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Abstract

A wealth of medical knowledge has been encoded in termi-
nologies like SNOMED CT, NCI, FMA, and more. However,
these resources are usually lacking information like relations
between diseases, symptoms, and risk factors preventing their
use in diagnostic or other decision making applications. In
this paper we present a pipeline for extracting such infor-
mation from unstructured text and enriching medical knowl-
edge bases. Our approach uses Semantic Role Labelling and
is unsupervised. We show how we dealt with several defi-
ciencies of SRL-based extraction, like copula verbs, relations
expressed through nouns, and assigning scores to extracted
triples. The system have so far extracted about 120K relations
and in-house doctors verified about 5k relationships. We com-
pared the output of the system with a manually constructed
network of diseases, symptoms and risk factors build by doc-
tors in the course of a year. Our results show that our pipeline
extracts good quality and precise relations and speeds up the
knowledge acquisition process considerably.

1 Introduction

Significant effort and resources have been spent the last
decade to encode medical knowledge using some semanti-
cally rich format like RDF and OWL leading to the creation
of formal terminologies (Knowledge Based) like SNOMED
CT, NCI, FMA, and many more. Despite these signifi-
cant results, most of these KBs capture quite general med-
ical knowledge while they contain few connections (re-
lations) between their entities. For example, there is cur-
rently no comprehensive KB containing disease-symptom
relations with only some preliminary and ad hoc manual ef-
forts (Oberkampf et al. 2015; Mhadhbi and Akaichi 2017),
not to mention other types of relations like risk factors, dis-
ease interactions, and more. Consequently, besides their use
as vocabularies for text annotation and/or standardisation
purposes such sources have not so far formed the basis for
supporting diagnostic tasks for which purposes they need to
be extended or specialised (Rubin et al. 2006).

∗Work done while all authors were working for Babylon Health,
London.
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To extract relations between medical entities (for either
enriching existing KBs or creating new ones from scratch)
many automatic approaches for medical Information (triple)
Extraction (IE) have been proposed (Ernst, Siu, and Weikum
2015; Ruan et al. 2017; Shi et al. 2017). Most of them fol-
low a supervised learning approach—that is, given a sen-
tence like “Fever is a common symptom of Malaria” they
first identify the medically relevant terms using a dictionary
like UMLS and then train a classifier that associates the pat-
tern that lies between these entities with the desired rela-
tion. Such approaches work well for small sentences which
follow a kind of “definitional character”, however, in prac-
tice medical sentences can be much more complex like “The
initial symptoms of Malaria are flu-like and include a high
temperature”. In that case there is no pattern between the en-
tities that implies the “symptom of” relation (the verb “in-
clude” is vague and can be associated with many different
relations). In addition, most of these techniques require sig-
nificant human intervention, fine-tuning, and lots of training
data in order to learn good patterns that are able to differen-
tiate between the relations. Moreover, new classifiers need
to be trained whenever we want to extract triples involving a
new relation.

In the current paper we present our system for extrac-
tion of relations between medical entities. This system acts
as an enabler for other downstream systems in AI-enabled
medicine that are supporting real-world use cases like
symptom-checking, treatments, etc. Our approach is based
on Semantic Role Labelling (SRL) (He et al. 2017) which
has been used in the past with promising results (Christensen
et al. 2011) and unlike pure ML approaches is fully explain-
able. Explainability of the system outputs is very important
because users of the system are medical doctors. However,
SRL is a general purpose method, hence several modifica-
tions and adaptations are required in order to improve its
effectiveness. First, it is often the case that the relevant re-
lation between two entities is “masked” by the presence of
copula verbs (i.e., “is”, “are”)(Miwa et al. 2010). To address
this issue we propose a method that is based on dependency
parsing which adapts and extends the approach in (Miwa et
al. 2010). Second, SRL-parsing is verb-centric while sev-
eral relations in text are expressed through nouns (Yahya
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et al. 2014) (e.g., “symptom of”, “risk factor of”, etc.). To
extract useful triples even in such cases a post-processing
step is employed that replaces some verbs identified by SRL
with nouns. Third, we investigate on techniques to filter,
prune, and score the vast number of initially extracted rela-
tions in order to focus doctor verification only on those that
are likely to be correct. In contrast to previous works we
put significant focus not only on correct but also on medi-
cally informative triples. In many cases, correct triples like
〈Malaria spreadBy Mosquito〉 are extracted but these are not
useful for clinical decision applications and in-house doctors
would discard. For these purposes we developed a custom
deep NN classifier which we evaluate obtaining encouraging
results. Finally, for scoring triples we investigate on state-of-
the-art Knowledge Graph embedding methods (Nickel et al.
2016) but also develop a custom ensemble one.

One of the roles of our system is to aid a computer sup-
ported medical diagnosis in Babylon Health1. We have im-
plemented our system, as a first step in this process, to ex-
tract information from unstructured data sources. System
is currently in use by medical professionals to enrich an
in-house medical KB and build and extend a symptom-
checking engine. Provenance of each accepted fact is kept
so it is possible to track back and explain decisions, an
important requirement for systems certified as medical de-
vices. Output of our system is: a) added to Babylon med-
ical KB to be used for all other AI task requiring knowl-
edge base (NLP, ML, inference, reasoning, etc) b) passed
to a team of epidemiologists who score each triple by its
epidemiological probability. In the last step, triples are con-
sumed by the Bayesian network (Razzaki et al. 2018)
(only correct triples are forwarded to this system) that in
combination with a chat/dialogue system (for collecting
specific information from a patient (Stoilos et al. 2019;
Juric et al. 2018)) can finally provide possible diagnosis. All
systems in this pipeline are equally important and in con-
stant development in Babylon.

2 Knowledge Bases

Let C and R be disjoint sets of concepts and properties, re-
spectively. Concepts and properties are uniquely identified
using IRIs. A Knowledge Base (KB) is a tuple 〈K,T, μ〉,
where K is a set of subject, property, object triples of the
form 〈s p o〉 like in the RDF standard, T is a subset of con-
cepts from K called semantic types (stys) and μ is a mapping
from every concept in K to a non-empty subset of T. Se-
mantic types denote classes that act as general/abstract cat-
egories of interest and are used to group other classes. In
the following we will distinguish between text triples of the
form 〈�1 �2 �3〉 where all �i are strings and are extracted in a
first phase from unstructured text and semantic triples of the
form 〈C R D〉 where C,R,D are entities (IRIs) from the KB
and are triples that can be added in some KB. For simplicity
we will simply write “triple” and whether it is a text or a
semantic one would be clear by the use of notation.

1https://www.babylonhealth.com/

3 Extracting Triples From Medical Sentences

Semantic Role Labelling (SRL) has been proposed in the
past as a good approach for open information extrac-
tion (Christensen et al. 2011). This is because given a sen-
tence it identifies its verbs, which usually correspond to re-
lations, and then the arguments of the verb, which usually
correspond to the subject and object of those relations.
Definition 1 Given a sentence sent, function srlParse re-
turns a set F of directed labelled graphs 〈V,E〉 (called
frames) each one of which satisfies the following:
• it contains exactly one node nd ∈ V (called main node)

labelled T (nd) = VB.
• every other node n is labelled with one of role types
ARG0, ARG1, ARG2.

• every node is labelled with some string L(n) = phr that
is a phrase from sent.

• for nd the main node, there is an edge 〈nd, arr〉 labelled
T (〈nd, arr〉) = ARGUMENT such that arr is an ordered
list of nodes.

Only nodes labelled VB have edges labelled ARGUMENT.
We call such a graph an SRL-graph of sent.
We focus on arguments of types ARG0, ARG1, and ARG2
since these roughly correspond to the thematic roles of
PROTO-AGENT, PROTO-PATIENT, and INSTRUMENT,
respectively, and hence capture the semantics of triples in
the sense that some medical entity (disease, symptom, drug,
organism) is causing some event or action to some other en-
tity. We leave other types of nodes, like TEMPORAL for
future work. A verb in a frame may have more than two ar-
guments. Hence, since our goal is to extract triples (binary
relations), the frames in an SRL-graph need to be scanned
and take pairs of arguments with the main verb. This is ac-
complished using function seek-get defined next.

Definition 2 Given an SRL-graph F, a role type A and a
set of role types T, function seek-get(F, A,T) returns the
smallest set of triples Tr such that if F contains a node nd
labelled VB with arr its arguments and arr[i] and arr[j] exist
with i < j, T (arg1) = A and T (arg2) ∈ T, then Tr contains
〈L(arr[i]) L(nd) L(arr[j])〉.

In the next sections we highlight some practical issues and
show how we propose to address them.

3.1 Resolution of copula verbs

It has been noted that the presence of copula verbs may de-
grade the quality of information extraction methods and re-
moving them would be beneficial (Miwa et al. 2010). Con-
sider, for example, the sentence “Optic neuritis is a com-
mon symptom that can cause blurred vision”. When applied
on this sentence, SRL-parsing will compute frame F1 with
verb “is” and arguments “Optic neuritis” and “a common
symptom that can cause blurred vision” and frame F2 with
verb “cause” and arguments “a common symptom that” and
“blurred vision”. As can be seen, the relevant entities (“Optic
neuritis”, “cause” and “blurred vision”) span across two dif-
ferent and disconnected frames. Hence, to be able to extract
〈OpticNeuritis causes BlurredVision〉 we need to propagate
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Algorithm 1 eliminateCopulaVerbs(sent,F)

Input: A sentence sent and a set of frames F computed
for sent.

1: Tree := dependencyParser(sent)
2: if 〈n1, n2〉 ∈ Tree such that 〈n1, n2〉.� == cop then
3: Let Fis be the frame in F with the copula verb
4: Let Fn1 a frame different from Fis that contains n1.�

in some argument Arg
5: If no such Fn1

exists then return
6: Let 〈n1, n

′〉 ∈ Tree such that 〈n1, n
′〉.� = nsubj

7: Replace Arg with the argument in Fis that contains
n′.� as a sub-string

8: Delete frame Fis

the main argument of the frame that contains the verb “is”
to the respective argument of the second frame—that is, re-
place the argument “a common symptom that” in the second
frame with “Optic neuritis”.

Differently than (Miwa et al. 2010) our approach, de-
picted in Algorithm 1, is more systematic and is based on
dependency parsing. Given a set of frames F the algorithm
tries to propagate information from one frame to the other
when a copula verb is present. As a first step, it applies de-
pendency parsing, a well-known type of syntactic parsing
whose general properties we formalise next.
Definition 3 Let phrase be some text. Function
dependencyParser takes phrase as input and returns
a labelled tree, where each node (nd) is labelled with its
corresponding word found in text (denoted by nd.�), each
edge 〈nd1, nd2〉 with one of the dependency relations (de-
noted by 〈nd1, nd2〉.�), and all paths of edges 〈ndi, ndi+1〉
labelled with compound are collapsed to one node nd1 with
label nd1.�+“ ”+ ...+“ ”+ndn.� where + denotes string
concatenation.

Note that we assume that the dependency parser groups
all compound nouns. For example, we assume that if the
function dependencyParser is applied on phrase “Heart At-
tack” it will return a single node with label “Heart Attack”
rather than a tree with edge 〈nd1, nd2〉 and labels nd1.� =
“Attack”, nd2.� = “Heart”, and 〈nd1, nd2〉.� = compound.
This is done to assist the subsequent entity linking step and
since such compound nouns are expected to appear in KBs.

3.2 Relations expressed through nouns

Although many relations are expressed using verbs, which
favours the use of SRL, a large number is expressed us-
ing nouns. Examples are: Common symptoms of malaria
include fever, Anemia is a common symptom of sarcoido-
sis, and more. Applied to the first sentence, the SRL-parser
would return a single frame with verb includes and argu-
ments symptoms of malaria and fever from which the triple
fever — includes — symptoms of malaria can be extracted.
In a similar way, from the second sentence the following
triple would be extracted: Anemia — is — a common symp-
tom of sarcoidosis. To be able to extract triples with “symp-
tom of” as the property we employ simple yet effective pat-
terns again based on dependency parsing which is inspired

Algorithm 2 nounRelationRewriting(〈phr1 verb phr2〉)
Input: A triple where verb is either “is” or “includes”.

1: Tree := dependencyParser(phr2)
2: Let root be the root of the tree
3: if root is a noun then
4: Let nd be the closest descendant node of root that is

also a noun
5: Replace verb with root.� and phr2 with nd.�

Algorithm 3 tripleExtraction(sent)

Input: A sentence sent.
1: F := eliminateCopulaVerbs(sent, srlParse(sent))
2: candidates := seek-get(F,ARG0, {ARG1,ARG2})∪

seek-get(F,ARG1, {ARG0,ARG2})
3: Triples := ∅
4: for all 〈phr1 verb phr2〉 ∈ candidates do
5: if verb ∈ {“include”, “is”} then
6: nounRelationRewriting(〈phr1 verb phr2〉)
7: tr := 〈link(phr1), link(verb), link(phr2)〉
8: Triples := Triples ∪ {tr}
9: end for

10: return Triples

by the works in (Yahya et al. 2014). Our approach is depicted
in Algorithm 2.

3.3 Information Extraction Pipeline

Based on the above our overall triple extraction pipeline is
depicted in Algorithm 3. In brief, first SRL-parsing is ap-
plied, then copula verbs are eliminated and subsequently an
initial set of candidate triples using the seek-get function is
created. Next, the candidate triples are formed in the for-
loop which also tries to apply the noun-rewriting algorithm.
Finally, an IRI is associated from the KB using so-called
entity linking techniques (Hachey et al. 2013) that try to as-
sociate a precise IRI from the KB to the phrases encoun-
tered in the text triples. At the present point we have exper-
imented with a simple but effective approach that is based
on a combination of text annotation with sentence embed-
dings (Zhelezniak et al. 2019; Cer et al. 2018). The latter
approach maps sentences (or multi-world expressions) to a
vector space with the property that (semantically) similar
sentences are clustered closely in the space. Trained mod-
els can be used to compute embeddings for all labels of the
KB as well as of the phrase that is encountered in the text and
then their similarity can be estimated using angular distance.
In order not to commit to a single IRI this step retrieves the
top-k possible IRIs from the KB for every element which
are later presented to doctors for selection.

4 Filtering, Scoring, and Validating

In the current section we present our approaches for filtering,
scoring, and manually validating the extracted triples.

Our first filtering step is to focus only on a specific
subset of properties as well as types that are of interest
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in our use case. More precisely, only triples that con-
tain one of the following properties: symptom, cause,
treat, affect, develop, lead, aggravate, alleviate, damage,
trigger, spread, prevent, produce, misdiagnose, experi-
ence, as well as triples where the subject and object is
one of the following types: ClinicalFinding, Disease,
Substance, Procedure, BodyPart, Animal, Behavior,
ManufacturedObject, BiologicalFunction, BodySubstance,
Organism, are considered.

Another issue is the extraction of correct but not
precise triples like 〈Malaria spreadBy Mosquito〉 and
〈Swallow causing Pain〉. Since correct, the detection of such
triples is a hard problem and a deep NN method was used
that is described in the next sections.

4.1 Triple Scoring Model

The classifiers used by most IE frameworks associate some
confidence score to the extracted triples which can be used
for pruning or prioritising evaluation. To provide with simi-
lar scoring means we investigate the use of relational learn-
ing approaches for KBs (Nickel et al. 2016). Such ap-
proaches try to learn statistics about the structure of a given
KB and then use the learned model to score a given triple.
This score captures the degree to which each triple adheres
to the model learned on by the KB structure.

We consider a set of different knowledge graph em-
bedding models, such as TransE (Bordes et al. 2013),
TransR (Lin et al. 2015), RESCAL (Nickel, Tresp, and
Kriegel 2011), ComplEx (Trouillon et al. 2016), Dist-
Mult (Yang et al. 2015) and HolE (Nickel, Rosasco, and
Poggio 2016), as well as graph feature based approaches,
such as SDValidate (Paulheim and Bizer 2014) and PaTy-
BRED (Melo and Paulheim 2017), which use features that
can be directly observed in the graph, e.g., types and paths.
In an effort to combine the strengths of the two kinds of
approaches, we also consider a relation-level stacking ap-
proach proposed by Meilicke et al. (2018).

All previous approaches were trained on a medical KB
built in-house that integrates well-known terminologies like
SNOMED CT, NCI, and more (Stoilos et al. 2018). A differ-
ent meta classifier was learnt for each relation. To the best of
our knowledge this is the first real-world use and evaluation
of such techniques.

4.2 Candidate Triple Verification

Finally, all triples that have not been filtered out are can-
didates for manual verification by doctors. A triple may be
incorrect because it implies medically incorrect information
but also because the selected IRIs are wrong or don’t capture
the meaning of the text faithfully. Doctors verify all these as-
pects for each one of the subject (S), property (P), and object
(O) of each triple separately. In case any of the tasks is re-
jected, then the whole triple is rejected. However, if doctors
accepted any of the proposed entity mappings these accep-
tances will be saved and can be used in the future—that is,
if some phrase phr has been linked to a concept C and the
same phrase appears in another triple with the same attached
concept C as proposed, the verification will be skipped with
C as the linked correct concept to link to the phrase.

Relation All Acc. Relation All Acc.

hasSymptom 45 669 1 059 cause 39 580 645
hasRiskFactor 2 152 115 treat 18 183 23
associatedWith 2 901 323 affects 5 031 -
hasComplication 7 060 256

Table 1: Extraction stats; 120 606 total and 2 421 accepted.

5 Evaluation

Base on the above a triple extraction system was deployed
in Babylon. For SRL parsing we used AllenNLP (He et
al. 2017), for dependency parsing the StanfordNLP parser,
for providing IRIs and structure for scoring we used a
medical KB constructed in Babylon Health (Stoilos et al.
2018), (Barisevičius et al. 2018) , while for IRI ranking we
used Google’s universal encoder (Cer et al. 2018).

5.1 Data Sources

Several textual data sources were analysed to decide which
of them to use. Many previous works use PubMed, how-
ever, we decided that this data source is not focused on
primary medicine but instead usually contains information
about rare diseases. Moreover, in many cases, the results
published there are at research level and verification and
cross-validation by the wider community is still pending.
Sources like MedlinePlus summaries and Wikipedia pages
are more related to primary medicine. Sentence tokenization
was applied on the sources and several meta-data like title of
the document, source name, URL, time, and more were at-
tached while bullet lists were flattened by converting them
into a set of n sentences, for n is the number of bullets.

5.2 Triple Extraction Evaluation

We were running our pipeline through 2000 health top-
ics/pages from MedlinePlus summaries and a Wikipedia
dump. After collecting almost 900k triples and remov-
ing ones that did not contained any medical entities we
ended with around 120K potentially interesting medical text
triples. Table 1 presents the break-down of these triples ac-
cording to a set of interesting properties. Doctors randomly
start verification of knowledge in batches. Here we evaluate
first batch that consists of around 5k relationships follow-
ing the methodology described in Section 4.2. Out of these
5k triples, medical experts accepted 2 421 which gives an
acceptance rate of about 48%. Table 1 also presents a break-
down of the accepted triples; no triple with relation “affects”
has been accepted yet.

It is important to note that when a doctor rejects a triple
this does not necessarily mean that the triple is wrong. In
contrast, a triple may be factually correct but a doctor may
think that it is not precise enough or relevant to the use case
addressed by Babylon Health, like in the case of uninfor-
mative triples. Moreover, triples can also be rejected due to
failures in entity linking. For the above reasons we feel that
the above rate is in general not low. Nevertheless, after ob-
taining these initial sets of accepted and rejected triples we
developed our imprecision predictor and scoring approaches
that we briefly sketched previously. We used those methods
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SDValidate TyBRED PaTyBRED TransE DistMult RESCAL ComplEx HolE TransR RelStack
AUC ROC 0.716 0.783 0.600 0.835 0.734 0.841 0.649 0.680 0.679 0.916

Table 2: Comparison of triple scoring approaches

to score triples and asked doctors to evaluate the top-500
scored ones. Out of the 500, doctors accepted 371 which
gives an acceptance rate of 75% which shows that indeed
these methods can prioritise triples that doctors would most
likely accept. These scoring and triple predictor methods are
described and evaluated individually in the following.

5.3 Triple Scoring Evaluation

In order to score triples we trained several latent and graph
feature approaches on the Babylon Health KB. We also
trained a relation-level stacking approach combining differ-
ent triple scoring approaches. We then evaluated them by us-
ing as testing data accepted and rejected triples from the pre-
vious doctor verification step. From all approaches we tried
we only report results for the top performing systems which
where TransE (Bordes et al. 2013) and RESCAL (Nickel,
Tresp, and Kriegel 2011), SDValidate (Paulheim and Bizer
2014), PaTyBRED adn TyBRED (Melo and Paulheim 2017)
from the class of graph-based approaches. For training the
first two we used OpenKE2 while for the latter two the im-
plementation in (Melo and Paulheim 2017).

In the relation-level stacking approach (RelStack) we use
logistic regression as the meta classifier. Different sets of
triple scoring models have been tried and the best perform-
ing combination used set of widely distinct approaches com-
prising RESCAL, TransE, TyBRED and DistMult.

From doctor verification we obtained 1,642 accepted and
2,456 rejected triples; these are triples after the initial filter-
ing of triples according to stys and relevant properties de-
scribed in previous Sections. This set of triples is randomly
split into a validation and testing sets, each containing half
of the triples. The validation set is used to train the meta clas-
sifier in the stacking approach, and the testing set is used to
compare the different methods. Table 2 shows the compari-
son results in terms of area under the ROC curve.

In an effort to detect uninformative triples we used the ac-
cepted and rejected triples produced in the verification step
to train a classifier to predict which 〈subject, object〉 pairs
bare possibly “interesting” information and which not. The
subject and the object of each triple were embedded using
the Universal Embedder (Cer et al. 2018) and the outputs
were concatenated and presented to a deep learning model
which consisted of 3 fully connected layers of 100, 100 and
30 neurons respectively, with ReLU activations. The final
output is a single neuron with sigmoid activation. A drop-
out layer with 0.5 probability after the first layer and another
with 0.2 probability after the second were also used.

For training, a set of 2,414 accepted and 2,414 rejected
text triples was obtained. 80% of triples were used for train-
ing and the rest 20% for testing. We measured the accuracy
by comparing the output of the classifier to the manually

2http://openke.thunlp.org

Disease triples matched new new other
symp. symp. RF.

Malaria 132 38 24 3 25
Laryngitis 18 0 2 0 7
Urethritis 40 5 7 4 10
Atheroscl. 31 1 0 10 7

Table 3: Comparison of PGM with extracted triples.

assigned label by the doctors. We obtained an accuracy of
0.820911 and AUC ROC of 0.878573.

5.4 Evaluating Over a Symptom-Checking
Network

Babylon Health develops a symptom-checking engine en-
coded as a probabilistic graph model (PGM) (Razzaki et
al. 2018). This model consists of a highly interconnected
graph with connections between diseases, symptoms, risk
factors, and age groups and currently contains about 5k rela-
tions. These were created manually by doctors and epidemi-
ologists based on medical textbooks, research papers, and
statistical data in a course of a year. We wanted to check
whether any portion of these relations were extracted by our
pipeline. Such a check is not straightforward since the la-
bels of entities in PGM may not be exactly the same as the
strings in text triples. We used fuzzy string matching meth-
ods with a high threshold to do this comparison. From the
5k connections we found a close similarity for 2,5k of them.
We asked a doctor to have a closer look into four diseases
that exist in both PGM and our extracted set. The doctor
was asked to check how many symptoms match and then
whether new symptoms, risk factor, misdiagnosis, or rela-
tions to other diseases that are extracted by our IE could
be interesting to them for extending and further developing
PGM. The results are depicted in Table 3. From this anal-
ysis we concluded that the semi-automated process of fact
extraction could help speed up the building of the PGM by
suggesting facts that were overseen by domain experts and
also help improve its quality and expand it with new rela-
tionships beyond its initial purpose like incorporating mis-
diagnosis and other types of relations.

6 Related Work and Conclusions

Several approaches for extracting clinical information from
unstructured text have been presented in the past (Ernst,
Siu, and Weikum 2015; Ruan et al. 2017). Most of them
are based on supervised learning needing training data and
adaptation when new properties are considered. Differently,
in order to eliminate these needs we use Semantic Role
Labelling as proposed in (Christensen et al. 2011). To im-
prove the effectiveness of SRL in information extraction
several novel techniques were proposed. First, a method to
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process and eliminate copula verbs, second, a lightweight
method to process and explicate relations that are expressed
through nouns and, third, methods for filtering and scor-
ing triples with a particular focus on informative triples.
The system was built and used by in-house medical doctors
and the acceptance rate of the triples it generates is fairly
high if one takes into account the high selectivity of doctors
who can prune possibly correct but not useful triples. We
also evaluated all our scoring models and showed that their
use does increase the acceptance rate of triples. Finally, we
also compared our extracted triples with an existing disease-
symptom-risk factor network showing great overlap and po-
tential usefulness of the former into enriching the latter.
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