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Abstract 

Analysis of microcirculation is an important clinical and re-
search task. Functional analysis of the microcirculation al-
lows researchers to understand how blood flowing in a tis-
sues’ smallest vessels affects disease progression, organ 
function, and overall health. Current methods of manual 
analysis of microcirculation are tedious and time-
consuming, limiting the quick turnover of results. There has 
been limited research on automating functional analysis of 
microcirculation. As such, in this paper, we propose a two-
step machine-learning-based algorithm to functionally as-
sess microcirculation videos. The first step uses a modified 
vessel segmentation algorithm to extract the location of ves-
sel-like structures. While the second step uses a 3D-CNN to 
assess whether the vessel-like structures contained flowing 
blood. To our knowledge, this is the first application of ma-
chine learning for functional analysis of microcirculation. 
We use real-world labelled microcirculation videos to train 
and test our algorithm and assess its performance. More 
precisely, we demonstrate that our two-step algorithm can 
efficiently analyze real data with high accuracy (90%).  

 Introduction  

For many years, researchers have used the integrity of mi-

crocirculation to understand disease progression and over-

all health (Tafner et al. 2017). The microcirculation con-

sists of the tissue’s smallest vessels, ranging from only 5 to 

100 micrometers in diameter. These microvessels include 

capillaries, arterioles, and venules (Tafner et al. 2017). 

While larger microvessels can accommodate a robust flow 

of blood, to maximize oxygen off-loading in the tissue, 

capillary blood flow consists of a single file of red blood 

cells, interspaced with plasma gaps.  

 To examine the microvasculature, both the structure of 

the vascular network and the blood flow in functionally 

perfused microvessels, need to be assessed via intravital 

video microscopy (IVM).  
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The functionality of these microvessels, i.e., the ability to 

carry blood flow, has significant implications for organ 

function during disease progression and overall health. As 

such, IVM is used in various medical domains to examine 

the microcirculation and to understand disease processes 

and their effects on the microcirculation (Ellis 2005; 

Lawendy 2016; Yeh 2017).   

 The quality of a tissue’s microcirculation can be meas-

ured through its vascular density. Usually, vascular density 

for a region of tissue is determined by taking the total 

number of flowing microvessels across a cross-section 

divided by the surface area of the region examined (Charl-

ton 2017). 

 Calculating vascular density proves to be a time-

consuming and tedious task in practice, as it requires the 

visual assessment of hundreds of vessels across many 

frames in a microcirculation video. 

 Although the improvement in the speed of acquisition 

and quality of microscopic videos, the analysis of the ex-

perimental video data is still made by visual inspection. 

This time-consuming task prevents efficient use of micro-

circulation analysis in research. Moreover, to ensure the 

quality of the analysis, visual analysis is often repeated by 

two or more independent analyzers, compounding this 

problem even further. The time-intensive nature of the 

manual analysis is mainly due to the complexity of the 

video images involved, often containing a large number of 

similar stagnant or dynamically moving structures (i.e., red 

blood cells), as well as sudden changes in contrast or 

movement artifacts of the tissue. 

 Although many algorithms have been developed for 

analyzing the structural component of microcirculation, the 

functionality of microvascular blood flow is a critical pa-

rameter for assessing the development of microvascular 

dysfunction. As of today, to the best of our knowledge, this 

is the first application of machine learning for the simulta-

neously assessment of both vessel structure and vessel 

blood flow functionality  

 In this paper, we present a two-step machine-learning-

based algorithm for the functional and structural analysis 
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of microcirculation. The first step of the algorithm uses the 

well-established Steger Unbiased Detector of Curvilinear 

Structures to segment the vessel structures. While the se-

cond uses a trained 3D Convoluted Neural Network (3D-

CNN) to determine whether a vessel is flowing or not. 

Related work 

Vessel segmentation algorithms are commonly used to 

analyze the structural component of the microcirculation 

network. As such, many algorithms exist to segment vessel 

structures. The most preliminary and basic is the Steger 

Unbiased Detector of Curvilinear Structures, which relies 

on measuring gradients across the image and modelling the 

mathematical structure of a curved vessel (Steger 1998). 

Although the algorithm has gone through several im-

provements over the years (Bezemer et al. 2011; Dimir et 

al. 2012; Jiang, Bainbridge-Smith, Morris 2007), it is still 

considered a robust vessel segmentation algorithm. (Dimir 

et al. 2012)  

 As the focus of this paper is the functional analysis of 

microcirculation, we focus less on segmentation, and more 

on flow assessment. Currently, there exist two proposed 

algorithms for the functional analysis of microcirculation 

flow. Bezemer et al. (2011) developed an algorithm for 

detecting perfusion of the blood vessels called Temporal 

Side-stream-dark-field Image Contrast Analysis (tSICA). 

The tSICA algorithm utilizes the changes in the intensity of 

flowing blood to identify whether blood was flowing 

through a vessel or not. Liu et al. (2015) developed an al-

gorithm for measuring the velocity of microcirculation 

blood flow from videos of microcirculation. This algorithm 

relied on projecting vessel in one direction using a tech-

nique called Epipolar-Plane Image analysis. However, both 

algorithms showed limited generalizability to faster-

moving blood vessels. To our knowledge, there has been 

no machine-learning-based approach to the functional 

analysis of microcirculation.  

Methods 

Data 

The dataset used for training the machine learning algo-

rithm was acquired through the manual analysis of IVM 

videos, using the method described by DeBacker in 2007. 

To sample the flowing/non-flowing vessels in each video, 

various equidistant horizontal and vertical lines are super-

imposed on the microcirculation video, then all flowing 

and non-flowing vessels intersecting these equidistance 

lines are digitally recorded.  

 The final dataset contained 32,213 labelled vessels gen-

erated from 458 IVM videos, as well as a held-out set of 34 

unlabeled IVM videos. As vessels from the same IVM vid-

eo appear very similar to each other, the dataset was split 

into two groups based on videos and not individual vessel 

examples. This resulted in a training set of 392 labelled 

IVM videos used to train and validate the CNN and a sepa-

rate test set containing 66 IVM videos used to test the algo-

rithm’s performance. Datapoints from either set were only 

used in the training or test dataset. 

Preprocessing  

All captured videos underwent a preprocessing step to en-

sure they can be processed by the two-step algorithm  

 As the microcirculation videos are captured in living 

tissue, they are prone to unintended motion. As such, all 

videos are first stabilized using traditional block matching 

algorithms like the one used by Demir et al. (2009). The 

algorithm estimates the motion between the first frame of 

the video and all subsequent frames then removes any 

(a)                 (b)                 (c) 

Figure 1: (a) SAD image of a FOV (400 × 400 µm) in the EDL muscle of a rat; clearly visible are the highlighted structures associated 

with the vasculature, (b) SAD image after CLAHE and Video Stabilization is applied, (c) results of Steger Curvilinear Detector (red) 

superimposed on SAD image. 
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frames with a horizontal or vertical velocity greater than 

0.3 pixels per second from the sequence of microcircula-

tion images.  

 Following video stabilization, a single sum of absolute 

differences (SAD) image is used to summarize the micro-

circulation video in one image. Creating the SAD image 

helps increase the speed of manual analysis as only areas 

with significant motion are visible in the SAD image, thus 

including actively flowing vessels (Japee 2005). To create 

this image, the frame to frame difference in pixel intensity 

is calculated for every pixel, and the absolute value is 

summed up. This results in a 2D image representation of 

the microcirculation video, as seen in Figure 1(a). 

 This SAD image is further processed by applying a Con-

trast Limited Adaptive Histogram Equalization (CLAHE) 

to the SAD images to enhance the contrast between the 

highlighted vessel structures and the background (Demir 

2012), the difference, in contrast, is evident when compar-

ing Figure 1(a) and Figure 1(b). 

Our Two-step Algorithm 

The two-step algorithm for functional microcirculation 

analysis consists of two separate steps. The first step 

identifies the location and outline of the vessels in the 

previously created SAD image (i.e., vessel segmentation), 

while the second step involves determining whether these 

identified vessel structures are actively perfused with 

flowing blood. 

First Step: Vessel Segmentation 

The goal of the first step is to locate all vessel structures. 

The SAD image previously created in the preprocessing 

step acts as input to the first step of the two-step algorithm. 

Using the Unbiased Detector of Curvilinear Structures de-

veloped by Steger, all vessel-like structures are identified 

by examining the degree and direction of intensity changes 

in the image (Steger 1998); the resulting vessel-like struc-

tures comprise of both flowing vessels and non-flowing 

artifacts.  

 To further improve the Steger’s Curvilinear Detector, we 

included two additional modifying steps to the vessel seg-

mentation algorithm. First, any discontinuities in the initial 

superimposed vessel segmentation are filled using a mor-

phological close operator applied to a binary vessel skele-

ton (A. Jain 1986). Second, all vessels that are shorter than 

4 pixels are removed; Figure 1(c) shows the results of the 

modified Steger Curvilinear Detector superimposed on the 

SAD image. The vessels identified by the modified Sager 

Curvilinear detector are then intersected with various 

cross-sectional vertical and horizontal lines and only ves-

sels intersecting these lines are sent to the next step of the 

algorithm. 

 

Second Step: Determining Blood Flow 

The second step seeks to identify whether a cross-section 

of a vessel structure belongs to a flowing vessel or a non-

flowing vessel.  

 For every pixel in a vessel’s cross-section, a surrounding 

area of 16×16 pixels is defined for 200 consecutive frames, 

thus creating a 16×16×200 data block with 65,536 data 

points. An area of 16×16 was chosen by microcirculation 

expert consultation. A 16×16 area would be sufficient in 

observing enough of the vessel to identify the flow. Two 

hundred frames were used to ensure enough time had 

passed for slower blood flow to appear. 

 Each data block is the input for the proposed spatial-

temporal 3D-CNN (Ji et al. 2013). As the 3D-CNN is 

applied to every pixel in a vessel’s cross-section, a 

percentage of greater than 50% of cross-sectional pixels 

predicted as flowing is used as a threshold to classify the 

vessel as flowing or not.  An example of this is shown in 

Figure 2, where 75% of the pixels in the cross-section of 

the vessel are predicted to be (3 pixels) flowing while one 

pixel is to be not flowing. As the percent of flowing pixels 

is greater than the 50% threshold, we predict this vessel as 

flowing. 

 

 

 

 

 

 

 

 

3D-CNN architecture 

 The full architecture of the 3D-CNN is shown in Figure 3. 
As the input data has a third dimension (i.e., time), the 
convolutional layer and the pooling layer of the network 
consist of three-dimensional kernels. The 3D-CNN consists 
of two hidden 3D convolution layers, one with eight 7×7×7 
convolution filters, and the other with eight 5×5×5 convo-

Figure 2. Each pixel in a detected vessel’s cross-section is sent into 

the CNN, and a binary value is returned indicating if it is flowing, 

green circle, or not, a blue “x”. The percentage of flowing pixels is 

then used to determine if the vessel is flowing or not. 
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lution filters. The convolution filters are followed by a 
max-pooling layer of 8 filters of size 2×2×2. The max-
pooling layers work to reduce the representation of the 
output of the convolution layers. The output of the max-
pooling layer is then flattened to a vector of size 6840×1, 
which is then fed into a traditional Multi-layer perception 
(MLP) with two hidden layers of size 16 and 8. The 
weights in the MLP are learned and binary output is gener-
ated, indicating whether the input pixel is of a flowing ves-
sel or not. This architecture was chosen through validation 
on the validation set. Models with smaller sized filters and 
less hidden layers did not capture enough of the data to 
draw conclusions, on larger vessels. However, a deeper 
network with more filters, did little to change the perfor-
mance of the models and as such, were not used. Training 
of the CNN was done over 100 epochs on a batch size of 
30.   

Results 

3D-CNN Results 

To test the 3D-CNN, a test set of 4,404 never seen before 

examples vessels were labelled as flowing or not. Table 1 

and Table 2 summarize the performance of the CNN net-

work on the test set. The model performs exceptionally 

well, with an accuracy of 90%.  

  The positive predictive value is 0.93, which means, on 

average, when the 3D-CNN predicts a flowing vessel to be 

flowing, it will be right 93% of the time. On the other 

hand, the negative predicted value is 0.81. Therefore, when 

the CNN network predicts a vessel to be non-flowing, there 

is an 81% chance it will be correct. 

 

Table 1. Normalized confusion matrix showing results of 3D-

CNN on the test set  

 
Predicted not 

flowing 

Predicted  

flowing 

True not flowing 0.77 0.23 

True flowing 0.05 0.95 

 

 End-to-End Real-World Testing 

 To test the performance of the entire algorithm, the com-

plete two-step algorithm was applied to 34 non-labelled 

microcirculation videos. The algorithm was applied after 

completion of the experiments and data collection mimick-

ing a real-world application. The result was then reviewed 

and verified by an expert labeler, to compare performance 

in a real-world deployment of the algorithm.  

     

 

 

Evaluation Metrics Accuracy Precision Sensitivity f1-score Negative predicted value 

Percentage 0.90 0.93 0.95 0.94 0.81 

Figure 3: 3D-CNN Architecture showing input of 16×16×200 data block, and final binary output, indicating flowing or not.  

*Showing one out of 8 filters 

Table 2. Evaluation metrics of 3D-CNN in percent for test set 

 

13329



 The percentage of incorrect points detected per an exper-

iment as well as the percent of missed points observed by 

the reviewer and not the algorithm is used as a perfor-

mance metric. Some of the visual results of this analysis 

are seen in Figure 4. 

The algorithm captures about 83% of all vessels, with an 

error rate of only 3.5%. This demonstrates that although 

the algorithm has difficulty capturing all vessels identified 

by the human labeler, all identified vessels are accurately 

labelled as perfused or not. This shows us the success of 

the 3D-CNN in the second step of the algorithm, and by 

extension, the 3D-CNN can predict if a vessel is flowing or 

not accurately. It is evident that the first step of the algo-

rithm, the Steger Curvilinear vessel detector, results in 

most missed vessels not detected by the algorithm. Specifi-

cally, The Steger algorithm has difficulty in capturing 3 

types of vessels, two vessels that are adjacent to each other, 

figure 5a, two vessels directly intersecting each other, fig-

ure 5b, or wide poorly outlined vessels (i.e., deep tissue 

vessels), figure 5c. Although the Steger algorithm is not as 

accurate as state-of-the-art machine-learning-based vessel 

segmentation schemes, it is robust enough to be applied to 

various imaging modalities and tissue types, unlike the 

machine-learning-based segmentation schemes which do 

not generalize very well to other applications.  

Figure 4. Final End-to-End two-step algorithm results overlaid on frame from microcirculation video. A green circle indicates a perfused 

microvessel, a red “x” indicates a non-perfused artifact, discovered by the step 1, but then reject in step 2 by the 3D-CNN 

(a)                 (b)                 (c) 

Figure 5. Example of three common missed vessel errors; resulting from the Steger Curvilinear detector (SCD), green dot is identified 

by both human labeller and SCD, yellow plus sign is found only by SCD, red “x” is found only by human and not by SCD. (a) two 

adjacent vessels seen as one vessel by SCD. (b) two vessels intersecting each other seen as one vessel by SCD. (c) poorly outlined 

vessel structure due to vessel depth prevents SCD from detecting vessel.  
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Conclusion and Future work 

Functional analysis of microcirculation is a time consum-

ing and mundane task that is more suited for a computer 

than a human to complete. The presented two-step algo-

rithm for the functional analysis of the microcirculation 

allows the results of this study to act as a foundation for 

future work with functional microcirculation analysis. 

Achieving an accuracy of 90% compared to an expert al-

lows this algorithm to be applied in a real-world setting.  

 Future work involves slight improvements in the algo-

rithm pre- and post-processing steps. This can replace the 

Steger Curvilinear detector with a machine-learning-based 

algorithm trained on our local dataset, which will improve 

performance of the entire end-to-end algorithm   
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