
The Thirty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-20)

Question Quality Improvement: Deep Question
Understanding for Incident Management in Technical Support Domain

Anupama Ray,1 Csaba Hadhazi,2 Pooja Aggarwal,1 Gargi Dasgupta,1 Amit Paradkar3

1IBM Research, India, 2IBM Hungary, 3IBM T. J. Watson Research Center, Hawthorne

Abstract

Technical support domain involves solving problems from
user queries through various channels: voice, web and chat,
and is both time-consuming and labour intensive. The tex-
tual queries in web or chat mode are unstructured and often
incomplete. This affects information retrieval and increases
the difficulty level for agents to solve it. Such cases require
multiple rounds of interaction between user and agent/chatbot
in order to better understand the user query. This paper
presents a deployed system called Question Quality Improve-
ment (QQI), that aims to improve the quality of user utter-
ance by understanding and extracting important parts of an
utterance and gamifying the user interface, prompting them
to enter the remaining relevant information. QQI is guided
by an ontology designed for the technical support domain
and uses co-reference resolution and deep parsing to under-
stand the sentences. Using the syntactics and semantics in the
deep parse tree structure various attributes in the ontology are
extracted. The system has been in production for over two
years supporting around 800 products resulting in a reduc-
tion in the time-to-resolve cases by around 29%, leading to
huge cost savings. QQI being a core natural language under-
standing and metadata extraction technology, directly affects
more than 8K tickets everyday. These cases are submitted af-
ter 50K edits done on the case based on QQI feedback. QQI
outputs are used by other technologies such as search and re-
trieval, case routing for automated dispatch, case-difficulty-
prediction, and by the chatbots supported in each product
page.

1 Introduction

Problem solving in technical support domain requires under-
standing of user queries, so that agents can resolve the case
via debugging at their end. For many debugging scenarios,
agents rely on search tools (Gupta et al. 2018) for finding
appropriate answers from internal and external knowledge
sources. In the quest to improve the search results, the qual-
ity of the input question plays a very important role. Studies
show that poor quality of user questions affects the down-
stream search accuracy. One way to guarantee the question
quality is to mandate filling in pre-defined forms. However,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this impacts the user experience of a free-text box where
the expectation is to describe in free natural language the
problem at hand. A more intelligent way would be to auto-
matically discover what the user has already typed in and
nudge them to enter the next most relevant information to
add. The challenge here is to understand the relevant pieces
of information supplied and those missing from the numer-
ous human edits (text addition/deletion) made on a free text
box. Instead, we focus on prompting the user to enter rele-
vant next info, thereby creating a unique user experience.

In this paper we present a system that understands the user
query and reflects the understanding as extractions of impor-
tant attributes on a gamified User Interface (UI). This creates
inquisitiveness in users that an intelligent system is trying to
understand their query, in turn, motivating them to help the
system. Thus, they add or edit their query to make it com-
plete or more informative. The system relies on grammatical
structure based extractions on deep-parse based slot gram-
mars and predicate argument structures (McCord 1990). The
extracted attributes appear as check-marks on the UI with a
progress bar indicating the quality or strength of the ques-
tion as shown in Figure 5. This linguistic based gamification
happens in real-time to provide users instant feedback and
improves their experience without the burden of mandatory
form-filling.

1.1 Challenges

Understanding user queries have various challenges such as
finding entities and important domain specific attributes to
be able to solve the issue. The main attributes that we are
trying to extract from query or prompt the user to enter in the
query are: Symptom, Activity, Action, and Advise. These at-
tributes could often be overlapping, for example: symptom
and activity co-occur several times. The other challenges
are presence of long blocks of machine generated text (er-
ror messages/logs pasted, or stack traces etc) which are very
difficult to parse given the structure. Bad parse leads to no
output annotation for these machine generated text snippets.
For understanding an unstructured text query and extract-
ing structured attributes, it is important to be able to resolve
co-references, extract relationships between entities and at-
tributes, understand text in colloquial or chat language with

13196



Figure 1: Architecture of proposed system

use of aliases or short-forms etc.

1.2 Main contributions

This paper presents a deployed system that uses intelligent
linguistics within a UI to improve the question quality in
technical support domain. The main contributions of the sys-
tem are:

1. Deep Parsing based annotators: The annotators are the
core component of the QQI system. QQI is guided by an
ontology defined for technical support domain. The at-
tributes in the ontology namely, Symptom, Intent-Advise,
Intent-Action, and Activity are extracted from the deep
parse tree structure based on a set of templates (grammat-
ical structures with relationship) and dictionaries, (details
presented in section 4.1). For each query the deep pars-
ing trees are first generated and the grammatical structure
based templates are used over the parse tree output to ex-
tract the attributes.

2. Machine Learning based continuous evaluation frame-
work: To ensures the quality of the QQI system, we have
an automated evaluation framework, which relies on a
machine learning model and an evaluator. This system is
a Conditional Random Forest based system, trained us-
ing manually annotated data and retrained using active
learning from corrected QQI outputs.

3. Linguistics-based UI Gamification: The gamification on
the user interface impacts the user psychology by com-
forting them that an intelligent technology is trying to un-
derstand their question. This interests and prompts them
to improve their question quality without pressurizing
them to enter any mandatory information. The UI shows
the outputs of the extractions in realtime, along with a
progress bar which is indicative of the importance of the
annotations being extracted, indicating the quality of the
question to the user.

The results are presented with real customer data from 7000
different products being supported by QQI which reduces

the time-to-resolve the cases by 29%. This leads to an overall
cost savings of 25% annually.

In section 2 we present related work in this domain. In
section 3, we briefly give an overview of the entire deployed
system. In section 4 each component of QQI is explained
in detail including the deployment, performance, scalability
and maintenance. Section 5 explains the evaluation metrics
for QQI, both from research and business perspectives. In
section 6 we briefly mention the business impact that QQI
had and continuous to bring in, followed by discussion and
future work in section 7.

2 Related Work

There has been significant interest in natural language un-
derstanding from the research community leading to sev-
eral technologies such as dependency parsers (Klein and
Manning 2002), constituency parsing (Stern, Andreas, and
Klein 2017), deep parsing (McCord, Murdock, and Bogu-
raev 2012), Named entity recognition (Lafferty, McCallum,
and Pereira 2001), Semantic Role Labeling (SRL) (Pun-
yakanok, Roth, and Yih 2008) and different versions of
them. The authors in (de Marneffe and Manning 2008)
parse grammatical relations from text for automated under-
standing. Deep Parsing (McCord, Murdock, and Boguraev
2012) uses English Slot grammar (McCord 1990) that de-
composes the natural language text to slots with sentence
surface structure and deep grammatically structures to cre-
ate a deep parse dependency tree. For Jeopardy, Watson used
slot grammar parsing (McCord 1990) that decomposes the
natural language text to slots, which is widely used for appli-
cations such as question decomposition, knowledge extrac-
tion for QA (Fan et al. 2012), relation extraction, (Wang et
al. 2012), candidate generation (Lally et al. 2012), analysis
and gathering of textual evidence (Murdock et al. 2012).

Deep Parsing is different from SRL (He et al. 2017) since
the latter focuses on detection of words associated with the
predicates and then classify the phrases into specific roles.
SRL depends on a shallow parse, whereas deep parsing in-
volves slot grammar which parses both structurally (connec-

13197



Figure 2: Deep Parse Tree Structures: English Slot Grammar (left), Predicate Argument Structure (right)

tions between each node and slot: surface structure) and se-
mantically (complement slots and adjunct slots). Comple-
ment slots play the role of grammatical and logical argument
of word senses. Adjunct slots are associated with the Parts-
of-speech (POS) of the headword sense. Deep parse tree has
features such as POS, complement slot frame, morphosyn-
tactic feature (semantic and syntactic), word-sense name,
numerical score (likelihood of being correct parse tree struc-
ture), and generalized support verb. Thus it is much more
elaborate than shallow parsing dependency trees and simple
POS taggers.

In (Yang et al. 2017), authors present a system which
claims to improve the state of the art for technical support
question answering. They address the problem of knowl-
edge representation by constructing a knowledge graph from
well structured documents and other technical content. This
work does not delve into the complexities of unstructured
user questions in technical support such as incomplete or
short sentences, combination of human and machine gener-
ated text (pasting error logs or stack traces while writing), or
bad grammatical sentences with improper punctuations etc.

3 System Overview

Figure 1 shows the complete architecture of the proposed
QQI system. The linguistic processing is based on the user
query and is reflected on the UI while the user types in. For
every one second pause or in presence of a sentence delim-
iter, QQI’s Deep Parsing based Annotation APIs are fired to
show annotations as results on the UI. This UI is created on
the ticketing system front-end. At the backend caching and
multi-threading helps make the QQI system real-time. Once
the query is submitted, both QQI and learning based evalua-
tor system get triggered. The query is appended with all the
QQI outputs for the next set of applications such as chatbot,
automation services, and search and retrieval. The evaluator
service module continuously monitors the performance of
QQI, by spraying the query to all the learning based anno-
tators and comparing word-overlap between the output ex-
tractions by QQI versus learning modules.

4 Components of QQI System

This section describes in detail the different functional com-
ponents of the system viz.: the deep parsing based annota-
tor building, machine learning based continuous evaluation
framework, and the UI functional component.

Figure 3: Deep Parse Annotation Flow

4.1 Deep Parsing based QQI Annotators

In this section, we will first discuss about how the QQI an-
notators are build. The flow of deep parse annotator building
is shown in figure 3.

Sentence Preprocessing Each input query is preprocessed
via a co-reference resolution module and a sentence tok-
enizer module. Co-reference resolution is very important
since the user might refer to the objects once and use several
co-references to refer to it in subsequent lines. Co-reference
resolution is done by the pairwise ranking of each mention.
Sentences are tokenized, and prior to parsing the sentences,
every reference to an entity is resolved, for the parse tree to
be able to link structures to the correct entity.

13198



Figure 4: Sample template in semantic parsing model

Deep Parsing The main element in the QQI pipeline is the
Annotators or the attribute extraction modules. These anno-
tators have to interpret the text, and understand the struc-
ture to be able to identify and extract snippets from the
text belonging to particular attributes. We want to extract
the following attributes viz.: Product Name, Component,
Version, PartNumber, ErrorCode, Symptom, Intent-Advise,
Intent-Action, Activity. While the product name and compo-
nent annotator are dictionary based, the version, part num-
ber and error codes annotator are regular expression based.
The other annotators require deep understanding of text and
thereby require deep parsing. These attributes are config-
urable and can vary depending on the ticket domain.

English Slot Grammar (ESG) There are several natural
language parsers that allow tokenization and POS tagging
(Klein and Manning 2002) but they provide a simple de-
scription of the grammatical relations in a sentence. This
is not sufficient for several applications. Slot Grammar sys-
tem has a lexical character and treats different grammatical
structures in a language independent manner through dif-
ferent rule types. QQI uses two deep parsing components:
English Slot Grammar (ESG) followed by Predicate Argu-
ment Structure (PAS) for linguistic analysis of text (McCord
1990). English Slot Grammar (ESG) works on input sen-
tences to produce a deep parse tree with logical analysis and
grammatical analysis. The parse trees for every segment is
ranked based on the likelihood of the parse being correct and
the highest ranked parse is used.

Predicate Argument Structure (PAS) Predicate Argu-
ment Structure (PAS) simplifies the ESG parse tree by com-
bining the two dimensions of ESG by omitting nodes with
auxiliary verbs, closed class nodes introducing verb phrases,
determiners (except for high semantic determiners), forms
of be with no predicate and with adjective predicate. This
makes PAS generic and reflective of the core semantic mean-
ing. PAS forms a labeled directed graph which is more flex-
ible and requires less knowledge than ESG. To build a nega-

tion annotator which can mark a sense of negation within
the parse structure, we modify the PAS by not dropping
all the nodes. The negation annotator helps identify symp-
toms/problems like does not work, cannot boot from a ques-
tion. Figure 2 shows an ESG parse tree and the correspond-
ing PAS tree structure for a sample sentence. Unlike ESG,
exact semantic meaning of a sentence is irrelevant to PAS
as long as the core meaning is the same. Thus for semanti-
cally similar sentences, PAS structure remains same whereas
ESG would be different. For example, active and passive
sentences have different ESG parse tree but same PAS tree.
Therefore, pattern matching on PAS tree is more efficient
than on ESG parse tree.

Annotation Extraction After constructing the ESG and
PAS tree, we add sub-tree patterns which match the parse
tree structure, to extract the attribute annotations. Subtree
patterns are written on the basis of sentence grammatical
structure and certain keywords belonging to each attribute.
For example: for symptom attribute, typical dictionary words
would be ”fail”, ”problem”, ”issue” etc. For each attribute,
there are different set of words and these words are placed in
different dictionaries (noun, verb or usage). Manually cre-
ating such dictionaries and rules over them is both time-
consuming and requires a lot of domain knowledge. There
could be as many as 500 dictionary words for each at-
tribute under different word-forms or grammar usage. Thus
we write a set of templates that encode a grammatical struc-
ture and can automatically create rules using all words in a
particular dictionary (specified as a wildcard). This makes
the rule writing significantly scalable as we need to write
50 templates per attribute (10-15 templates per usage type
within each attribute). The dictionaries are mined in semi-
automated fashion by matching the ”template-only” on a
large corpus of text and finding word suggestions which may
be added to dictionary. Such word suggestions are then man-
ually filtered and added to the dictionaries. Pattern based
matching has been used in the Jeopardy Watson system (Mc-
Cord, Murdock, and Boguraev 2012). Figure 4 shows a user

13199



Figure 5: Linguistics on User Interface

query with the extracted symptom and the pattern that led to
the symptom extracted.

4.2 ML based Continuous Evaluation pipeline

Even after deployment of QQI in August 2017, for first six
months, Subject Matter Experts (SME) from each product
randomly verified QQI extractions on 100 randomly selected
cases from logs and provided feedback on the quality of
QQI. Although manual verification is best for constant im-
provement, with these SME cycles we had two major learn-
ings. Firstly, QQI was quite stable and generic, thus this
SME cycle was just a metric for QQI, and not very impor-
tant for its improvements. Secondly, SME verification takes
up a lot of time and manually a person cannot examine and
provide metrics for more than a 100-500 cases a week. Thus
there is a need to build an automated framework for evalu-
ation of QQI to ensure its quality. We created an automated
evaluation pipeline that will definitely be much less accurate
than human annotation, but atleast provides a lower bound
and raises a flag if QQI is near the lower bound.

The evaluation pipeline relies on a Conditional Random
Fields (CRF) model, followed by a sequence comparator
that evaluates the precision, recall and f-score QQI consid-
ering CRF as the groundtruth generator.

Conditional Random Fields (CRF) CRFs are graphical
models that can capture such dependencies among input
observations (Lafferty, McCallum, and Pereira 2001). A
CRF model defines a conditional distribution p(y|x) where
y is the corresponding label sequence and x is the input se-
quence. The input x can be dependent on the current hidden
label y, previous n hidden labels and on any of the other in-
puts in an n order CRF. In this problem, the input sequence x
is the original user query which could be a set of sentences,
and the label sequence y corresponds to the symptom, activ-
ity, intent or other assigned to the input sequence. The prob-
abilistic model of a label sequence given some sequence of
words is mediated in this model through a set of weighted
functions fi:

p(y|x) = exp(
∑

i

∑
t wifi(yt−1, yt, x, t))

Z(x)

where the wi are the weights assigned by the learning al-
gorithm, and Z(x) is a normalization factor over all label
sequences.

For implementation, we created a ensemble model by
creating two different CRFs from two different codebases.

First we used the linear-chain Stanford CRF implementa-
tion (Finkel, Grenager, and Manning 2005) . The current
word, previous word, next word, are used a context with a
current word character n-gram (n ≤ 6). We set presence of
word in left window (size = 4), presence of word in right
window (size = 4), position of word in the sentence, and
current POS tag as features computed within the Stanford
NER toolkit. These features were used to train and test CRF
model which we call as CRFsn. The second toolkit that we
use is IBM Statistical Information and Relation Extraction
(SIRE), (Florian et al. 2004) which has the capabilities to
use dictionaries along with the CRF training examples for
sequence extraction. All other features remained same for
both CRF model trainings.

The CRF models are initially trained with 3000 manually
annotated tickets. CRFsn is retrained using active learning
with different sampling strategies to pick samples from QQI
corrected data (from SMEs). For SIRE, we bootstrapped
SIRE training with a lot of QQI outputs with the aim of
achieving similar performance of that of QQI, without any
rule-writing or domain understanding. For both CRF mod-
els, B-I-O encoding is used, where each word in the query
is annotated to one of the following cases (labels): the be-
ginning of a symptom (B-S), inside of a symptom (I-S), the
beginning of an activity (B-A), inside of an activity (I-A),
the beginning of an intent (B-I), inside of an intent (I-I) or
other (O). Apart from the 4 deep parse annotators we also
extract regions (machine generated text) within the query.

Evaluator Module The outputs of CRF and QQI are com-
pared to check word overlap and we report partial overlap
(thresholded over 0.6) and exact overlap to match QQI anno-
tations versus CRF annotation. These word overlap is used
to compute the precision, recall and f-score metrics for QQI.
We also compute the coverage of each of the CRF annotator
as well as QQI as the evaluator matches the outputs of CRF
and QQI only for cases wherein the CRF model has been
able to make any extraction. Since the rule-based QQI has
much larger recall, thus it is important to know how much
evaluator has been able to compare while checking the auto-
mated f-score metrics.

4.3 User Interface

Figure 5 shows snapshots of the User Interface (UI), where
on the left is the description box, where the user can key
in the query. The UI triggers the annotator API calls for
every sentence delimiters such as full-stop, comma etc or

13200



pause while typing. The outputs of the annotators are re-
flected back on the UI real-time, tick-marking the fields that
got extractions as seen on the right of figure 5. Users can also
see questions appearing at the bottom of the description box,
relevant to the missing checkmarks. QQI outputs are used
to search for the similar resolved tickets and get the corre-
sponding resolution as highlighted in red over the UI screen-
shot on the right of Figure 5. The progress bar on top indi-
cates the strength of the query, and its colour changes from
red (weak), to yellow (medium) to green (strong) as more at-
tributes are extracted. This motivates the user to strengthen
the query and the user then adds details to see if other fields
get checkmarked. For the progress bar, the product name,
component. symptom and action annotators have maximum
weights followed by the other annotators. The weights of
these annotators were determined after several experiments
with these annotations as metadata for search and retrieval
(Gupta et al. 2018).

4.4 Deployment and Maintenance

QQI is currently deployed as a single tenant service hosted
in a Kubernetes cluster with multiple REST APIs. The
deployment architecture with blocks showing each micro-
service are shown in Figure 1. The system has been running
on Salesforce successfully since last two years with several
products being onboarded at different times. This has led to
sufficient data getting annotated and is helping the machine
learning models to become generic now. QQI scales well on
new products thus minimal improvements in terms of tem-
plate creation is required. The Kubernetes container has De-
velopment, Test and production namespaces each with ded-
icated worker nodes and pods as shown in Figure1.

4.5 Performance and Scalability

For performance we use a tool called concept-mapper for the
dictionary based annotators and maintain a cache as the user
query has lot of overlap between successive edits. Concept-
Mapper is a highly configurable, high performance dictio-
nary lookup tool, implemented as an Unstructured Informa-
tion Management Architecture (UIMA) component (Tanen-
blatt, Coden, and Sominsky 2010). Each dictionary annota-
tor has separate dictionary and Concept-Mapper tool is used
to map entries from dictionary to query to produce anno-
tations. Concept-Mapper performs fast in-memory lookup
even with multi-million entry dictionaries.

A small cache memory is used where the outputs for the
past 10k queries are saved. For each incoming request, a
cache lookup is attempted to check for annotations and QQI
pipeline is invoked for the remaining sentences and previous
output is picked up from the cache itself. Typically a sub-
mit type ticket has on average 16 edit type requests, mean-
ing user had done 16 edits based on QQI’s feedback. Thus,
maintaining a cache is very useful in reducing the overall
response time.

Performance and response time is essential in any solution
built for live feedback. The UI is generating an event with
every keystroke of the user, however this is throttled to only
send out a single request in every 3 seconds, this way we
ensure the service is not getting overwhelmed with requests,

and the user still gets relevant & fresh feedback about what
they are typing. The goal was to be able to serve 10 to 20 re-
quests per sec with varying content and maintain a response
time less than 3 seconds. Figure 6 shows the response time
of QQI is usually around 1.8 miliseconds. The assessment of
the performance took place with so called ”stress tests” that
are dedicated to emulate extraordinary user traffic to mea-
sure response times. This stress testing is performed using
JMeter performance test conducted with a frequency of 20
requests/sec based on 500 random actual problem descrip-
tions.

Figure 6: Stress Testing QQI: Time (x-axis) vs Response
Time of QQI(Y-axis)

5 Evaluation Metrics and Results

In this section we describe the various metrics on which
QQI is measured. From a research perspective we measure
QQI’s performance on the basis of the annotators: quantita-
tively and qualitatively. QQI annotators are evaluated quan-
titatively by using Coverage as the metric and qualitatively
by Precision, Recall, F-score. From a business perspective,
the biggest metric that QQI aims to minimise is the Time-To-
Resolve a case. In Table 1, we present the statistics of tickets
handled by QQI, and the impact of sentence preprocessing
and negation annotation on QQI.

Table 1: Ticket Statistics
Total number of supported Products 793
Number of edit type tickets (per day) 50000
Number of submitted tickets (per day) 8000

Average number of words in submitted case 836
Average number of sentences in submitted case 13

Average time taken for processing (submit) 2.528 secs
Impact of negation-annotator on symptom 52.8

Impact of sentence pre-processing on symptom 25%
Impact of sentence pre-processing on Intent 31%

Average no. of edits per submit 16

The QQI annotations were tested with the help of Subject
Matter Experts (SME) of each product for 22 products (re-
sults shown in table 2). For each product a random subset of
100 queries with their annotations are selected from the logs
and SMEs manually checks whether the query has a particu-
lar attribute present and if it was correctly captured by QQI.
Coverage is a measure of QQI’s quantitative performance
and indicates the percentage of query with extractions of an

13201



Table 2: Quantitative and Qualitative Evaluation of QQI
Deep-parse based Annotations on 22 products by SMEs

Annotator Coverage Precision Recall F-score

Symptom 70.48 78.66 89.39 83.68
Activity 57.96 56.45 83.33 67.30

Intent-Advise 53.79 88.63 95.54 91.95
Intent-Action 49.65 81.01 78.92 79.96

attribute. For example: 70% coverage of symptom means,
70% queries had one/more symptoms extracted out of the
100 queries in test. Precision, Recall and F-score are com-
puted to evaluate the qualitative performance of QQI. Preci-
sion indicates the number of correct annotations out of the
total number of extractions for each attribute. Recall indi-
cates the number of correct extractions by QQI divided by
the total number of expected extractions that were in the
query (as marked by SME). F-score is the harmonic mean
of Precision and Recall and is being used a standard mea-
sure of QQI’s qualitative analysis.

The average F-score for all 4 deep parse annotation is usu-
ally more that 80%, across different hardware and software
products with different type/format of user queries, thus as-
suring high recall generic annotators.

Since the CRF based evaluator is only able to compute f-
score for queries with both CRF and QQI annotations, we
do measure the coverage of CRF and consider the differ-
ence between coverages of CRF and QQI as an indicator of
queries that did not get evaluated. Since CRFFsn is trained
on only 3000 manually annotated tickets, the coverage and
recall is quite low although the precision is high. SIRE per-
forms better than CRF − sn since it is bootstrapped with
30K tickets QQI outputs and is able to consume the QQI
dictionaries used for rule writing. The Average f-score of
SIRE and CRFsn is 53.03% and 28.03% respectively. But
the performance of the two CRF models being complimen-
tary, an ensemble is created for the evaluation which has an
average f-score of 61.8%.

Coverage guides the qualitative testing and for the prod-
ucts with coverage below 50% qualitative analysis is per-
formed to improve the annotators. Coverage is computed for
the non-deep parse annotators as we need to know if any ad-
ditions are required in the dictionary or regular expressions.
The coverage for Product Name, component, version, Part-
Number and Errorcode are 31.79%, 88.44%, 43%, 0.10%,
10.78% respectively.

We use ”Time-To-Resolve” (TTR) a case as a metric to
measure the impact of QQI. The baseline against which the
impact is measured are the cases which get no QQI anno-
tations. Based on the QQI logs, we compare the reduction
in TTR with the annotator output to measure contribution of
each annotator on TTR as shown in Figure 7. We analyzed
cases for a year and observed that when all the deep parse an-
notators are present in the case description, then reduction in
TTR is 23.4%. The Intent annotator which is a combination
of Intent-Action and Intent-Advise has the highest impact on
TTR which is 33.6%. This can be explained as the agent has
an exact understanding of what the user expects the agent to
do in terms of advise or action required. Thus, Intent turns

Figure 7: Contribution of Deep Parse Annotators in the Re-
duction of ”Time to resolve” (TTR)

out to be the most important annotator for reduction in TTR.
The effect of activity annotator in reducing the TTR is least
(3.2%) in comparison with others since activity is indicative
of steps user has already taken but not the actual problem or
ask.

Table 3 shows an illustrative example of how QQI in-
spires user to edit the query with annotations. In the first case
only the symptom got extracted and rest were not check-
marked in UI. In the second API call, the query was edited so
that more symptoms and activity could be extracted which
checked the symptom and activity in the UI. Finally when
the user is comfortable with the output of the extracted an-
notations they submit the case description as a ticket.

6 Business Impact

QQI impacts around 800 products that IBM supports on the
Salesforce platform. QQI API is called 60K times everyday
to support 8K tickets that are finally submitted after more
than 50K edits done on them based on QQI feedback. As
explained in metrics, several comparisons are done to com-
pute the impact of time-to-resolve cases on tickets with and
without QQI outputs, as well as influence of each annotator
on the TTR reduction. The results show that the TTR de-
creased by 29% for tickets with QQI as compared to tickets
without QQI, which leads to overall cost savings of 25% an-
nually. QQI has also been packaged separately as a product
offering to a different client thus leading to revenue genera-
tion.

7 Discussion and Future Work

The QQI service touches every ticket be it on webpage or a
chat interface, and the average number of edits before sub-
mitting a case clearly indicates that QQI enables user to pro-
vide a better question. The annotations of QQI are addition-
ally used by chatbots to determine Product name,symptoms
and intents before starting a chat session and by search ser-
vices as metadata to improve retrieval results. Also, the re-
duction of TTR by 29% shows that a ticket improved upon
by QQI helps agent resolve the case much faster and leads
of huge cost savings. We are also building other annotators
such as server name, IP address, diagnostic test, test results

13202



Table 3: Deep parse annotations evolves with case description
Query Query

Type
Symptom Activity Intent

ACL’s are not working for few
users/group. Hello team,

edit [ACL’s are not
working for few
users/group []

[] []

ACL’s are not working for few
users/group. Hello team, We are
getting inode error on couple hive
databases when users belonging
to group app11469 tries to access
the databases on PRODBATCH

clusters. We have applied rwx per-
missions(ACL’s) for group on HDFS
path.

edit [ACL’s are not
working for few
users/group] [are
getting inode er-
ror on couple hive
databases]

[We have applied rwx
permissions for group
on HDFS path] [users
belonging to group
app11469 tries to ac-
cess the databases
on PRODBATCH
clusters]

[]

ACL’s are not working for few
users/group. Hello team, We are
getting inode error on couple hive
databases when users belonging
to group app11469 tries to access
the databases on PRODBATCH

clusters. We have applied rwx per-
missions(ACL’s) for group on HDFS
path.Even we tried providing 777
permission on hdfs path. Could you
please have a look.

submit [ACL’s are not
working for few
users/group] [are
getting inode er-
ror on couple hive
databases] [777]

[We have applied rwx
permissions for group
on HDFS path] [users
belonging to group
app11469 tries to ac-
cess the databases on
PRODBATCH clusters]
[Even we tried providing
777 permission on hdfs
path.]

[Could you please
have a look]

and resolution. These new annotators are required to popu-
late Knowledge graphs and use the Knowledge graphs for
effective ticket resolution and improve retrieval results.

Acknowledgements
The authors acknowledge the time and efforts from everyone
involved in building, discussing and giving feedback for this
product, which enabled it to shape up and mature.

References
de Marneffe, M.-C., and Manning, C. D. 2008. The stanford typed
dependencies representation. In COLING: Workshop on Cross-
Framework and Cross-Domain Parser Evaluation.
Fan, J.; Kalyanpur, A.; Gondek, D. C.; and Ferrucci, D. A. 2012.
Automatic knowledge extraction from documents. IBM Journal of
Research and Development 56(3.4):5:1–5:10.
Finkel, J. R.; Grenager, T.; and Manning, C. D. 2005. Incorporating
non-local information into information extraction systems by gibbs
sampling. In Association for Computational Linguistics.
Florian, R.; Hassan, H.; Ittycheriah, A.; Jing, H.; Kambhatla, N.;
Luo, X.; Nicolov, N.; and Roukos, S. 2004. A statistical model for
multilingual entity detection and tracking. In In NAACL/HLT.
Gupta, A.; Ray, A.; Dasgupta, G.; Singh, G.; Aggarwal, P.; and Mo-
hapatra, P. 2018. Semantic parsing for technical support questions.
In Proceedings of the 27th International Conference on Computa-
tional Linguistics, COLING.
He, L.; Lee, K.; Lewis, M.; and Zettlemoyer, L. S. 2017. Deep
semantic role labeling: What works and what’s next. In ACL.
Klein, D., and Manning, C. D. 2002. Fast exact inference with a
factored model for natural language parsing. In NIPS, 3–10. MIT
Press.

Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Conditional ran-
dom fields: probabilistic models for segmenting and labeling se-
quence data. In ICML.
Lally, A.; Prager, J. M.; McCord, M. C.; Boguraev, B.; Patward-
han, S.; Fan, J.; Fodor, P.; and Chu-Carroll, J. 2012. Question
analysis: How watson reads a clue. IBM Journal of Research and
Development 56(3):2.
McCord, M. C.; Murdock, J. W.; and Boguraev, B. 2012. Deep
parsing in watson. IBM Journal of Research and Development
56(3):3.
McCord, M. C. 1990. Slot grammar: A system for simpler con-
struction of practical natural language grammars. In Proceedings
of the International Symposium on Natural Language and Logic,
118–145.
Murdock, J. W.; Fan, J.; Lally, A.; Shima, H.; and Boguraev, B.
2012. Textual evidence gathering and analysis. IBM Journal of
Research and Development 56.
Punyakanok, V.; Roth, D.; and Yih, W.-t. 2008. The importance of
syntactic parsing and inference in semantic role labeling. Compu-
tational Linguistics 34(2):257–287.
Stern, M.; Andreas, J.; and Klein, D. 2017. A minimal span-based
neural constituency parser. In Association for Computational Lin-
guistics (Volume 1: Long Papers).
Tanenblatt, M. A.; Coden, A.; and Sominsky, I. L. 2010. The
conceptmapper approach to named entity recognition. In LREC.
Wang, C.; Kalyanpur, A.; Fan, J.; Boguraev, B.; and Gondek, D.
2012. Relation extraction and scoring in deepqa. IBM Journal of
Research and Development 56(3):9.
Yang, S.; Zou, L.; Wang, Z.; Yan, J.; and Wen, J.-R. 2017. Ef-
ficiently answering technical questions – a knowledge graph ap-
proach. In AAAI Conference on Artificial Intelligence.

13203


