, as the basic object detection model and
implement a federated learning version of it – Federated
YOLOv3 (FedYOLOv3) – in our platform. With one round
of end-to-end training, FedYOLOv3 can identify the posi-
tion of the bounding box as well as the class for the target
object in an image.

The approach of YOLOv3 can be summarized as follows.
Given an image, such as the image of a flame as shown in
Figure 7, it is first divided into an S × S grid with each
grid being used for detecting the target object with its centre
located in the given grid (the blue square grid in Figure 7 is
used to detect flames). For each grid, the algorithm performs
the following computations:

1. Predicting the positions of B bounding boxes. Each
bounding box is denoted by a 4-tuple 〈x, y, w, h〉, where
(x, y) is the coordinate of the centre, and (w, h) represent
the width and height of the bounding box, respectively.

2. Estimating the confidence score for the B predicted
bounding boxes. The confidence score consists of two
parts: 1) whether a bounding box contains the target ob-
ject, and 2) how precise the boundary of the box is.
The first part can be denoted as p(obj). If the bound-
ing box contains the target object, then p(obj) = 1;

otherwise, p(obj) = 0. The precision of the bounding
box can be measured by its intersection-over-union (IOU)
value, IOU , with respect to the ground truth bound-
ing box. Thus, the confidence score can be expressed as
θ = p(obj)× IOU .

3. Computing the class conditional probability, p(ci|obj) ∈
[0, 1], for each of the C classes.
The loss function of YOLOv3 consists of three parts:

1. Class prediction loss, which is expressed as
S2∑

i=0

1obji

∑

c

(pi(c)− p̂i(c))
2 (2)

where pi(c) represents the probability of grid i belonging
to class c, and p̂i(c) denotes the probability that grid i is
predicted to be belonging to class c by the model. 1obji =

1 if grid i contains the target object; otherwise, 1obji = 0.
2. Bounding box coordinate prediction loss, which is ex-

pressed as

λcoord

S2∑

i =0

B∑

j =0

1objij [(xij − x̂ij)
2 + (yij − ŷij)

2]

+ λcoord

S2∑

i =0

B∑

j =0

1objij [(wij − ŵij)
2 + (hij − ĥij)

2]

(3)
where 〈xij , yij , wij , hij〉 denote the ground truth bound-
ing box coordinates, and 〈x̂ij , ŷij , ŵij , ĥij〉 denote the
predicted bounding box coordinates.

3. Confidence score prediction loss, which is expressed as
S2∑

i=0

B∑

j=0

1objij (θi − θ̂i)
2 + λ¬obj

S2∑

i=0

B∑

j=0

1¬obj
ij (θi − θ̂i)

2.

(4)
Here, λcoord and λ¬obj are well studied hyper-parameters
of the model. The default value of them have been pre-
configured into the platform.

Once the users use the FedVision image annotation tool
to label their local training datasets, they can join the FedY-
OLOv3 model training process as described in the previous
section. Once the local model converges, a user a can initi-
ate the transfer of the current local model parameters (in the
form of the weight matrix Wa(t)) to FL SERVER in a se-
cure encrypted manner through his FL CLIENT. The HFL
module in FedVision operates in rounds. After each round
of learning elapses, FL SERVER performs federated aver-
aging (McMahan et al. 2016) to compute an updated global
weight matrix for the model, W (t):

W (t) =
1

N

N∑

a=1

Wa(t). (5)

FL SERVER then sends the updated W (t) to the N partic-
ipating FL CLIENTs so that they can enjoy the benefits of
an updated object detection model trained with everyone’s
dataset in essence. In this way, FedYOLOv3 can rapidly re-
spond to any potential errors in model inference.
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Model Compression

Uploading model parameters to the FL SERVER can be
time consuming due to network bandwidth constraints. Fig-
ure 8 shows the upload time required for uploading federated
model parameters of different sizes. For example, when the
network bandwidth is about 15MB/sec, it takes more than
20 seconds to upload a Wa(t) of 230MB in size.
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Figure 8: Time for uploading federated model parameters of
different sizes.

However, during the federated model training, different
model parameters might have different contributions to-
wards model performance. Thus, neural network compres-
sion can be performed to reduce the sizes of the network by
pruning less useful weight values while preserving model
performance (Cheng et al. 2017). In FedVision, we apply
network pruning to compress the federated model parame-
ters and speed up transmission (Bengio and LeCun 2016).

Let M i,k be the model parameter matrix from the i-th user
after completing the k-th iteration of federated model train-
ing. Let M i,k

j be the j-th layer of M i,k. We denote the sum
of the absolute values of all parameters in the j-th layer as
|∑M i,k

j |. The contribution of the j-th layer to the overall
model performance, v(j), can be expressed as:

v(j) =
∣∣∣
∑

M i,k
j −

∑
M

i,(k−1)
j

∣∣∣ (6)

The larger the value of v(j), the greater the impact of layer
j on the model. FL CLIENT ranks the v(j) values of all
layers in the model in descending order, and selects only
the parameters of the first n layers to be uploaded to the
FL SERVER for federated model aggregation. A user can
set the desired value for n through FedVision.

Application Use and Payoff

FedVision has been deployment through a collaboration be-
tween Extreme Vision and WeBank since May 2019. It has
been used by three large-scale corporate customers: 1) China

Resources (CRC)4, 2) GRG Banking5, 3) State Power In-
vestment Corporation (SPIC)6.

CRC has business interests in consumer products, health-
care, energy services, urban construction and operation,
technology and finance. It has more than 420,000 employ-
ees. FedVision has been used to help it detect multiple types
of safety hazards via cameras in more than 100 factories.

GRG Banking is a globally renowned AI solution
provider in financial self-service industry in the world. It has
more than 300,000 equipment (e.g., ATMs) deployed in over
80 countries. FedVision has been used to help it monitor
suspicious transaction behaviours via cameras on the equip-
ment.

SPIC is the world’s largest photovoltaic power genera-
tion company which facilities in 43 countries. FedVision has
been used to help it monitor the safety of more than 10,000
square meters of photovoltaic panels.

Over the four months of usage, FedVision has achieved
the following business improvements:

1. Efficiency: in the flame identification system of CRC,
to improve a model, at least 1,000 sample images were
needed. The entire procedure generally required 5 la-
bellers for about 2 weeks, including the time of testing
and packaging. Thus, the total time for model optimiza-
tion can be up to 30 days. In subsequent operations, the
procedure would be repeated. With FedVision, the system
administrator can finish labeling the images by himself.
The time of model optimization is reduced by more than
20 days, saving labor cost.

2. Data Privacy: under FedVision, image data do not need
to leave the machine with which they are collected to
facilitate model training. In the case of GRGBanking,
to 10,000 photos were required to train its model. Each
photo is around 1 MB in size. The 10,000 photos used to
require 2 to 3 days to be collected and downloaded to a
central location. During this process, the data would go
through 2 to 3 locations and are at risk of being exposed.
With the help of FedVision, GRGBanking can leverage
the local storage and computational resources at their
ATM equipment to train a federated suspicious activity
detection model, thereby reducing the risk of data expo-
sure.

3. Cost: in the generator monitoring system of SPIC, a to-
tal of 100 channels of surveillance videos are in place in
one generator facility. Under the data transmission rate of
512 KB/sec for synchronous algorithm analysis and opti-
mization, these 100 channels require at least 50 MB/sec
of network bandwidth if image data need to be sent. This
is expensive to implement on an industry scale. With Fed-
Vision, the network bandwidth required for model update
is significantly reduced to less than 1 MB/sec.

The improvements brought about by the FedVision plat-
form has significantly enhanced the operations of the cus-

4https://en.crc.com.cn/
5http://www.grgbanking.com/en/
6http://eng.spic.com.cn/

13177



Figure 9: Monitoring multiple rounds of federated model training on FedVision.

tomers and provided them with competitive business advan-
tages.

Application Development and Deployment

The FedVision platform was developed using Python and
C programming languages by WeBank, Shenzhen, China.
When developing the AI Engine, we have evaluated multi-
ple potential approaches which are capable of fulfilling our
design objectives while disallowing the explicit sharing of
locally stored camera data. These include secure multi-party
computation (MPC), differential privacy (DP), and federated
learning (FL). The decision for selecting FL is based on the
following considerations:

1. In recent decades, many privacy-preserving machine
learning methods have been proposed. They are mostly
based on secure MPC (Yao 1982; 1986). The goal is
to protect data privacy, and explore how to calculate a
conversion function safely without a trusted third party.
However, the transmission efficiency between multiple
parties is very low. This makes unsuitable for our appli-
cation which not only demands high efficiency, but also
requires the involvement of a trusted third party (i.e. Ex-
treme Vision Ltd) to fulfil certain business objectives.

2. Differential Privacy (Dwork 2006; Wang et al. 2019)
aims to protect sensitive data by adding noise into the
dataset in such a way that preserves the overall distribu-
tion of the data. A trade-off needs to be made between
the strength of privacy protection versus the usefulness
of the resulting dataset for inference tasks. However, DP
still requires data aggregation for model training. This
not only violates the requirements by privacy protection
laws such as GDPR, but also incurs high communication
overhead as the datasets are artificially enlarged with the
added noise.

3. Federated learning is the best available technology for
building the AI Engine of the FedVision platform. It does

not require data aggregation for model training. Thus, it
not only preserves data privacy, but also significantly re-
duces communication overhead. In addition, with a wide
range of model aggregation algorithms (e.g., federated
averaging (McMahan et al. 2016)), FL provides better
support for extending deep learning-based models which
are widely used in visual object detection tasks.

Therefore, FL has been selected to implement the AI Engine
of FedVision.

Once the user completed the annotation of his local
dataset and joined the construction of a federated object de-
tection model on FedVision, the rest of the processes are
taken care of by the platform automatically. The user can
conveniently monitor the progress of different rounds of fed-
erated model training through the user interface as shown in
Figure 9. As it is developed for use in China, the language
used in the actual production user interface is Chinese. The
version shown in Figure 9 is for readers who do not speak
Chinese. A video demonstration of the functionalities of the
FedVision platform can be accessed online7.

Maintenance

As time goes by, there are additions of new types of com-
puter vision-based tasks, changes in personnel access rights,
and changes in operating parameters in FedVision. Since the
platform architecture follows are modular design approach
around tasks and personnel to achieve separation of con-
cern with respect to the AI Engine, such updates can be per-
formed without affecting the AI Engine. Since deployment
in May 2019, there has not been any AI maintenance task.

Conclusions and Future Work

In this paper, we report our experience addressing the chal-
lenges of building effective visual object detection models
with image data owned by different organizations through

7https://youtu.be/yfiO3NnSqFM
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federated learning. The deployed FedVision platform is an
end-to-end machine learning engineering platform for sup-
porting easy development of FL-powered computer vision
applications. The platform has been used by three large-
scale corporate customers to develop computer vision-based
safety hazard warning solutions in smart city applications.
Over four months of deployment, it has helped the customers
improve their operational efficiency, achieve data privacy
protection, and reduced cost significantly. To the best of our
knowledge, this is the first industry application of federated
learning in computer vision-based tasks. It has the potential
to help computer vision-based applications to comply with
stricter data privacy protection laws such as GDPR (Voigt
and Bussche 2017).

Currently, the FedVision platform allows users to eas-
ily utilize the FedYOLOv3 algorithm. In subsequent work,
we will continue to incorporate more advanced FL algo-
rithms (e.g. federated transfer learning (Liu et al. 2019;
Gao et al. 2019)) into the platform to deal with more com-
plex learning tasks. We are also working on improving the
explainability of models through visualization (Wei et al.
2019) in the platform in order to build trust with the users
(Yu et al. 2018). We will enhance the platform with incen-
tive mechanisms (Cong et al. 2019) to enable the emergence
of a sustainable FL ecosystem over time.
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