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Abstract

Electricity information tracking systems are increasingly be-
ing adopted across China. Such systems can collect real-time
power consumption data from users, and provide opportuni-
ties for artificial intelligence (AI) to help power companies
and authorities make optimal demand-side management de-
cisions. In this paper, we discuss power utilization improve-
ment in Shandong Province, China with a deployed AI ap-
plication - the Power Intelligent Decision Support (PIDS)
platform. Based on improved short-term power consumption
gap prediction, PIDS uses an optimal power adjustment plan
which enables fine-grained Demand Response (DR) and Or-
derly Power Utilization (OPU) recommendations to ensure
stable operation while minimizing power disruptions and im-
proving fair treatment of participating companies. Deployed
in August 2018, the platform is helping over 400 companies
optimize their power consumption through DR while dynam-
ically managing the OPU process for around 10,000 compa-
nies. Compared to the previous system, power outage under
PIDS through planned shutdown has been reduced from 16%
to 0.56%, resulting in significant gains in economic activities.

Introduction

With the rapid development of the Chinese economy, the
electricity demand by various industries is also increasing.
Many provinces in China primarily rely on coal to gener-
ate electricity. This results in much environmental pollution;
in addition, the coal supply limits the electric power gen-
eration (Meng et al. 2019). The inconsistent quality of coal
results in high maintenance cost at the power plants. Sea-
sonal climate changes and natural disasters may also cause
short-term imbalances in the demand and supply of electric-
ity, putting transient pressure on the power grid (Li, Pizer,
and Wu 2019). These factors can result in reduced power
generation capacities, fluctuations in electricity prices and
sometimes forced power outages, thereby negatively affect-
ing the stability and safe operation of the power grid.

At present, power grid management is carried out using
two main approaches (Colak et al. 2016):
1. Supply side, through power grid scheduling;
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Figure 1: The general workflow of existing demand-side
power management systems in China.

2. Demand side, through consumer usage scheduling.
In China, power generation capacity is still limited by coal
fired power plants. There is not much room for optimization
on the supply side. Thus, the focus of existing power man-
agement systems in China is generally on the demand side
to mitigate peaks and troughs in power demand in order to
maintain safe operation (Zhou and Yang 2015).

Existing demand-side power management systems in
China generally operate following the steps below (Figure
1):
1. Short-term power consumption gap prediction: this step

is typically performed by experts based on domain
knowledge. In the case of Shandong province, the 3-day
moving average values of previous power demand and
supply are used as the basis for predicting the power con-
sumption gaps in five days’ time. If the predicted usage
gap is larger than a predefined threshold value, the power
consumption adjustment operations will be triggered.

2. Developing a hierarchical power consumption adjust-
ment plan: based on the predicted power consumption
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gap, the experts will decide on a specific period of time
for power consumption adjustment, and divide the total
amount of over-supply or shortage of power among the
cities and counties in a province in a hierarchical fashion
according to pre-defined rules. The adjusted power con-
sumption quota allocated to each city/county will, in turn,
be divided among companies located in the region which
have signed agreements to participate in such operations.

3. Gathering responses to the plan from participating com-
panies: the plan will then be forwarded to each of the
eligible companies which are selected to participate in
this round of power consumption adjustment for confir-
mation. If some of these companies prefer not to par-
ticipate in this round (e.g., due to production scheduling
conflicts), the plan will be manually adjusted to the ex-
tent allowed by the current situation for another round of
confirmation.

4. Submitting the plan for approval: the finalized plan is
then submitted for approval by the provincial power man-
agement authority and archived.

5. Executing the plan: execute the approved plan for power
adjustment, either in the form of Demand Response (DR)
(Strasser et al. 2015) through increase/reduction in elec-
tricity pricing, or Orderly Power Utilization (OPU) (Sri-
vastava, Pandey, and Singh 2016) through planned shut-
down during a given period for the selected companies.

From the above description, it can be observed that Steps
1 and 2, which are key to the performance of a power
consumption management system, are currently performed
manually by domain experts with computerized tools. Not
only is this approach inefficient and unable to handle com-
plex power consumption adjustment situations, it is also
prone to human errors which might lead to accidents in pro-
duction. In addition, the usage gap prediction approach cur-
rently adopted by such systems is lacking in terms of ac-
curacy. Inaccurate predictions, in this case, introduces ad-
ditional errors into the system which further affect its per-
formance. Thus, the previously used system was unable to
achieve rapid response to fluctuations in power demand and
supply while minimizing disruption to economic activities.

In order to address this important limitation, we de-
veloped an artificial intelligence (AI) empowered dynamic
power consumption management system - the Power In-
telligent Decision Support (PIDS) platform. A novel short-
term load forecasting model based on Wavelet Decomposi-
tion and Long Short-Term Memory (WD-LSTM) is incor-
porated into its AI Engine. It combines influencing factor
analysis, wavelet decomposition feature extraction, triple or-
der exponential smoothing (Holt-Winters) time series analy-
sis, and Long Short-Term Memory (LSTM) networks to im-
prove power consumption gap prediction. Based on the im-
proved prediction results, PIDS computes an optimal power
consumption adjustment plan which enables fine-grain ad-
justment of power consumption through joint objective con-
straint optimization to ensure safe operation while minimiz-
ing power disruptions and providing fair treatment of par-
ticipating companies (Yu et al. 2019b; Zheng et al. 2019).

The platform provides detailed analysis for transparency in
decision support.

PIDS has been deployed throughout Shandong Province
since August 2018. It has significantly improved short-
term power consumption prediction accuracy compared to
the previous approach used in the province, and is help-
ing over 400 companies optimize their power consumption
through DR while dynamically managing the OPU process
for around 10,000 companies. Compared to the previous sys-
tem, planned shutdown under PIDS has been reduced from
16% to 0.56%, resulting in significantly reduced disruption
to economic activities.

Application Description

In this section, we provide a detailed description of the sys-
tem design of PIDS. The system architecture of PIDS is
shown in Figure 2. It comprises of four tiers:

1. The Data Collection tier aggregates related data from
multiple sources. These include load data and user profile
information from the Electricity Information Collection
System, meteorological data from the China Meteorolog-
ical Data Service Center, and holiday data from public
holiday calenders.

2. The Modeling tier which performs short-term load fore-
casting. Load forecasting is the basis for subsequent
power consumption adjustment. Its accuracy will affect
the effectiveness of subsequent steps. The proposed WD-
LSTM model can meet the accuracy needed for our pur-
pose.

3. The Utility tier includes DR and OPU. Based on the re-
sults of short-term load forecasting, this tier computes the

…… 

…… 

…… 

Figure 2: The architecture of the PIDS platform.
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optimal power consumption adjustment quota for partic-
ipating companies and sends out DR invitations to them.
It is also responsible for recommending OPU operations
to the authority in case DR alone is not enough to ensure
safety.

4. In the Interaction tier, users can query their historical
power consumption behavior analysis reports. They can
also accept/reject invitations to the DR operations. The
confirmed power consumption adjustment amounts are
delivered to the Electricity Information Collection Sys-
tem as feedbacks. The relevant authority can audit the
processes of OPU and DR through the system with hu-
man interpretable explanations generated by the AI En-
gine, and modify future policies based on these results.

Use of AI Technology

The use of AI technologies in PIDS mainly focuses on per-
forming two key steps in power consumption management:
1) predicting the short-term power consumption gap, and 2)
optimizing the selection of companies to join DR and OPU.
In this section, we describe these two parts in detail.

Short-Term Load Forecasting

One of the key functionalities of PIDS which relies heav-
ily on AI techniques is predicting the short-term usage gap
of power consumption. Accurate prediction of this value is
important for the subsequent DR and OPU operations, in
order to ensure safe operation of the power grid. Power con-
sumption management in China generally faces the follow-
ing challenges:
1. Missing data: there are many possible causes for this

problem. For example, hardware or software faults dur-
ing data collection, the data collection mechanism cannot
keep up with the speed of data being generated during
peak usage periods, and high cost of data collection. A
method for complementing the missing data is thus re-
quired.

2. Noisy data: the collection of massive amounts of power
consumption data over time is affected by random noise
and environmental conditions. This negatively impacts
the analysis of factors influencing the power load when
data are viewed as a time series. Denoising is thus re-
quired during feature extraction.

3. External influencing factors: power consumption can be
affected by many factors external to the power grid (e.g.,
temperature which affects heating and cooling needs,
public holidays which affect power needs of certain ge-
ographic locations and industries, and natural disasters).
The accuracy of short-term power consumption gap pre-
diction can be significantly improved by explicitly taking
such factors into account.
To address these challenges, a novel short-term load fore-

casting model - WD-LSTM - is incorporated into the AI
Engine of the PIDS platform. The conceptual framework
of WD-LSTM is shown in Figure 3. It combines influenc-
ing factor analysis, wavelet decomposition feature extrac-
tion, triple order exponential smoothing (Holt-Winters) time

Figure 3: The conceptual framework of WD-LSTM.

series analysis and Long Short-Term Memory (LSTM) net-
works. The model uses wavelet decomposition to extract the
main features of load data, analyzes its correlation with tem-
perature, holidays and industry influencing factors, and then
constructs corresponding adjustment factors.

To deal with the problem of noisy power consumption
data, a 3-layer wavelet decomposition and reconstruction
method is used in WD-LSTM. The four resulting subse-
quences and data concerning temperature, public holidays
and industry specific information are used to perform cor-
relation analysis to obtain the set of power load features
and related influencing factors. Then, for each influencing
factor, variance assessment based on the ARIMA-GARCH
model (Tan et al. 2010) is performed to compute the ad-
justment values. The preliminary forecast for each feature
subsequence is obtained using the Holt-Winters algorithm
(Gelper, Fried, and Croux 2010). Finally, the forecasting re-
sult and the adjustment values are used as the input to the
LSTM network (Gers, Schmidhuber, and Cummins 1999)
to perform regression forecasting and wavelet inverse trans-
formation to obtain the best forecasting results. More de-
tails of WD-LSTM can be founded in (Liu et al. 2019;
Zheng et al. 2019).
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Figure 4: The architecture of the PIDS platform.

Dynamic Power Consumption Adjustment

In PIDS, there are a set of N companies which have signed
contracts with the provincial government agreeing to par-
ticipate in power consumption adjustment operations in the
following year in exchange for preferential electricity rates.
The actual amount of concessions received will depend on
the level of participation by these companies.

Power consumption adjustments can be divided into two
levels: 1) demand response (DR) and 2) orderly power uti-
lization (OPU) as shown in Figure 4. DR can be used to re-
duce power demands during peak periods, or increase power
demands during trough periods. Under DR, a user reduces
(or increases) its power consumption by an agreed amount
over a specific period of time (e.g., through partially shut-
ting down operations or boosting production activities) in
exchange for a lower electricity price during the DR period.
During peak periods, if the amount of power consumption
reduction in a given round of DR operation is not enough
to bridge the power demand-supply gap, OPU will be trig-
gered. PIDS will then select some target companies to be
forcefully powered down during the specific period in or-
der to ensure safe operation of the power grid. The selection
of companies for DR and OPU must not only satisfy safety
constraints, but also minimize economic loss and ensure fair
treatment of the participating companies.

Demand Response (DR) In order to achieve these objec-
tives, we have extended the framework in (Yu et al. 2013a;
2015; 2016; 2017) which has been deployed in our social
insurance service provision platform (Zheng et al. 2018) to
enable PIDS to dynamically allocate power consumption ad-
justment quotas among participating companies.

Depending on which industry a company belongs to, the
economic output per unit time (e.g., in an hour) of one com-
pany may be different from that of another company. In
PIDS, this value for company i is denoted as vi and normal-
ized to the range [0, 1]. In the contract for participating in
dynamic power consumption adjustment, a company i spec-
ifies the maximum amount of power reduction, xmax

i , it is
willing to tolerate in any given round of DR operation.

From the system perspective, the sacrifice, Yi(t), made
by each company i during round t can be modelled by as a
queuing system:

Yi(t+ 1) = max[Yi(t) + xi(t)− 1[xi(t)=0]μi(t), 0] (1)

where xi(t) is the power reduction quota allocated to i in
round t. μi(t) is the actual amount of electricity i consumes
in round t. However, μi(t) is only counted if i is not required
to reduce power consumption through DR or OPU in round
t as indicated by the function 1[xi(t)=0] (which equals to 1 if
only if xi(t) = 0; and equals to 0 otherwise).

Based on (Yu et al. 2017), we model the distribution of
sacrifice among the companies in round t with a Lyapunov
function, L(t), defined as:

L(t) =
1

2

N∑

i=1

Y 2
i (t) (2)

which is, in essence, the l2-norm value. A large L(t) indi-
cates that either a few companies are making huge sacrifices,
or a number of companies are making large sacrifices. Both
of these situations shall be avoided as much as possible. The
fluctuation in company sacrifices over T rounds can be ex-
pressed as:

� =
1

T

T−1∑

t=0

[L(t+ 1)− L(t)]. (3)

Thus, minimizing � achieves two dimensions of fair treat-
ment: 1) the distribution of sacrifice among companies
within each round is even over time, and 2) the fluctuations
in the sacrifices made by the companies over time remain
small.

PIDS also takes the economic impact of the companies
into account when prioritizing which ones shall join DR in
a given round. For this purpose, we model the normalized
loss incurred by a company i reducing power consumption
by xi(t) as vixi(t). Thus, the time-averaged economic loss
incurred by power consumption adjustment in the system is:

F =
1

T

T−1∑

t=0

N∑

i=1

vixi(t). (4)

In order to minimize economic loss and ensure fair treat-
ment of participating companies while achieving safe op-
eration, we need to minimize ρF + � subject to certain
constraints. Here, ρ > 0 is a weight value allowing the
system administrator to indicate the relative importance be-
tween minimizing economic loss and ensuring fair treatment
of participating companies. Thus, we have:
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Minimize:

1

T

T−1∑

t=0

N∑

i=1

xi(t)[ρvi + Yi(t)] (5)

Subject to:
xi(t) � xmax

i , ∀i, t (6)

Minimizing equation (5) jointly minimizes the time-
averaged expected disruption to economic activities and the
sacrifices made by participating companies. Constraint (6)
ensures that during DR operations, any company i will
not be asked to adjust their power consumption by more
than xmax

i . For simplicity of discussion, we denote the term
[ρvi + Yi(t)] as the DR suitability index, Θi(t). In the PIDS
platform, the system administrators have decided to give
equal emphasis on minimizing economic loss and ensuring
fair treatment of participating companies. Thus, the value of
variable ρ is set in such a way that the terms ρvi and Yi(t)
from equation (5) are of the same order of magnitude.

Algorithm 1 PIDS Demand Response
Require: The predicted power consumption gap at some

future round t, G(t); Yi(t), ∀i, t; vi, ∀i; and ρ.
1: Sort all i in ascending order of their Θi(t) values;
2: for each i do
3: if G(t) � xmax

i then
4: xi(t) = xmax

i ;
5: else
6: xi(t) = G(t);
7: end if
8: G(t)← G(t)− xi(t);
9: end for

10: return {x1(t), x2(t), ..., xN (t)};

The algorithm for PIDS to allocate power consumption
adjustment quotas to participating companies is shown in
Algorithm 1. It is only triggered if the predicted power
consumption gap G(t) is larger than a predefined thresh-
old value. The required inputs can all be tracked and stored
by the PIDS platform. The algorithm has O(N logN) time
complexity if mergesort (Katajainen and Träff 1997) is
adopted, making it suitable for large-scale operations.

The PIDS platform coordinates the allocation of power
consumption adjustment quotas by sending messages to se-
lected companies and gathering their responses. Intuitively,
if a power disruption to a company i incurs low economic
cost, and i has not made much sacrifice by participating in
recent rounds of DR operations, the priority for i to join this
round of DR operation is increased; and vice versa. If some
companies decline this round of invitation, PIDS re-runs Al-
gorithm 1, with all the companies which have accepted or
declined the invitations excluded from the eligible solution
set, to compute a new solution for DR. Since the author-
ity only informs the AI Engine of high level preferences
through setting key DR parameters without insisting on ap-
proving each AI recommendation, the nature of AI opera-
tions in this part is human-over-the-loop (Yu et al. 2019a).

Intelligent Orderly Power Utilization (OPU) If Algo-
rithm 1 cannot find a feasible solution to bridge the predicted
gap between power demand and supply, PIDS will trigger
the OPU operation. It generates a preliminary proposal for
selected companies to completely shut down their operations
during the predicted power consumption gap period based
on the load characteristics of the companies which have
signed contracts with the provincial authority to agree to par-
ticipate in OPU. This proposal is submitted to the Commis-
sion of Economy and Information Technology for approval.

The administrators from the Commission of Economy
and Information Technology logs into the PIDS platform,
and enters the government department management inter-
face to review the OPU plan. Since the recommendations for
performing OPU are made based on only predicted power
consumption gaps, the authority needs to make the final de-
cision on whether to approve such recommendations. Thus,
the nature of AI operations in this part is human-in-the-loop
(Yu et al. 2019a). If the OPU plan is approved, the execution
of the OPU plan will be managed by PIDS.

Application Use and Payoff

PIDS has been deployed across Shandong Province, China
since August 2018. The province consists of 16 prefectures,
140 counties and 1,941 townships with a total population
of around 100 million1. It has been used by the provincial
authority to manage the demand side electricity usage by in-
dustrial users. At the time of submission of this paper, over
400 companies signed agreements to participate in DR oper-
ations, and over 10,000 companies have signed agreements
to participate in OPU operations through PIDS. In this sec-
tion, we discuss the impact of the PIDS platform. We com-
pare the performance achieved by PIDS with data from the
previous power consumption management system used by
Shandong Province during the period of August 2017 to July
2018. The performance data of PIDS were gathered from
August 2018 to July 2019.

With WD-LSTM, the PIDS platform achieved a root
mean square error (RMSE) of less than 2.5% when pre-
dicting the short-term power consumption gap during the
one year period of deployment. This represents a signifi-
cant 86.40% reduction compared to the RMSE of 18.38%
achieved by the 3-day moving averaged-based prediction ap-
proach adopted by the previous power consumption man-
agement system in Shandong.

The first round of province-wide DR operation occurred
in August 2018. A total of 264 companies received DR invi-
tations to bridge the power consumption gap of 555,800kW.
Eventually, 201 companies accepted the invitations and ad-
justed their power consumption by 439,000kW through DR
(accounting for 79% of the power gap). The remaining
power gap was bridged through OPU.

Another round of province-wide DR operation occurred
in December 2018. A total of 188 companies boosted their
power consumption at noon time (12:00 pm to 13:00 pm) to
bring the power demand trough up by 291,900kW. Then, on

1https://en.wikipedia.org/wiki/Shandong
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the same day, 327 companies reduced their power consump-
tion from 17:00 pm to 18:00 pm to bring the power demand
peak down by 640,900kW. This round of power consump-
tion adjustment reduced the difference between the peak and
trough of the power demand by 15.74% (from 5,566,400 kW
to 4,690,200 kW), thereby significantly improving the power
demand curve.

With the help of PIDS, an average of 76% of participat-
ing companies did not experience significant disruptions to
their power consumption on the day of power consumption
adjustment. This is an improvement of more than 58% com-
pared to the average of only 48% of participating companies
which managed to achieve this under the previous system.

With the help of PIDS, participating companies only had
to reduce their power consumption by an average of 0.56%
on the day of power consumption adjustment. In contrast,
under the previous system, the corresponding figure was
16%.

Under PIDS, within the week after the power consump-
tion adjustment operation, participating companies can re-
coup the reduction in power consumption safely, thereby
minimizing the negative impact on economic activities. In
contrast, an average of 8% of production output was perma-
nently lost due to power consumption adjustment under the
previous system. Overall, PIDS has achieved much a better
performance compared to the previous system over the one
year period it was deployed.

Application Development and Deployment

The PIDS platform was developed using Java and JSP Pro-
gramming Languages by Dareway Software Co Ltd.2, Jinan,
Shandong, China. The platform is built on Hadoop for stor-
ing the big data in power consumption. When developing the
AI Engine, we have evaluated five well-established potential
models for short-term power consumption gap prediction:

1. Support Vector Regression (SVR) (Drucker et al. 1996):
this is a special version of the Support Vector Machine
(SVM) designed for performing regression.

2. AutoRegressive Integrated Moving Average (ARIMA)
(Makridakis and Hibon 1997): this is a model that cap-
tures a suite of different standard temporal structures in
time series data. It can be applied in cases where data are
non-stationary. An initial differencing step is carried out
once or multiple times to deal with such non-stationarity.

3. Long Short-Term Memory (LSTM) neural network
(Gers, Schmidhuber, and Cummins 1999): this is a deep
recurrent neural network (RNN). In contrast to standard
feed-forward neural networks, LSTM has feedback con-
nections. It not only can process single data points, but
also sequences of data (e.g., power consumption over
time).

4. Holt-Winters Forecasting (Gelper, Fried, and Croux
2010): this method is also known as triple exponential
smoothing, which applies exponential smoothing three

2http://www.dareway.com.cn/

Table 1: Power consumption prediction test results.��������������Algorithm
Performance RMSE Reduction in RMSE

by WD-LSTM
WD-LSTM 9.76% -
ARIMA 24.42% -60.03%
Holt-Winters 21.89% -55.41%
SVR 21.26% -54.09%
LSTM 14.68% -33.51%

Figure 5: The PIDS user interface showing the alert on pre-
dicted power consumption gap and related analysis results
(Zheng et al. 2019).

times. It is commonly used when there are three high fre-
quency signals to be removed from a time series under
study.

5. WD-LSTM (Liu et al. 2019; Zheng et al. 2019): this is
our proposed approach for short-term power consump-
tion gap prediction designed to address the specific chal-
lenges facing Chinese power consumption management
systems, which was described in the previous section.

The five candidate approaches have been tested on a
power demand and supply dataset3 collected by the previ-
ously used power consumption management system from a
city in Shandong Province, China. The dataset spans a one
year period, across different seasons. The task for the candi-
date approaches is to predict the power demand and supply
five days in the future. The RMSEs achieved by the candi-
date approaches are listed in Table 1. The results showed that
WD-LSTM achieves the lowest RMSE at 9.76% based on
the historical test dataset. Compared to the best alternative
approach (i.e. LSTM), the RMSE achieved by WD-LSTM is
lower by 33.51%. Therefore, WD-LSTM has been selected
to be implemented in the AI Engine of PIDS.

Figure 5 shows the user interface through which PIDS dis-

3The dataset is available upon request via email to the contact
authors as the requesters will be asked to agree on certain terms of
use.
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Figure 6: The PIDS user interface showing decision support
functions related to demand response optimization.

plays the predicted power consumption gap and related anal-
ysis for the administrators of the power grid in Shandong
Province. The actual deployed system uses the Chinese lan-
guage. This is a translated version for readers who do not
speak Chinese. In the example, on 11-Sep-2018, the WD-
LSTM model predicted a near-term power consumption gap
on 15-Sep-2018 that would exceed the pre-defined safe oper-
ation parameters. It issued an alert in the Load Curve Status
panel. Detailed breakdowns of the year-to-date power con-
sumption by different types of customers are shown in dif-
ferent panels. The historical prediction error rates are also
plotted in the Prediction Error Rate panel on the top-right
hand corner of the screen. The additional analysis is shown
to provide transparency and help the administrators make
informed decisions on whether to act on the alerts.

Figure 6 shows the user interface through which PIDS
displays recommendations for selected companies to partic-
ipate in a round of demand response operation, as well as
a summary of compliance by these companies on 02-Apr-
2019. In this instance, due to poor compliance from the se-
lected companies for DR, forced power shutdown through
OPU was activated. A video demonstration of the PIDS plat-
form can be accessed online4.

Maintenance

As time goes by, workflows, personnel and operating pa-
rameters in PIDS may change. Because of the separation of
concerns through modular system design, such updates can
be performed without affecting the AI Engine. The AI al-
gorithms did not need to be modified since deployment in
August 2018. At the point of submission of this paper, there
has not been any AI maintenance task. At the end of August
2019, after one year of operation, a model review for WD-
LSTM has been scheduled. This task will be carried out over

4https://www.youtube.com/watch?v=3dcX1YDwT0Q

the subsequent month to determine if the WD-LSTM model
should be updated.

Conclusions and Future Work

In this paper, we reported on our experience using AI to
address the challenges of dynamically managing industrial
electric power consumption in Shandong Province, China.
We developed the PIDS platform to provide data-driven in-
telligent power consumption adjustment decision support
for the provincial authority. By improving the accuracy of
the short-term power consumption gap prediction and dy-
namically optimizing the selection of companies to join
demand response and orderly power utilization operations,
PIDS provides fine-grain adjustments of the power demand
curve in order to ensure safe operation while minimizing
power disruptions and providing fair treatment of partici-
pating companies. Since deployment, PIDS has helped over
400 companies in Shandong Province optimize their power
consumption through DR while dynamically managing the
OPU process for around 10,000 companies. The platform
has demonstrated significant advantages in terms of improv-
ing the management of the power grid with minimal impact
on economic activities compared to the previous system.
Further plans to deploy PIDS in other parts of China have
been put in place. The experience gained is being analysed
to help revise related policies in China.

In subsequent work, we will investigate how to incorpo-
rate Stackelberg game theory (von Stackelberg 2011) into
PIDS to enable the dynamic pricing of electric power. In this
way, the platform may be able to make use of price signals
to better motivate companies to participate in power con-
sumption adjustment operations. We are also looking into
applying explainable AI approaches (Fan and Toni 2015;
Zeng et al. 2019) to automatically generate explanations for
the AI recommendations to help administrators better un-
derstand the reasoning processes in order to improve user
acceptance and trust in AI (Yu et al. 2013b; 2018). In ad-
dition, as smart meter devices start to be incorporated into
the power grid infrastructure in Shandong Province, mas-
sive amounts of usage behaviour data will be generated by
companies and households. Not only is it expensive to trans-
mit and store such data, but private information such as
patterns in people’s daily life might be inferred from such
data as well. We will also investigate how to apply privacy-
preserving machine learning techniques such as federated
learning (Gao et al. 2019; Yang et al. 2019) in PIDS so as
to enable collaboration across power companies in compli-
ance with privacy-protection laws such as the General Data
Protection Regulation (GDPR) (Voigt and Bussche 2017).
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