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Abstract

The Electrocardiogram (ECG) is performed routinely by
medical personell to identify structural, functional and elec-
trical cardiac events. Many attempts were made to automate
this task using machine learning algorithms. Numerous su-
pervised learning algorithms were proposed, requiring man-
ual feature extraction. Lately, deep neural networks were also
proposed for this task for reaching state-of-the-art results. The
ECG signal conveys the specific electrical cardiac activity of
each subject thus extreme variations are observed between
patients. These variations and the low amount of training data
available for each arrhythmia are challenging for deep learn-
ing algorithms, and impede generalization. In this work, the
use of generative adversarial networks is studied for the syn-
thesis of ECG signals, which can then be used as additional
training data to improve the classifier performance. Empirical
results prove that the generated signals significantly improve
ECG classification.

1 Introduction
Electrocardiography (ECG) is a non-invasive tool used for
diagnosis and followup of cardiac anomalies, functional dis-
orders and cardiac arrhythmias. The cardiac cycle is com-
posed of electrical depolarization-repolarization patterns
and presents the evolution of the heart’s electrical activity
over time. Any anomaly regarding the heart rhythm or the
morphological pattern of the cardiac heart beats as sampled
by the ECG, can indicate acute functional emergencies such
as acute myocardial ischemia or acute rhythm disturbances,
meaning an arrhythmia. Many studies were conducted in
an attempt to reach high performance in ECG classification
(Kass and Clancy 2006). Such models were used to reduce
interpretation errors, namely by identifying life-threatening
arrhythmias. Automatic ECG analysis may also reduce in-
terpretation time by different medical personell while inves-
tigating non-life-threatening arrhythmias.

Most methods today for ECG classification focus on
applying classical supervised machine learning methods.
They perform feature engineering over the ECG wavelet
(Chazal and Reilly 2007) and subsequently apply a super-
vised learning algorithm to predict the class. Classifiers such
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as SVM (Ye, Kumar, and Coimbra 2012), linear discrimi-
nant (LD) (Chazal and Reilly 2007), and Reservoir Com-
puting With Logistic Regression (RC) (Escalona-Moran et
al. 2014), have been explored. The performance of the al-
gorithms strongly varied based on the engineered features,
as they have to be informative, discriminating, and indepen-
dent based on expert knowledge. Discounting the tedious ef-
fort needed for such a task, in practice, these methods have
not been able to scale well across different patient’s types
of ECGs (Kiranyaz, Ince, and Gabbouj 2016). The chang-
ing nature of the ECG signal dynamics and morphological
characteristics are significantly different across patients. It
strongly depends on the patient’s physical condition. For ex-
ample, even for healthy patients, the R-R interval changes
across time between each heart beat. Additionally, such an
algorithm must also recognize the distinct wave types and
discern the complex relationships between them over time
in the presence of noise. To address these issues, deep learn-
ing approaches have been proposed (Al Rahhal et al. 2016).
Methods, such as fully-connected networks (Al Rahhal et al.
2016), have shown significant performance boosts over the
state-of-the-art with regard to known medical benchmarks.
In this work, we experiment with a sequence-based classi-
fier, recurrent neural network (RNN), that was recently used
for ECG arrhythmias classification (Hou et al. 2019). This
model is considered state-of-the-art for the task of ECG ar-
rhythmia classification.

Although deep learning methods are showing promising
results for ECG classification, they require large amount of
training examples per class. Most life-threatening arrhyth-
mias are extremely rare, limiting the amount of examples
available to train deep learning models. Given the high vari-
ability between patients and internal-variability of heartbeat
classification for same patients, building deep ECG models
that might be used in practice has been limited. In this work,
we overcome the sparseness of data by learning to synthet-
ically generate ECG signals of different arrhythmias, which
we later use to train the deep learning models. Intuitively,
we build a model that learns to create synthetic ECG signals
that present variability across the ECG signal and across dif-
ferent generated synthetic signals. The inter-variability and
cross-variability through the generated signals might help
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deep learning algorithms to learn significant features and
prevent overfitting to a specific patient’s variability.

To learn such signals, we leverage Generative Adversar-
ial Networks (GANs) (Goodfellow et al. 2014). GANs are a
class of machine learning algorithms used in unsupervised
machine learning, usually implemented by two deep net-
works (a generator and a discriminator). The two networks
compete with each other in a zero-sum game framework.
The generator attempts to learn a latent representation of a
distribution, in a way such that the discriminator network,
trained to discriminate between instances from the true data
distribution and the ones produced by the generator, will
have a high loss. Generative models have been applied to
many tasks, e.g., image generation. For example, (Radford,
Metz, and Chintala 2015) synthesized new images which
resembled the database on which the models were trained
on. Evaluation of these tasks is usually done by present-
ing the generated images to human labelers which are asked
to distinguish between the GAN generated images and real
images. To the best of our knowledge, few successful at-
tempts were performed in leveraging the generated instances
for improving supervised learning tasks. Specifically, we are
not aware of any such attempts outside the image synthe-
sis domain. We show empirical results that indicate that the
newly proposed approach for ECG classification by gener-
ating synthetic training examples using GANs provides sig-
nificant accuracy improvements.

Our contribution in this work is twofold: (1) We present
an algorithm for synthetically generating ECG signals us-
ing GANs. We show that utilizing the generated instances
significantly improves ECG classification using the state-of-
the-art deep learning techniques. We believe this is the first
attempt in applying GAN methods for ECG classification.
To the best of our knowledge, this is the first application,
where the instances generated by GANs have been shown
to improve supervised classification tasks outside the do-
main of image synthesis. (2) We share the code online for
further research and experimentation https://bitbucket.org/
tomerGolany/ecg dl.

2 Background

Electrocardiography (ECG) is a non-invasive tool to mon-
itor the rhythm of the human heart. ECG is frequently ap-
plied for diagnosis and monitoring of cardiac conditions in
patients. Anomalies in the heart rhythm are potentially life
threatening. Thus, using ECG measurements to detect these
anomalies can have a meaningful impact on the care of pa-
tients at risk of these anomalies. Using automatic methods
to analyze ECG data, and specifically for anomaly detec-
tion has the potential to act as a quality control on expert di-
agnoses, reducing the chance of human error. Further, such
methods can increase the value of home-ECG technology by
providing a indication to patients on the status of their heart
rhythms without having to seek expert advice. Finally, such
automatic systems can improve the triage process and prior-
itize patients with a higher risk for abnormal heart rhythms.
In each of these scenarios, such systems are potentially life-
saving.

�

Figure 1: A normal cardiac cycle with P,Q,R,S and T waves.

The ECG signal is composed of a series of events, tradi-
tionally labeled with the letters P,Q,R,S and T (Figure 1),
which correspond to the physiological stages of contrac-
tion and relaxation of the heart. While the sequence of these
events is fixed the ECG signals vary across different heart-
beats for the same patient. Even larger variance is observed
when comparing ECG signals across different patients.

Deviations from the normal heart rhythms are known as
arythmias. While arythmias are often benign, in rare cases
arythmias can be life threatening.

Heartbeats and their corresponding ECG signals are clas-
sified into one of five heartbeat types: Normal beats (N) ,
Supraventricular ectopic beats (S), Ventricular ectopic beats
(V) , Fusion beats (F), and Unknown beats (Q). A fusion
beat is a bit different from the others as it occurs when a
supraventricular beat and a ventricular beat happen simulta-
neously.

3 Methods

Data Sources

The ECG data used in this study are taken from MIT-BIH
dataset (Moody, Mark, and Goldberger 2001). This dataset
is considered the gold-standard evaluation data for ECG
classification tasks. The dataset contains 48 half-hour ECG
records, obtained from patients studied by the BIH Arrhyth-
mia Laboratory between 1975 and 1979. Each record con-
tains two 30-minutes ECG lead signals digitized at 360
samples per second. The dataset contains annotations for
both heartbeat class and timing information. These annota-
tions are verified by and independent expert. Twenty-three
of the recordings are intended to serve as a representa-
tive sample of routine clinical ECG. The remaining twenty-
five recordings contain complex ventricular, junctional, and
supraventricular arrhythmias. Table 1 presents the five dif-
ferent classes of the heartbeat classes present in the dataset.

Formalization

For a patient p the ECG signal is formalized as the vector:

Vp = [vp,1, . . . , vp,n]

where vp,t denotes the measured electrical activity of the pa-
tient’s heart at discrete time step t. The ECG signal is further
divided into fixed length segments, referred to as heartbeats.
Formally, each heartbeat of signal Vp is a sub-sequence of
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AAMI heartbeat class N S V F Q

Description
Any heartbeat not in the

S, V, F or Q class
Supraventricular

ectopic beat
Ventricular
ectopic beat Fusion beat Unknown beat

MIT-BIH heartbeat types

normal beat (NOR)

left bundle branch block
beat (LBBB)

right bundle branch
beat block (RBBB)

atrial escape beat
(AE)

junctional escape beat
(NE)

artial premature beat
(AP)

aberrated atrial
premature beat (aAP)

junctional premature beat
(NP)

supraventricular
premature beat (SP)

premature ventricular
contraction (PVC)

ventricular escape beat
(VE)

fusion of ventricular
and normal beat (fVN)

paced beat
(P)

fusion of paced and
normal beat (fPN)

unclassified beat
(U)

Table 1: Mapping the MIT-BIH dataset heartbeat types to
the AAMI heart beat classes. Given an ECG signal from a
single patient the task is to classify each beat from the signal
to one of the 5 different beat classes.
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Figure 2: LSTM architecture to classify ECG heartbeats.

length 216 (corresponding to 600 milliseconds at 360 sam-
ples per second.

A classical supervised training setup requires a dataset
of labeled examples {xi, yi}, where xi denotes the fea-
ture vector associated with the i-th example and yi de-
notes the associated label. Our problem attempts to classify
a fixed length vector representing a heartbeat into one of
the 5 heartbeat types. More formally, each xi ∈ R

216 and
yi ∈ {N,S, V, F,Q} for i = 1, . . . N . N denotes the size of
the dataset.

LSTM-based Heartbeat Classification

In this work we propose a heartbeat classification approach
based on neural sequence model, specifically Long Short
Term Memory (LSTM) models. These models naturally
consider the temporal nature of ECG signals while avoid-
ing the need for strong modeling assumptions required by
preprocessing and feature engineering approaches.

Each feature vector xi is segmented into vectors of length
5. This sequence of vectors is the input into the LSTM classi-
fication network. The classification network consists of two
LSTM layers. A softmax layer is applied to the last hidden
output to yield a distribution over the 5 possible heartbeat
types. Figure 2 visualizes the LSTM classification network
architecture.

ECG Generation Using GANs

In this section we describe our approach for generating ECG
signals based on Generative Adversarial Networks.

Our approach is to create a generative model for each type
of heartbeat type, for a total of five models. Each such model
includes a generator network and a discriminator network.
The architecture of the generator and discriminator networks
is the same across all heartbeat types, but each has unique
values for the parameters. A generator network takes as in-
put a random latent vector and outputs a synthetic ECG sig-
nal. A discriminator network takes as input an ECG signal
and outputs a binary decision representing whether the input
signal came from collected training data or was generated
by a generator network.

More formally, let us a consider the architecture for a
particular heartbeat type. We denote the generator network
as G(z; θG) : R

d → X and the discriminator network as
D(x; θD) : X → [0, 1], where X denotes the domain of
ECG signals, and d is the dimension of the latent vector in-
put to the generator. θG and θD, represent the parameters of
the Generator and Discriminator networks, respectfully.

Using this notation, consider the following objective:

V (θG, θD) = Ex∼pdata
[logD (x; θD)] + (1)

Ez∼pnoise
[1− logD (G (z; θG) ; θD)] (2)

where pdata denotes the (unknown) distribution over the
training data, and pnoise denotes some known noise distri-
bution. E [·] denotes expected value of a random variable.

The discriminator network objective is to maximize this
expression with respect to parameters θD. The generator net-
work objective is to minimize this objective with respect to
parameters θG.

GAN Model Architecture Design

The network architecture for each of our five generative
models is identical. We describe the network architecture for
one of these models without loss of generality. The architec-
ture choices are inspired by the DCGAN architecture.

The generator network architecture is designed to create
an ECG heartbeat signal from a latent vector representation.
This input vector is fed into seven 1d transpose convolu-
tion layers. Between each layer we apply batch normaliza-
tion (Ioffe and Szegedy 2015) followed by a Rectified Linear
Unit (ReLU) activation function. The final output of the net-
work is a vector of length 216, the length of the ECG heart-
beat signal. Figure 3 illustrates the generator architecture.

The discriminator network receives as input an ECG sig-
nal and outputs a binary decision. The input signal (a 216×1
ECG heartbeat signal) is fed through six convolutional lay-
ers. Between each layer we perform batch normalization and
apply a LeakyReLU (Maas, Hannun, and Ng 2013) activa-
tion function, where the slope of the leak is set 0.2. The final
activation function is a sigmoid activation. Figure 4 visual-
izes the architecture of the discriminator network.

4 Experimental Setup

LSTM classification network: Network consists of two
LSTM layers with 512 hidden layer units. We use the RMS-
prop optimizer with learning rate of 0.001 to learn network

13282



��
�
�
��
�
�
�
�	


�
�
�


��



�
��
�

� .
��

� .
-
-
�
�
��

�
�
��

�
�
�

��
��������

���

�

������	
����������

��� � ��!�"#���	��

������	
����������

��� ��� ��"#���	��

��
��� ��!��

��
����� ��$

������	
����������

��� �%� �"#���	��
��	#��� �
�
��#�&��

��
��%� ���

������	
����������

��'�� %(�"#���	��

��	#��� �
�
��#�&��

��
��� %(� $
������	
����������

��� �� !�"#���	��
��	#��� �

�
��#�&��

������	
����������

��� �(��"#���	��

��	#��� �
�
��#�&��

��
���� !�%���
���(����!

������	
����������

��� �����"#���	�

��	#��� �
�
��#�&��

)���	
��	��������

�*�����#+���
	�,-�
�
��
����� �(

Figure 3: ECG Generator Architecture.
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Figure 4: ECG Discriminator Architecture.

weights. The network weights are initialized with Xavier
uniform initializer (Glorot and Bengio 2010).

Generator and Discriminator networks: All weights
are initialized from a 0-mean Gaussian distribution with
standard deviation 0.02. We set the hyper parameters as
suggested in (Radford, Metz, and Chintala 2015). The op-
timization is performed using Adam optimizer (Kingma and
Ba 2014) and a learning rate of 0.0002. Data Processing
We process the dataset describe in Section 3 as follows:
in agreement with the AAMI recommended practice, the
four recordings containing paced beats were removed from
the dataset. We apply heartbeat detection to obtain subse-
quences corresponding to a total of 109, 492 labeled heart-
beats. We follow AAMI recommendations for dataset par-
titioning which (De Chazal, O’Dwyer, and Reilly 2004;
Al Rahhal et al. 2016) ensure that patient data is not mixed
between the training and the test sets. The training dataset
contains 51, 020 unique heartbeats , while the test set con-
tains 49, 711 unique heartbeats. Table 2 presents the statis-
tics of the entire dataset and the test-train division.

Training procedure

Generator and Discriminator networks For each heart-
beat class we train our GAN framework using the 2000 up-
date iterations over the training set described in the previous
section. In each update iteration, the training procedure max-
imizes (minimizes) Equation 2 w.r.t. parameters θD (θG). In
particular, first update the parameter weights of the gener-

Heart beat class N S V F Q total

Total number 90632 2779 7235 803 8043 109492

DS1
Training set 45868 942 3787 415 8 51020

DS2
Test set 44258 1837 3221 388 7 49711

Table 2: Partition of the MIT-BIH dataset to Train and Test.
DS1 is used for training and DS2 is used for testing. DS1
comprises data from 22 patients. DS2 comprises data from
22 other patients. 4 patients were not included in dataset 1
or 2.

ator (θG) twice, and then the parameter weights of the dis-
criminator ( θD ) once. The mini-batch size used for each
iteration is 50. That is, at each iteration 50 random vectors
are fed to the generator to output 50 fake heartbeats, and 50
real heartbeats are sampled from the training set. The loss
function is optimized using Adam optimizer (Kingma and
Ba 2014) with learning rate of 0.0002.

The expectations in Equation 2 are reconciled by sam-
pling. Uniform sampling of examples from the training data
simulates pdata, while for pnoise we choose a multivariate
Gaussian distribution z ∼ N(μ, σ) with μ = 0 and σ = 1 (
chosen to allow straightforward sampling ).

5 Results

In this section we present the results of our empirical evalu-
ation of the main research questions of this study: (1) The
applicability of sequence models to the problem of ECG
classification; (2) The impact of augmenting training data
with synthetic examples generated using GANs trained on
the original data; (3) Are synthetic ECG signals generated
by GANs trained on real signals using our approach qualita-
tively similar to real ECG signals.

Using Sequence Models for ECG Classification

We first recreate the results by (Hou et al. 2019) on our data
and show it indeed receives superior results to the previous
state-of-the-art models. We report the results of applying the
LSTM architecture proposed in Section 3 to the task of ECG
classification. As a baseline for this evaluation, we used a re-
cently published deep neural network approach (Al Rahhal
et al. 2016) which does not (explicitly) take sequence infor-
mation into account (a fully-connected architecture). This
approach achieves state of the art performance on this prob-
lem. We observe that for all heart-beat types, applying a se-
quence based approach significantly improves AUC on our
our test set. We attribute this improvement to the inherent
ability of the LSTM architecture towards considering the
temporal structure of the signal. The fully connected archi-
tecture, does not inherently consider this structure, and thus
,when such structure is informative (as is clearly the case in
ECG), suffers from degraded performance.

Increasing Training Size using Synthetic Examples

We evaluate the improvement achieved by augmenting the
training data for the ECG classification network by adding
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Heartbeat Class Fully connected Network LSTM network
N 0.85 0.87
S 0.81 0.82
V 0.95 0.97
F 0.5 0.95

Table 3: Results of classifying MIT-BIH ECG data over five
classes. Statistically significant results are shown in bold.

additional examples synthetically generated from using the
GAN framework described in Section 3. We evaluate the im-
pact of this augmentation on two classification architectures:
a state of the art fully-connected architecture (Al Rahhal et
al. 2016) and the sequence architecture described in Sec-
tion 3. Figure 5, shows the AUC performance of the LSTM
and Feed-Forward networks respectively as a function of the
number of synthetic DCGAN examples added to the train-
ing set of the relevant model. We observe no monotonic be-
havior in the performance as a function of the number of
synthesized examples added. However, we observe that both
the LSTM model and the fully-connected model trained with
added synthetic examples from our DCGAN model signifi-
cantly outperforms the models trained without synthetic ex-
amples added. We conclude that the practice of adding syn-
thesized examples to the training of the LSTM model and to
the fully-connected model significantly improves its perfor-
mance for heartbeat classification when tuning the number
of synthesized examples added. The DCGAN model with
LSTM architecture outperforms for all heartbeat classes.

����������	��� 	��
������	���

����������	��� ���������	���

Figure 5: Average AUC comparison for each type of heart
beat. We compare using LSTM (yellow) and fully connected
networks (blue) with additional synthetic training data pro-
duced from the ECG DCGAN.

As increasing the training set size using GAN samples is

Heartbeat Class No Added Examples Jittering Examples DCGAN Examples
N 0.87 0.76 0.91
S 0.82 0.73 0.92
V 0.97 0.92 0.98
F 0.95 0.88 0.96

Table 4: Results over five classes using LSTM network. We
compare adding no synthetic data to two methods for adding
synthetic training data: (1) adding additional data from jit-
tering (2) DCGAN-generated data. Statistically significant
results are shown in bold.

a type of data augmentation, we evaluate its performance
against the well known data augmentation approach of ”jit-
tering”. We experimented with several noise distributions
(Gaussian and Uniform) and augmented data sizes for jit-
tering and generated the noise following best practices (An
1996), (Holmstrom and Koistinen 1992). Table 4, provides a
comparison of the best jittering augmentation methods and
the GAN based augmentation we propose in this work.

Examining Table 4 gives evidence supporting our hypoth-
esis. In all cases the performance of both sequence and fully-
connected architectures improves when samples from the
GAN are added to the training set. This improvement is be-
yond the improvement that can be obtained with (the best
setting of) a baseline data augmentation approach (jittering).

Comparison of Generated Examples to Real
Examples

In lieu of a quantitative analysis of the synthetic ECG sig-
nals generated by our trained GANs, we consider several
anecdotal examples and compare them to real ECG heart-
beats taken from the training set. Figures 6,7 and 8 present
these comparisons.

Figure 6: Comparison between DCGAN generation of N
heartbeats against real N heartbeats from the training set.

We observe that samples produced from the GAN are sim-
ilar to real ECG signals in the training data. We Observe that
for all type of heartbeats our GAN learns to generate syn-
thetic heartbeats which have the same PQRST morphology
as their corresponding real heartbeats from the training set.

6 Conclusion

In this work, we consider the problem of ECG classification.
We leverage a sequence model architecture to capture the in-
herent temporal structure in ECG signals (Hou et al. 2019).
We propose a Generative Adversarial Network (GAN) archi-
tecture that can be trained to generate ECG signals which are
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Figure 7: Comparison between DCGAN generation of S
heartbeats against real S heartbeats from the training set.

Figure 8: Comparison between DCGAN generation of V
heartbeats against real V heartbeats from the training set.

similar to real ECG signals observed in the data. We show
that the performance of sequence based models is signifi-
cantly improved by using synthetic examples, generated us-
ing GANs, to augment the labeled training data.

These results alongside further research improve ECG
classification have the potential to enable automated ECG
analysis technology. This type of technology can support ap-
plications such as quality control on expert diagnoses and
home-ECG kits.
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