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Abstract

We propose a new method for solving Initial Value Problems
(IVPs). Our method is based on analog computing and has
the potential to almost eliminate traditional switching time in
digital computing. The approach can be used to simulate large
systems longer, faster, and with higher accuracy.
Many algorithms for Model-Based Diagnosis use numerical
integration to simulate physical systems. The numerical in-
tegration process is often either computationally expensive
or imprecise. We propose a new method, based on Field-
Programmable Analog Arrays (FPAAs) that has the potential
to overcome many practical problems. We envision a soft-
ware/hardware framework for solving systems of simultane-
ous Ordinary Differential Equations (ODEs) in fraction of the
time of traditional numerical algorithms.
In this paper we describe the solving of an IVP with the help
of an Analog Computing Unit (ACU). To do this we build
a special calculus based on operational amplifiers (op-amps)
with local feedback. We discuss the implementation of the
ACU on an Integrated Circuit (IC). We analyze the working if
the IC and simulate the dynamic Lotka-Volterra system with
the de-facto standard tool for electrical simulation: SPICE.

Introduction

Analog computers have been used extensively for solving
many problems. The differential analyzer (Bush 1931) is an
early example. In this paper we leverage the advancement
of microelectronics to propose a new implementation of a
reconfigurable analog computer.

We propose an Integrated Circuit (IC) design that can dra-
matically improve simulation of physical systems. Our idea
bridges the worlds of hybrid analog and digital electronic
design, numerical methods and simulation of dynamic sys-
tems, and diagnostic and prognostic reasoning.

Traditional methods for solving systems of Ordinary
Differential Equations (ODEs) involve numerical integra-
tion methods such as the classical Runge-Kutta algorithm
(Butcher 1987). Many algorithms for solving ODEs are im-
plemented in the SUNDIALS (Hindmarsh et al. 2005) library,
the industrial and scientific standard for numerical integra-
tion. Depending on properties of the ODEs such as stiffness,
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however, methods from SUNDIALS may be slow or they may
fail to converge.

Instead of evaluating the right-hand side of an integration
problem as is done traditionally, our IC uses analog comput-
ing and eliminates the need of any clocks during the compu-
tation. The integration is entirely driven by the propagation
of electrical signal and transistor switching time is reduced
to minimum.

To map a system of simultaneous ODEs to our ACU we
propose a calculus that is based on elementary computa-
tional elements, built of operational amplifiers (op-amps).

The IC design we propose is mixed analog and digital.
There is a classical ARM core that is responsible for con-
figuring the ACU. The firmware configures all transistor
switches connecting the op-amps to the analog data buses.
The digital core is also responsible for calibrating the ana-
log computational elements to compensate for environmen-
tal factors such as temperature.

The approach we present in this paper faces many chal-
lenges. Real analog components behave differently from
their idealized models. Electrical noise propagates along-
side the computation and decreases the precision of the re-
sult. Environmental factors such as temperature variations
increase the computational error. Transistor size in analog
ICs is typically larger than in digital ones which makes the
analog approach less competitive. Making linear resistors
and digital potentiometers that are both accurate, linear, and
with high resolution is an open topic of research. Power con-
sumption of analog components is generally increased and
thermal management could be a problem by itself.

In this paper, we address part of the above challenges with
improved framework-level design, self-compensating mech-
anisms, extensive use of local feedback and novel hybrid
digital/analog techniques.

Problem Definition

Our goal is to develop a method that solves a system of si-
multaneous Ordinary Differential Equations (ODEs):

y(n) = (F )
(
x,y,y′,y′′, . . . ,y(n−1)

)
(1)

where the initial values are given.
This paper uses a water clock model for illustration pur-

poses. The water clock is a single vessel filled with liquid
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(usually water) and with an orifice at the bottom for the liq-
uid to leak out. It has been used since ancient times (Langton
1989). The water clock is modeled by the single first-order
ODE:

dh

dt
= k

a

A

√
h (2)

where A is the radius at the top of the conical tank, a is the
radius of the orifice, k is −4.8 (it combines several parame-
ters such as the gravitational constant, viscosity, etc.), and h
is the water level.

To turn the problem of solving an Initial Value Problem
(IVP) into a diagnostic problem, we typically add one or
more fault parameters, denoted as f , to the original system,
introduce a measurement function H (often algebraic iden-
tity), a measurement values vector z and solve a parameter
estimation problem. There are multiple methods for solv-
ing the parameter estimation problem such as Kalman filters
(Wan and van Der Merwe 2000), particle filters (Liu and
Chen 1998), optimization, regression, and, even, machine-
learning (Cortes and Vapnik 1995).

The water clock IVP problem is turned into a diagnostic
problem by multiplying the ka/A with f1, and assuming that
under normal conditions the initial value of f1 = 1 and it
does not change in time:

dh

dt
= f1k

a

A

√
h (3)

df1
dt

= 0 (4)

Most diagnostic and parameter estimation methods solve
Eq. 1 for a range of initial conditions. In general, the more
instances of the above problem we solve, the more accurate
the diagnostic estimation is. As a result a method to accel-
erate the solution of IVPs will benefit both the diagnostic
accuracy and the diagnostic speed.

Framework Architecture

The proposed framework includes a software package and a
hardware accelerator in the form of a PCI controller. This
is to a large extent similar to the digital equivalent of an
FPAA: a Field Programmable Gate Array (FPGA). In FPGA
we start with a VHDL or Verilog source which is then com-
piled to an intermediate format. After simulation and verifi-
cation, the FPGA tool-chain performs placing and routing.
The hardware design is then further analyzed and flashed on
to the device.

In solving IVPs with FPAAs we also have a work-flow
similar to the one in FPGAs, as shown in Figure 1.

We start by building an Abstract Syntax Tree (AST) of the
ODEs, and apply simplification, and constant folding.

The second work-flow step is mapping the ODEs or parts
of the ODEs to computational elements. The process is sim-
ilar to converting a system of ODEs to an explicit form and
is related to acausal to causal conversion, and systems like
MODELICA (Fritzson 2010). As our method is providing ac-
celeration to numerical integration, this mapping is outside
of the scope of our proof-of-concept analysis. We assume

Compile Map Scale Simulate
Scale-

back

Calibrate Reset Simulate Average

Host Controller

N-Times

Figure 1: Framework architecture

that the ODEs will be in explicit form and solvable with in-
tegration methods. We can think of the first step of our work-
flow as a direct automatic mapping from ODEs, represented
symbolically, to a SIMULINK model. SIMULINK is a visual
modeling and simulation language that uses computational
primitives, called blocks, and signals. It can use integration
if needed.

The third step is rewriting the ODEs such that all state
variables are within certain constraints (often between zero
and one). The process can be automated and is a subject of
its own (Langtangen and Pedersen 2016). The process of
automated scaling involves the replacement of all variables
with dimensionless variables by introducing extra parame-
ters. We also want to change the “time constant” to make
the integration faster.

At the next stage N simulations are performed with the
same starting conditions. Before each simulation the device
is reset, and all calibration trimmers are adjusted so that the
ACU can reduce the error. This “calibration-in-the-loop” is a
novel idea which is possible due to our hybrid FPAA design.

During the “reset” phase, all initial conditions are im-
posed. At the end of each hardware simulation, the simu-
lation result vector is stored into memory and, at the end the
hardware stage, the output of all simulation is averaged.

Figure 2 shows the technology mapping of Eq. 3 to analog
elements.

∏
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∫

∫

k x
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h

f

Figure 2: Technology mapping of the Clepsydra diagnostic
model

The most difficult aspect of preparing an ODE for solving
on the FPAA is scaling. Checking if state variables change
within certain ranges can be impossible without actually
solving the system. The FPAA design we propose also in-
cludes op-amp comparators to detect if values are out of
range and generates events and interruptions in these cases.
Whenever a state variable goes out of range during run-time,
a respective parameter can be changed and the simulation
restarted or continued. So, scaling the original ODE is per-
formed both analytically, during the off-line stage, and dur-
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ing simulation.

Integrated Circuit Design

Design and manufacture of mixed analog and digital inte-
grated circuits is expensive and subject to multiple physics
and technology constraints. The initial target for the pro-
posed chip is an 180 nm CMOS wafer. In the future, we plan
designing for the finer feature size of 40 nm.

The design requires very quiet and stable power supply.
Making bipolar operating amplifiers on IC is prohibitively
expensive and difficult and we use a unipolar power supply
that produces Vdd = 2.5V. The power supply is tapped in
the middle and this is the common reference point of Vref =
1.25V. The analog signals logical zero point is at Vref .

The elements of the local feedback calculus are realized
with two types of elements: single input and two inputs. The
single input elements are gain, logarithm, exponentiation,
power, integration, and differentiation. The elements with
two inputs are summation and multiplication. In what fol-
lows, we discuss the working, constraints, performance, and
peculiarities of each of those elements.

Op-Amp Design

Figure 3 shows a basic two-stage CMOS op-amp as de-
scribed by Hussein Baher (Baher 2012).

Figure 3: Classical MOSFET implementation of an op-amp

The op-amp shown in Figure 3 has two stages. MOSFETs
M1 and M2 (both n-type) form a differential pair that drives
the active load of the current mirror of M3 and M4 (M3 and
M4 are both p-type). The second state of the amplifier is
formed by M7 (n-type), with M8 (p-type) connected as an
active load. Transistors M5 and M6 (both n-type).

Analysis of the op-amp’s characteristics are beyond the
scope of this paper. The basic architecture we use has to be
extended to allow for precision amplification. By precision
we mean both noise and non-linearities. Many noise prob-
lems can be alleviated by repeating the computation multiple
times and averaging the results. Non-linearities, especially
at high frequencies can be improved with a more advanced
op-amp design.

Fixed Gain

Figure 4 shows one of the simplest uses of an op-amp: mul-
tiply an input voltage Vin with a constant k. This configu-
ration as well as all operational amplifiers in this paper use
negative feedback.

−

+

Rf

Rin

Vin

Vout

Figure 4: Inverting op-amp with negative feedback

The voltage Vout at the output of the inverting amplifier
is:

Vout = − Rf

Rin
Vin (5)

When Rf = Rin the negative feedback amplifier changes
the sign of the input voltage Vin. The feedback resistor value
is fixed to Rf = 10 kΩ. The value of the input resistor Rin

can vary in the range 0 kΩ to 50 kΩ. The plot in Figure 5
shows an LTSPICE (Brocard 2013) parameter sweep of the
steady state of Vout for the full range of Rin. There are two
lines: one for the universal LTSPICE model of an op-amp,
and another one for the proposed op-amp design shown in
Figure 3.
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Figure 5: Parameter sweep of the inverting operational am-
plifier

The voltage Vout in Figure 5 decreases linearly until it
approaches the negative power supply rail of the op-amp.
As we plan to stay at least 250mV away from the power-
supplies, the useful range for Rin is from 0 kΩ to 28.5 kΩ.

As we can see in Figure 5 the CMOS implementation of
the op-map shows good linearity in the operational region
1.25V to 0.25V (the operational region is denoted with
horizontal dashed lines). A disadvantage of the proposed
CMOS design is the relative large DC offset: ≈ 200mV.
We plan to address the DC offset issue by improving the op-
amp design and by using chopper stabilization as shown by
Hussein Baher (Baher 2012).

Figure 6 shows a schematic of a non-inverting op-amp.
Notice that we still have negative feedback, but the negative
and positive inputs of the inverting op-amp are swapped.
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Figure 6: Non-inverting op-amp

The voltage Vout at the output of the non-inverting ampli-
fier is:

Vout =

(
1 +

Rf

Rin

)
Vin (6)

The inconvenience of the non-inverting op-amp is that it
only supports gain values of A ≥ 1. Still, it can eliminate
the need of an extra inverting op-amp for some ODEs. The
non-inverting op-amp can be combined in a single element
with the inverting op-amp with the help of a CMOS cross-
over switch at the op-amp inputs.

Logarithms and Exponentiation

Figure 7 shows a logarithmic op-amp. Notice that the diode
is reverse biased. The voltage and current relationship in a
diode is exponential and depends on several factors such as
the geometry of the p-n junction and its temperature. As the
currents involved are very small (sometimes in the order of
nanoamps), the standalone use of this logarithmic op-amp is
not recommended. When building circuits for multiplication
and raising to a power, however, logarithmic op-amps are
combined with exponential op-amps (they are dual). This
combination automatically provides compensation for pa-
rameter drifts and errors.

−

+
Rin

Vin

Vout

Figure 7: Logarithmic op-amp

The voltage Vout at the output of the logarithmic op-amp
is:

Vout = −VT log
Vin

IsRf
(7)

where VT is the thermal voltage of the diode and Is is the
diode’s saturation current. The thermal voltage is approxi-
mately 25.8563mV at 300K.

The voltage Vout at the output of the exponential amplifier
is:

Vout = −IsRin exp

(
Vin

VT

)
(8)

Similarly to the inverting and non-inverting op-amps, the
logarithmic and exponential configurations can be imple-
mented with a single op-amp and a combination of CMOS

Figure 8: Exponential op-amp

analog switches that can configure the universal computa-
tional element depending on the ODE. Of course, the switch-
ing elements bring their own resistance, capacitance, and
non-linearity and there is a trade-off between how config-
urable the FPAA element is and the precision of the compu-
tation.

Summation

The electrical circuit shown in Figure 9 is used to add two
voltages: Vx and Vy. The summing op-amp is similar to the
inverting one when the two input resistances match: Rin =
Rx = Ry. In this case, it is easy to see that the ouput voltage
is:

Vout = − Rf

Rin
(Vx + Vy) (9)

−

+

Rf

Rx

Vx

Ry

Vy
Vout

Figure 9: Adding op-amp

Multiplication and Powers

Both multiplication and raising to a power work with loga-
rithms to avoid very large currents and voltages. Figure 10
shows how the product of the two voltages Vx and Vy is com-
puted. First the logarithms of Vx and Vy are taken. The two
results are summed by an analog adder. Finally, the output
of the adder is exponentiated.

ln x

ln x

e 

x∑

Vx

Vy

Vx×Vy

Figure 10: Multiplication with four op-amp blocks

When using the multiplication block, Rin of the logarithm
and and Rf of the exponentiation have to match so they can-
cel each other:

Rf =
Rin

Is
(10)
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Raising a number to a power is similar to multiplication
in that it also uses logarithms. The op-amp implementation
is shown in Figure 11.

ln x e 

xk x

Vin Vin
b

Figure 11: Raising to a power with three op-amp blocks

Similar, to the multiplication case, when using the raising
to the power block, Rf of the logarithm and Rin exponenti-
ation have to cancel each other. For this to happen, it must
hold that:

Rf =

(
Rin

Is

)p

(11)

where p is the power.

Integration and Differentiation

Figure 12 shows an integrating op-amp. Integrating op-amps
are well-known and widely used in analog computing and
analog-to-digital conversion.

−

+

C

Rin

Vin

Vout

Figure 12: Integrating op-amp

The voltage Vout at the output of the integrating amplifier
is:

Vout =
1

RinC

∫ t

0

Vin dt (12)

By varying the value of Rin we can change the “time con-
stant” of the integrating op-amp. This allows long simula-
tions to be simulated in shorter time. Making Rin too large,
though, results in high-frequency AC signals through all op-
amps. Practical op-amps do not have the same gain when
the frequency increases which limits the simulation speed.
Making capacitors on integrated circuits is expensive as they
take a lot of surface. Therefore, in our design, we will leave
small capacitors (in the order of a few pico to nano-farads)
on-board the IC, while larger capacitors can be implemented
as capacitor arrays and used externally at the cost of a few
pins.

If we swap the capacitor with the resistor of the integrat-
ing op-amp, we get a differentiating op-amp.

Simulation and Validation

We continue with a two-variable oscillating dynamic sys-
tem. Consider two animal species in an ecosystem: bunnies

and coyotes. The population dynamics can be modeled by
the well-known Lotka-Volterra equations:

dx

dt
= αx− βxy (13)

dy

dt
= δxy − γy (14)

The parameters describing the interaction of the two species
are α = 1, β = 5, γ = 1, and δ = 3.5. The initial values
are x = 0.1 and y = 0.15. The parameters have been scaled
such that all system variables are between zero and one.

Figure 13 shows the FPAA implementation of the Lotka-
Volterra simulation model. The implementation uses a total
of 16 op-amps. The sign inversion in the gain and summa-
tion blocks poses an inconvenience as each block requires
an additional inverting op-amp.

Figure 14 shows the simulation results with the LTSPICE
universal op-amp model. The two integration blocks have
input resistance of Rin = 100 kΩ and 1 nF capacitors. This
results in a time scale factor of 103, i.e., 40 s of simulation
time are simulated in 4ms.

Related Work

The closest resembling our IC and framework design is that
of FPAAs. FPAAs are not new, there is a book (Pierzchala
et al. 2013), and even a company specializing in design-
ing FPAA chips.1 What is novel in our proposal is that we
specialize FPAA for simulating dynamic systems and over-
come the scalability problem by inventing an op-amp nega-
tive feedback calculus.

Deese, Jimenez, and Nwankpa propose the use of
FPAAs for simulating power systems (Deese, Jimenez, and
Nwankpa 2009). Similar to us, the authors illustrate the ap-
plicability of their approach by simulation and prototype
analysis. We have taken this research further by generaliz-
ing it to simulation and diagnostics of arbitrary dynamic sys-
tems. We have further analyzed the approach using a specific
CMOS implemented op-amp

Schlottmann, Petre, and Hasler present an approach
to converting SIMULINK models to FPAA configurations
(Craig R Schlottmann and Hasler 2012), which are simu-
lated using SPICE. One of the examples in this paper is a
Hodgkin-Huxley-type neuron block. The results in this pa-
per are reassuring that FPAAs can be used for the simulation
of realistic and relevant dynamic systems.

Znamirowski, Palusinski, and Vrudhula have proposed to
use FPAAs in simulation in control (Znamirowski, Palusin-
ski, and Vrudhula 2004). The accent of their paper is on
adaptive control which is related to diagnostics.

Conclusion

In this paper we have built a proof-of-concept for a diag-
nostic and simulation hardware accelerator. We have shown
how an IVP can be mapped on to a grid of analog elements.
We have created a special local feedback op-amp calculus

1http://www.anadigm.com/
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Figure 13: FPAA implementation of the Lotka-Volterra simulation model
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Figure 14: LTSPICE simulation of Lotka-Volterra with uni-
versal op-amps

that can implement a variety of ODEs. We have used in sim-
ulation a special CMOS op-amp for the building of the ana-
log elements. Preliminary experiments with SPICE show that
the proposed software/hardware architecture can be used for
solving non-trivial oscillatory ODEs.

We next plan to improve the proposed CMOS op-amp,
adding a circuit to remove the bias, to decrease the DC off-
set and to improve the bandwidth. We plan to analyze new
types of analog elements, such as Fourier transforms. We
plan to analyze the hybrid part of the IC: analog-to-digital
and digital-to-analog conversion. We also plan to introduce
event handling with op-amp comparators and timing and de-
lay elements.
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