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Abstract

Earth and planetary sciences often rely upon the detailed ex-
amination of spectroscopic data for rock and mineral iden-
tification. This typically requires the collection of high res-
olution spectroscopic measurements. However, they tend to
be scarce, as compared to low resolution remote spectra.
This work addresses the problem of inferring high-resolution
mineral spectroscopic measurements from low resolution ob-
servations using probability models. We present the Deep
Gaussian Conditional Model, a neural network that performs
probabilistic super resolution via maximum likelihood esti-
mation. It also provides insight into learned correlations be-
tween measurements and spectroscopic features, allowing for
the tractability and interpretability that scientists often require
for mineral identification. Experiments using remote spectro-
scopic data demonstrate that our method compares favorably
to other analogous probabilistic methods. Finally, we show
and discuss how our method provides human-interpretable re-
sults, making it a compelling analysis tool for scientists.

Introduction

Earth and planetary sciences rely upon the analysis of spec-
troscopic data. Instruments such as the Compact Reconnais-
sance Imaging Spectrometer for Mars (CRISM) (Murchie
et al. 2007) and the Thermal Emission Imaging System
(THEMIS) (Christensen et al. 2004) have been vital for un-
derstanding the geology of Mars, as well as for studying cli-
mate and habitability implications (Bishop 2018). Another
example is the Moon Mineralogy Mapper (M3) instrument,
which produced the first mineralogical map of the Moon and
also found water ice in the polar regions (Li et al. 2018).

The reason is that spectrometers measure different wave-
lengths of the electromagnetic spectrum and thus capture
more information than can be seen with the eye. The mea-
sured signals are called spectra and contain spectral fea-
tures that are used for rock and mineral identification (Clark
1999). This is because each material reflects, emits, or ab-
sorbs electromagnetic radiation in a unique way.

The detection of spectral features often requires high res-
olution spectroscopic measurements (Clark 1999). An ex-
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Figure 1: Shortwave infrared spectra from two different
phyllosilicate minerals as measured by both low (red) and
high (blue) resolution instruments. Low resolution measure-
ments fail to capture important spectral features required for
mineral identification.

ample of this phenomenon is described in Figure 1, show-
ing how low resolution spectra may sometimes lose valu-
able information. Unfortunately, high resolution spectra are
often scarce, whereas low resolution spectra are usually
easier to obtain (Hubbard, Crowley, and Zimbelman 2003;
Zhang et al. 2016).

This work addresses the problem of inferring high-
resolution spectra from low resolution measurements us-
ing probabilistic modeling. We present the Deep Condi-
tional Gaussian Model (DCGM), a neural network architec-
ture that emerges from the need for a spectroscopic anal-
ysis tool. It leverages ideas from different deep generative
models, which have been highly successful for data gen-
eration and super resolution tasks (Goodfellow et al. 2014;
van den Oord et al. 2016; Dahl, Norouzi, and Shlens 2017;
Hu et al. 2018). But unlike most current methods, which use
latent representations and are difficult to evaluate in prob-
abilistic terms (Wu et al. 2017), our approach provides a
means for log-likelihood estimation and for the inspection of
learned statistical dependencies. This is particularly impor-
tant in situations where a scientist needs to make informed
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analytical decisions.
We validate our approach in a case study that consists

of mineralogical investigations using remote spectroscopic
data of Cuprite, Nevada; a well-studied test site for remote
sensing algorithms (Swayze et al. 2014; Thompson et al.
2018). We first demonstrate that the DCGM compares favor-
ably to other analogous probabilistic methods. We then show
and discuss how the DCGM provides human-interpretable
results that make it a compelling spectroscopic analysis tool.

Related Work
In the remote sensing community, many commonly used
methods assume data follow Gaussian distributions, and also
perform maximum likelihood estimation. For instance, one
of the most popular algorithms is principal component anal-
ysis (PCA). Another one is the minimum noise fraction
(MNF) transformation, which uses a noise-whitening op-
eration before applying PCA in order to incorporate noise
robustness (Green et al. 1988). Gaussian mixture models
(GMM) are another classical probabilistic approach, and
they have been used for tasks such as classification and un-
mixing of spectra (Zhou, Rangarajan, and Gader 2018).

Deep generative models also perform density estimation
and have recently achieved impressive results in many dif-
ferent areas (Hu et al. 2018). In general, there are two learn-
ing approaches for generative models depending on whether
they optimize a likelihood function or not.

There are deep generative models for which the likelihood
is not explicitly defined (Wu et al. 2017). The main ones are
generative adversarial networks (GANs) and variational au-
toencoders (VAEs). GANs consist of two neural networks
contesting with each other in order to learn how to pro-
duce data, usually from a simple Gaussian random generator
(Goodfellow et al. 2014). Despite their encouraging results
in image generation, the density estimation process is highly
opaque: it does not allow calculation of the likelihood of ob-
served data, nor visualization of the learned statistical de-
pendencies. VAEs (Kingma and Welling 2013), also known
as Deep Latent Gaussian Models (DLGMs) (Rezende, Mo-
hamed, and Wierstra 2014), have a more transparent proba-
bilistic representation, which is learned by first encoding a
data set into a latent space and then decoding it back into its
original state. They assume the latent variables are normally-
distributed. It is also simple to build conditional models con-
necting different types of inputs and outputs: VAEs have
been used for spectral unmixing (Parente, Gemp, and Du-
rugkar 2017; Borsoi, Imbiriba, and Bermudez 2019), and for
the reconstruction of high resolution spectroscopic measure-
ments from synthetic low resolution data (Candela, Thomp-
son, and Wettergreen 2018). Although their probabilistic
model is somewhat more tractable, it is not usually possible
to compute the likelihood function analytically. That is why
VAEs rely on variational approximations for training (hence
their name). Additionally, the interpretation of the learned
statistical dependencies is difficult because they lie in a hid-
den representation.

There are deep generative models that are explicitly
driven by likelihood functions. An example are normalizing
flows (Rezende and Mohamed 2015), which also work with

latent representations. They use change of variable transfor-
mations in order to generate complex models from simple
probability distributions. In practice, they do not work well
on high dimensional spaces, and the likelihood evaluation
of unseen data is dependent on how invertible and tractable
these series of transformations are. Autoregressive networks
are a family of algorithms that have gained notable popular-
ity for image generation (van den Oord et al. 2016) and su-
per resolution (Dahl, Norouzi, and Shlens 2017) tasks. This
is because they are scalable, relatively simple to train, and
allow computation of log-likelihoods. They work by defin-
ing an arbitrary sequence of pixels and learning a series of
conditional distributions. Consequently, they are unable to
show correlations between any pair of non-sequential pixels.
Conditional Gaussian distributions have been explored in the
literature, but using spherical (isotropic) covariance matri-
ces (Dahl, Norouzi, and Shlens 2017). Somewhat less con-
strained Gaussian models have been used for single-channel
speech separation (Wang et al. 2017).

In summary, recent deep generative models have achieved
remarkable results in data generation and super resolution,
but have made little progress in producing conditional prob-
abilistic models that are interpretable and easy to evaluate.

Method

Conditional Probability Model

Our super resolution method learns a conditional probabil-
ity model that uses low resolution measurements in order
to infer high resolution spectra. Let x ∈ X ⊂ R

m and
y ∈ Y ⊂ R

n denote the low and high resolution spec-
tra, respectively. We define the conditional probabilistic re-
lationship between X and Y as pθ(y|x). It is modeled using
deep learning, where the network’s weights are defined as θ.
This model assumes that the conditional probability can be
represented with a multivariate Gaussian distribution, hence
the name Deep Conditional Gaussian Model (DCGM). For-
mally, this means that:

pθ(y|x) ∼ Nn(μy(x),Σy(x)), (1)

where μy ∈ R
n is the mean vector, and Σy ∈ R

n×n is the
covariance matrix. Note that both μy and Σy change as a
function of x.

Maximum Likelihood Estimation

We rely on the well-known maximum likelihood estimation
(MLE) method in order to estimate the parameters of the
statistical model, that is, to tune the network’s weights θ. The
training data set is comprised by pairs of inputs and ground-
truth outputs D = {(xi, y

�
i )}Ni=1. The network will try to

maximize the following cumulative log-likelihood function:

L(θ|D) =
∑

(x,y�∈D)

log pθ(y
�|x). (2)
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Figure 2: The architecture of the Variational Autoencoder,
also known as the Deep Latent Gaussian Model.

The log-likelihood function for a multivariate Gaussian dis-
tribution is given by:

log pθ(y|x) = −1

2
[y − μy(x)]

T
Σ−1

y (x) [y − μy(x)]

−1

2
log {(2π)n|Σy(x)|} . (3)

Intuitively, the model will try to approximate μy to y� as
closely as possible (i.e. regression), and simultaneously, Σy

will reflect the model’s confidence in these predictions. Af-
ter the learning process, high-confidence predictions should
result in small values in Σy , and vice versa.

Architecture

The DCGM draws inspiration from the VAE (Kingma and
Welling 2013) and the DLGM (Rezende, Mohamed, and
Wierstra 2014), but differs in important ways. VAEs and
DLGMs learn a probabilistic representation in a latent space
Z by encoding it into a mean and a covariance (Figure 2).
DCGMs, however, have a probabilistic representation that
lies in the output layer (Figure 3). This enables our method
to use an analytical likelihood function that allows for exact
MLE, as opposed to VAEs and DLGMs, which require to
learn via variational approximations.

VAEs typically work with diagonal covariances. DLGMs
learn full covariance matrices by using a rank-1 approxima-
tion, which is just a slight improvement over a diagonal co-
variance (Rezende, Mohamed, and Wierstra 2014). We in-
stead use a full-rank estimation that yields significantly bet-
ter results, as will be shown later on. Additionally, Gaus-
sian distributions in the output layer have been explored by
other authors, but using either isotropic (Dahl, Norouzi, and
Shlens 2017) or diagonal matrices (Wang et al. 2017).

Defining Σy as a full covariance matrix involves some
practical challenges. First of all, Σy is a matrix of size n×n,
which could significantly increase the overall size of the out-
put and the network. The network must also ensure Σy is
always a symmetric positive definite matrix. The covariance
matrix should also be numerically stable, since Equation 3
requires calculation of both its inverse and its determinant.

In order to face these challenges, we rely on the fact that
the covariance can be represented with a Cholesky decom-
position given by Σy = LLT , where L is a lower triangular
matrix. Numerical advantages related to this decomposition
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Figure 3: The architecture of the Deep Conditional Gaussian
Model, based on an efficient Cholesky decomposition.

result in substantial computational simplifications. In order
to avoid computing the inverse of the covariance matrix (first
term of Equation 3), the model directly learns its Cholesky
decomposition: Σ−1

y = CCT . Then, the determinant of the
covariance matrix (second term of Equation 3) can be easily
calculated with just the main diagonal of the decomposition:
|Σy| = (

∏n
i=1 C[i, i])

−2.
For training and numerical stability purposes, the model

decouples the Cholesky decomposition C into two parts: its
main diagonal C1 ∈ R

n
>0, and the rest of the elements C2 ∈

R
n(n−1)/2. Figure 3 shows the corresponding architecture

of the DCGM. The rationale is that C1 must include positive
numbers exclusively, and thus ensure both Σy and Σ−1

y are
truly positive definite. Furthermore, using a small threshold
λ > 0 can add numerical stability.

The network can be pre-trained by fixing all of the values
in C2 to 0. Once training convergence is achieved, the model
will learn a conditional probabilistic representation where all
the channels in the output are considered to be independent.
This translates into a μy that gives accurate maximum a pos-
teriori predictions, and also a diagonal covariance matrix Σy

that captures uncertainty in each channel individually. Then
the network can be fine-tuned by “unfreezing” C2, allowing
it to also learn correlations between channels.

Experiments

We present a case study that consists in the inference and
reconstruction of high resolution mineral spectropcopy. The
case study is focused on Cuprite, Nevada. It is a well-studied
region of high mineralogical diversity that is amenable to
remote sensing (Swayze et al. 2014), therefore making it an
important test site for algorithms (Thompson et al. 2018).

Data Set

The data set is comprised by Cuprite data products from
two imaging spectrometers: the Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (ASTER) (Fu-
jisada et al. 1998), and the Airborne Visible Infrared Imag-
ing Spectrometer Next Generation (AVIRIS-NG) (Hamlin
et al. 2011). ASTER is a low resolution instrument, whereas
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Figure 4: Example of remote spectroscopic measurements
of Cuprite, Nevada, as seen by ASTER and AVIRIS-NG.

Table 1: Spectrometer measurement characteristics.
Instrument Measurement Spectral region Channels

ASTER Reflectance 2.0-2.5 μm 5
AVIRIS-NG Reflectance 2.0-2.5 μm 85

AVIRIS-NG has a high spectral resolution. These data prod-
ucts were spatially aligned with ground control points that
were selected manually. Figure 4 shows an example of a
couple of representative spectroscopic measurements in the
scene as seen by the two instruments. Table 1 summarizes
the channels and wavelengths that were used for this study,
which contain many of the diagnostic features needed for
mineral identification at Cuprite (Swayze et al. 2014).

We perform a series of preprocessing operations on the
data that seek to preserve spectral features (Clark 1999) and
reduce the impact of misguiding factors such as albedo and
noise. Each spectrum is first scaled in the range [0,1] with
min-max normalization. Afterwards, we apply the MNF
transformation to add noise robustness (Green et al. 1988).

The data set consists of over 6× 106 spectra recorded by
each instrument. However, most of them are redundant and
can lead to overfitting due to strong correlations between
neighboring locations. Moreover, there are a few dozen min-
eral classes at Cuprite with imbalanced instances (Swayze et
al. 2014). We solved these issues by first building a more bal-
anced data set with the help of the mineral classification al-
gorithm Tetracorder (Clark et al. 2003). We then eliminated
spatially redundant measurements by randomly sampling
10,000 spectra from the scene. We divided them into three
sets: training (5,000), validation (2,500), and test (2,500).

The test set was sampled from the south region of Cuprite,
whereas the other two sets from the north region.

Experimental Setup

We make a quantitative comparison of the DCGM against
the following four probabilistic baselines:
• Gaussian (G): We concatenate the available and unavail-

able measurements, x and y respectively, and assume
both follow one Gaussian distribution, i.e. p(x, y) =
Nm+n(μ,Σ). We then perform MLE by simply comput-
ing the joint sample mean and covariance. Finally, we pre-
dict the conditional mean μy(x) = μy|x and covariance
Σy(x) = Σy|x using the standard formulas for conditional
multivariate Gaussians (Eaton 1983).

• Gaussian Mixture (GM): We learn a GMM for the joint
distribution: p(x, y) =

∑K
i=1 w

iNm+n(μ
i,Σi). We then

derive the conditional distribution, which also has the
form of a GMM: p(y|x) = ∑K

i=1 w̄
iNn(μ

i
y|x,Σ

i
y|x). The

parameters of each Gaussian component Nn(μ
i
y|x,Σ

i
y|x)

are computed as in the previous baseline, and the weights
are updated using Bayes’ theorem (Gilardi, Bengio, and
Kanevski 2002). We found that K = 30 components pro-
duced good results.

• Unimodal Gaussian Mixture (UGM): This method is
derived from the previous baseline. It estimates the overall
mean μy|x and covariance Σy|x of the conditional GMM
after performing a prediction. These are given by:

μy|x =

K∑
i=1

w̄iμi
y|x, (4)

Σy|x =

K∑
i=1

w̄i
[
Σi

y|x + μi
y|xμ

i
y|x

T
]
− μy|xμy|xT . (5)

• Variational Encoder (VE): It consists in the spectral re-
construction method in (Candela, Thompson, and Wetter-
green 2018).
Furthermore, spherical, diagonal, and full covariance ma-

trices were learned and tested for each of the previous algo-
rithms. We evaluate the performance of these methods with
the two following metrics:
• Root mean squared error (RMSE): a measure of accu-

racy that uses maximum a posteriori predictions.
• Negative log-likelihood (NLL): a measure of how proba-

ble the data are with respect to the learned model, defined
as the negative of the log-likelihood (Equation 2).
The DCGM was implemented with the following network

parameters (see Figure 3): one input layer, two sequential
hidden layers, and then three parallel convolutional decoders
for μy , C1, and C2. We used a dropout of 0.7 for all the hid-
den layers. The hidden layers and C1 used a rectified linear
unit (ReLU) activation function, whereas μy and C1 used a
sigmoid activation. We used a batch size of 4 and the Adam
optimizer (Kingma and Ba 2014), with NLL as the loss func-
tion. The DCGM was implemented in Keras (Chollet, Al-
laire, and others 2017). As it is customary, we selected the
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Figure 5: Training plots for the DCGM with a diagonal co-
variance.

Table 2: Average model performance (smaller is better). The
asterisk indicates cases where paired t-tests (p > 0.05) are
not statistically significant.

Spherical Covariance Matrix
Metric G GM UGM VE DCGM
RMSE 0.0938� 0.0685 0.0616 0.0510 0.0479
NLL -79.6 -158.5 -129.2 - -144.3

Diagonal Covariance Matrix
Metric G GM UGM VE DCGM
RMSE 0.0938� 0.0602 0.0565 0.0479 0.0458
NLL -95.1 -174.7 -149.6 - -162.2

Full Covariance Matrix
Metric G GM UGM VE DCGM
RMSE 0.0566 0.0538 0.0509 0.0490 0.0447
NLL -272.8 -308.5 -282.8 - -297.3

parameters that worked best with respect to the validation
set in order to avoid overfitting. Figure 5 shows an exam-
ple of the training process for a DCGM with a diagonal co-
variance matrix. Overall, we observed a good generalization.
Given the reduced size of the overall data set, a 2.9 GHz In-
tel Quad-Core i7 laptop without a graphics processing unit
(GPU) was sufficient to train the DCGM.

Results

The average performance of the different methods is shown
in Table 2. We see that simpler covariance matrices lead to
a deterioration in performance because they ignore valuable
information. We observe that DCGM has the best perfor-
mance in terms of RMSE because of its superior maximum
a posteriori predictions. This is consistent across different
types of covariance matrices. GM is the best in terms of
NLL, probably because such low resolution inputs produce
highly ambiguous relationships that are best modeled with
a multimodal distribution (which needs to be tuned with the
“right” number of components). However, DCGM still out-
performs the other unimodal distributions. VE performs well
in terms of RMSE, whereas its NLL is conventionally not
defined. VE is consistent because of two reasons: it explic-
itly uses a RMSE loss function and its prior is a (spherical)
standard Gaussian distribution. G, GM, and UGM perform
poorly in terms of RMSE when using spherical and diago-
nal covariance matrices; but work well otherwise, especially
GM and UGM because of the number of components they

Figure 6: ASTER observations (top) being used to infer
AVIRIS-NG measurements (middle) and their associated
covariance matrices (bottom). This example shows two min-
eral mixtures at Cuprite: mica with calcite (left), and alunite
with kaolinite (right).

use. As expected, GM is multimodal and thus outperforms
UGM in terms of NLL, but has more unstable maximum a
posteriori predictions that result in a higher RMSE.

Interpretability

This section discusses the potential of the DCGM as an anal-
ysis tool for geologists and spectroscopists via its human-
interpretable results. Figure 6 shows how DCGM is using
ASTER to infer AVIRIS-NG spectra of two common min-
eral mixtures at Cuprite: mica with calcite and kaolinite
with alunite. There are clear differences between both instru-
ments in terms of resolution, but also regarding offsets and
noise. The predictions are highly accurate since the ground
truth spectra are well within the error bars. But more im-
portantly, the covariance matrices contain useful informa-
tion about the mineral and spectral features. For instance,
there are high covariances near the main diagonal, which is
to be expected because adjacent channels are strongly corre-
lated. In the first mineral mixture, mica has a characteristic
absorption feature around 2.2 μm, whereas calcite around
2.35 μm. Many fractional abundances are possible, resulting
in features and wavelengths with high variances. Since this
is a common mineral mixture, the features are strongly cor-
related. In the alunite and kaolinite mixture, both constituent
minerals have broader and more complex features with over-
lapping wavelengths. The identification of these minerals, as
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well as the estimation of relative abundances, involves look-
ing at subfeatures, hence the more complex correlations in
the covariance matrix.

All of these notions are common for a scientist during
the analysis and interpretation of spectroscopic data, and
are certainly visible in the model. In summary, the DCGM
not only has accurate predictions, but also provides human-
comprehensible explanations regarding correlated features
and feasible alternatives.

Conclusions and Future Work
This paper presents a deep generative model that performs
super resolution for mineral spectroscopy. Unlike most re-
cent methods, the DCGM truly performs log-likelihood esti-
mation. And more importantly, it allows for the visualization
and interpretation of learned statistical dependencies.

The quantitative results revealed that despite being a uni-
modal distribution, the DCGM generates accurate and of-
ten better predictions without the arduous need to estimate
the “right” number of components in multimodal distribu-
tions such as GMMs. The qualitative results suggest that the
DCGM shows promise as a scientific analysis tool.

In future work, we intend to use the predictive power of
the DCGM for NASA’s Earth Surface Mineral Dust Source
Investigation (EMIT), whose goal will be to study the role
of atmospheric dust in Earth’s climate (Green 2019). Specifi-
cally, we plan to learn and visualize mineralogical and spec-
troscopic correlations between visible shortwave and ther-
mal infrared measurements. Finally, we will explore the ap-
plication of the DCGM to other remote mineralogical stud-
ies, as well as to other domains such as the oceanographic
and agricultural sciences. When possible, we will also carry
out user evaluation studies with expert scientists.
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