The Thirty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-20)

Iterative Data Programming for Expanding Text Classification Corpora

Neil Mallinar,'* Abhishek Shah, Tin Kam Ho, Rajendra Ugrani, Ayush Gupta
IBM Watson, New York, NY, TPryon Research, New York, NY

Abstract

Real-world text classification tasks often require many la-
beled training examples that are expensive to obtain. Recent
advancements in machine teaching, specifically the data pro-
gramming paradigm, facilitate the creation of training data
sets quickly via a general framework for building weak mod-
els, also known as labeling functions, and denoising them
through ensemble learning techniques. We present a fast, sim-
ple data programming method for augmenting text data sets
by generating neighborhood-based weak models with mini-
mal supervision. Furthermore, our method employs an itera-
tive procedure to identify sparsely distributed examples from
large volumes of unlabeled data. The iterative data program-
ming techniques improve newer weak models as more labeled
data is confirmed with human-in-loop. We show empirical re-
sults on sentence classification tasks, including those from a
task of improving intent recognition in conversational agents.

Introduction

A chat bot that automates handling of common customer
service requests often uses a text classifier to identify the
intent in incoming requests. Many machine learning tech-
niques are suitable for building these classifiers. The biggest
bottleneck in applying such classifiers is the availability of
labeled training data.

Labeling vast amounts of text data is expensive, involving
manual annotation by domain experts with complex back-
ground knowledge. It is even more challenging when the
classes are highly skewed, which renders a sequential pro-
cess to look for each class largely ineffective, as examples
of the minority class are buried in much larger amounts of
data of other classes. Deciding between multiple classes for
each example, on the other hand, is also stressful as the an-
notator has to recall the definitions of all classes all the time.

Much work has been done to make the labeling effort
easier by expanding the manually provided labels in some
automated way. Commonly used data expansion methods
include active learning (Karlos et al. 2017) , self-training
(Guzman-Cabrera et al. 2009), and co-training (Du, Ling,

*Work done while at IBM Watson
Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13332

and Zhou 2010). Active learning utilizes a query-selection
strategy and an oracle (e.g., a domain expert) to select an
important subset of the unlabeled examples to send to the or-
acle for labeling. The learner is retrained with the newly ob-
tained labels and the process repeats. Without using an ora-
cle, self-training and co-training leverage the more confident
decisions of classifiers trained with available examples to
provide additional examples to retrain the classifiers. In self-
training, an automatic learner is first trained on any available
labeled data and evaluated on the unlabeled data. Any unla-
beled examples that the learner can classify with confidence
passing a threshold are labeled by the decision and used in
retraining, and the process repeats. In co-training, multiple
classifiers are trained on different views of the labeled data,
and the decision with highest confidence on the unlabeled
data from the consensus is added to the labeled set.
Semi-supervised learning methods seek to utilize avail-
able labels to maximum effect. Examples are techniques
like Expectation-Maximization (Nigam et al. 2011) to assist
class discovery, and training generative models through data
programming (Ratner et al. 2016; Nashaat et al. 2018) with
large amounts of unlabeled text data. In this paper, we aim
to explore the latter, data programming, in an iterative pro-
cedure for the purpose of expanding labeled data efficiently.
We design an iterative expansion process that does not uti-
lize the downstream classifier (for which the training data is
built) in any way, so as to stay generally applicable to many
choices for the classifier, and to avoid computationally ex-
pensive training of that classifier over many iterations of ex-
pansion. We experiment with the process using public and
private text corpora and confirm that the approach is effec-
tive and superior to simpler iterative expansion techniques.

Data Programming, Weak Supervision, and
Machine Teaching

Previous work has shown that interactive procedures aid cre-
ation and bootstrapping of new class-labeled data (Williams
et al. 2015). They show that domain experts, who are not
necessarily knowledgeable about machine learning systems,
are able to effectively build classes through a combination
of model definition, labeling, active learning, and more. Do-
main experts are often expensive and their time is valuable.

Data: Labeled training data 7' R; unlabeled corpus U; selection model S; labeler L; termination criteria ¢ = 30; and batch

size b =10

Result: Augmented labeled training data, TR’

done = False ;

while not done do

R = sortg(U); found = False ;

for i = 0;¢ < min(t,|R|);i =1+ bdo

P =label (R[i:i+b—1]);

if|P| >0;

then
N=R[i:i+b-1]-P;
TR=TR+ P+ N ;
U=U-P— N; found = True ;
break ;

end

end
if not found then

| done = True ;
end

end

>

> retrieve rankings of elements of U

> label small batches from R
> if any positive examples found

> get negative examples

> expand training data

> remove newly labeled data from U
> break out of inner for-loop

terminate if no positive examples found

Algorithm 1: In the expansion procedure, a selection model extracts small, rank-ordered batches of data from an unlabeled
corpus that are relevant to the current labeled data. These batches are sent, in order, to the labeler for annotation. Once positive
labels are found, the selection model is updated with the new data and the procedure is repeated until a termination condition
is met. Here, termination is when no more positive labels can be found within a maximum number of batches.

Guided learning approaches aim to lessen the amount of data
to be labeled, by using search to select relevant examples for
labeling, and are shown to be more effective than random la-
beling and active learning techniques in settings where data
exhibits high skew, as ours is given the iterative nature of the
classifier building process. (Attenberg and Provost 2010).

In this work, we employ weak supervision techniques to
select batches of examples for labeling. Such techniques
have recently been reintroduced through the data program-
ming framework (Ratner et al. 2016; 2018), by the notion of
“labeling functions” that generate weak labels. These func-
tions can encode heuristics or can simply be noisy processes
for labeling data. Often such heuristics can be given by do-
main experts, using significantly less of their time. Once
many labeling functions are obtained, the next step is to de-
noise their decisions to obtain a singular label for each ex-
ample. The work on Snorkel (Ratner et al. 2018) uses a gen-
erative model to denoise the ensemble of labeling functions.
After training the generative model, probabilistic labels are
obtained per example and are used to train a downstream
learner which generalizes the learned heuristics and apply
them to any unseen examples.

These ideas have been used to expand intent training
data for conversational agents (Mallinar et al. 2019) and to
quickly label large industrial data sets (Nashaat et al. 2018).
We build on these works by using an iterative procedure
to automatically construct weak models and show that the
Snorkel generative model can select more relevant sentences
for labeling than search-based methods alone.

Our work is also connected to the recent machine teach-
ing literature, following definitions and processes provided
by (Simard, Amershi, and others 2017). Machine teaching

13333

is defined to be a procedure that can make a “teacher” more
efficient at constructing machine learning models. A teacher
is defined as somebody who can transfer knowledge (a con-
cept) to a machine learning system (referred to as “student”
or “learner”). Modes of knowledge transfer include selec-
tion, where a teacher can find useful examples that exhibit
characteristics of a concept, and labeling, where a teacher
can provide annotations to directly relate concepts to exam-
ples. Earlier definitions of machine teaching are given by
(Zhu 2015), where the task is for a teacher that knows the
optimal decision boundary between classes in feature space
to provide as few examples as possible to the student learner
such that the learner can build the same decision boundary.
Recently, work has been done in iterative machine teaching
(Liu et al. 2017), showing that employing a continuous loop
allows the teacher to react to the student as it learns. Sum-
marizing over all of these definitions, the overarching goal
of machine teaching is to avoid expensive searches in data
space by making use of teacher models that already know
the decision boundary, allowing the teacher to show the stu-
dent as few examples as possible.

The closest existing literature to machine teaching is in
the active learning sub-field. Active learning operates in a
closed-loop where a learning algorithm is trained on any la-
beled data available. That learner then evaluates a large un-
labeled corpus and a query-selection strategy is employed
to find a small set of examples that will be most useful, if
labeled, to add to the training data. An oracle, usually a hu-
man annotator or crowd-sourced worker, is asked to assign
true labels to the selected set of examples.

We distinguish our work from active learning frameworks
as in (Settles 2009) by that we never access or query the

downstream learner during our procedure. Often such learn-
ers require a decent amount of data and tuning on valida-
tion sets to be effective models. In our setting, the amount
of labeled data provided at the start is very limited (< 20
examples per class) to the point that even a validation set is
impossible to extract. Effectively, we are asking the ques-
tion: can a “teacher” find a “curriculum” for a concept that
is versatile enough for an unknown learner to understand?

Proposed Methods

We present a procedure for expanding a small set of labeled
training data with examples from a larger unlabeled corpus.
Our procedure repeats a basic step that consists of leveraging
the labeled examples to rank and select the unlabeled exam-
ples, and then consulting an oracle for labeling the selected
ones. In each step the selection is limited in size to minimize
consumption of the oracle resources. This procedure contin-
ues until a termination criteria is reached. The resultant la-
beled data set is taken to train a downstream text classifier
for final evaluation and eventual use in the application.

Iterative Expansion Procedure

We define the main expansion process, provided in Algo-
rithm 1, in the context of binary label data (positive or nega-
tive for a specific class). For multi-class data, we simply ap-
ply the same expansion process independently for each class
and merge the resultant positive labeled sets to get our final
expanded training set to avoid extreme data skew that might
be caused by intermediate steps prior to the completion of
expansion of all the classes.

The algorithm takes as input: an initial training set, T'R,
composed of a small number of examples per class; an un-
labeled corpus, U, to search within for relevant examples;
a selection model, S, used to find and evaluate relevancy
of unlabeled data with respect to labeled data; and a labeler
(oracle), L, that can provide true labels quickly. The labeler
can be expensive to evaluate in practice (often a domain ex-
pert), so we include a batch size setting that restrict the per-
iteration labeling effort, and a termination criteria to deter-
mine when to stop expanding the data.

At the beginning of each iteration we retrieve a rank-
ordered set of examples from the unlabeled corpus that are
relevant to the current set of labeled training data via the se-
lection model. We then iterate, in-order, over these relevant
examples in batches of size b which are sent to the labeler
for annotation. When a batch is found with positive exam-
ples we augment the training data set with the newly found
positive and negative examples, where the negative set is the
complement of the positive set within the batch.

This is repeated until a termination criteria, parameterized
by ¢, is met. We define ¢ to be the maximum number of con-
secutive examples we are willing to send to the labeler, in
each iteration, without receiving any positive labels back.
We consider the data to be fully expanded when we reach
this point. In this work, we use ¢ = 30 and b = 10 to simu-
late a user looking through three pages of relevant examples
with ten examples per page before quitting.

In the case of multi-class data, we convert the data to bi-
nary labels per class and use Algorithm 1 to expand each

13334

ples

—— I-MLT

iy
o

AN

T T T T
0 10 30 40

2‘0
No. of iterations

No. of relevant exam

(a) Reddit: graphics_tablet

ples

—— I-MLT
—— |-DP

fin
o
!

o)
s

o

T T T T
0 10 40 50

20 30
No. of iterations

No. of relevant exam

(b) Reddit: home _security

Figure 1: Plotting number of examples added to training data
per iteration on Y-axis vs. number of iterations of expansion
on X-axis for two classes from the Reddit dataset.

of these binarized data sets independently. While we track
negative expansions relative to each set, we simply take the
union of the positive expansions to be the final augmented
multi-class training data.

Ranking and Selection Methods

We consider two methods for ranking and selecting the unla-
beled examples. The first method uses search-based methods
only, while the latter employs data programming.

Iterative Expansion by Search (I-MLT) Search methods
have been used to extract data when the class distribution of
the unlabeled data is highly skewed (Attenberg and Provost
2010). In expansion by search, we use a search engine as a
selection model to find examples relevant to the input exam-
ples. Here we use the ”"More Like This” (MLT) feature of
the search engine Elasticsearch ! to expand batches of ex-
amples and rank them based on the returned score. As such,
this selection model only uses positively labeled data for ex-
pansion and does not make use of negative labels.

With expansion by search, the unlabeled corpus is in-
gested into the search engine once and continuously used
throughout the process. This allows to perform selection ef-
ficiently, compared to re-training a statistical classifier at ev-
ery iteration.

Iterative Data Programming with Expansion by Search
(I-DP) As introduced earlier, data programming proposes
to write simple “labeling functions” that are fast to evalu-
ate and can coarsely assign labels to, potentially large, sub-
sets of unlabeled data. We refer to such labeling functions as

"https://www.elastic.co/guide/en/elasticsearch/reference/6.4/
search-more-like-this.html

weak models hereafter, and their label assignment as weak
labels (not to be confused with the labels obtained from the
labeler L in Algorithm 1, which may also be referred to
as strict labels). Such weak models generally do not have
access to many ground truth labels and make their assign-
ments based on heuristics encoded by human domain ex-
perts, crowdsourced workers, or external knowledge bases.
We note that while this work uses lexical matching to build
neighborhoods, the way we construct weak models can be
generalized to any reasonable way to define a subset in a
metric space. We leave the exploration of different ways to
construct weak models to future work.

Given a collection of n weak models that collectively as-
sign weak labels to m examples, a label matrix, A € R™*"™
is constructed out of all of the assignments. Where example ¢
is not labeled by weak model j, we set A; ; = 0 to represent
abstention from labeling the example by the given model. As
such, A can have varied sparsity depending on how large the
coverage of the constituent weak models is. As described in
(Ratner et al. 2018), when A is very sparse or very dense a
simple majority vote can be used to denoise the weak labels
assigned between the various weak models.

In the medium density setting, a probabilistic generative
model py(A,Y) is trained over A and the true labels, Y, of
the examples. It is shown that in the medium density setting,
such a model can better denoise the assignments between
weak models than a simple majority vote. When Y is not
available, it is treated as a latent variable in the model and
optimization is done over the negative log marginal likeli-
hood, — log Xy pg(A,Y"). This is done via a procedure that
alternates between Gibbs sampling steps and stochastic gra-
dient descent steps.

Furthermore, dependencies between weak models are
learned through a structure learning process whereby
po(A,Y) is treated as a factor graph. Additional factors are
learned and added to the model to represent common depen-
dencies between weak models (Bach et al. 2017).

We construct weak models with two independent MLT
expansions on the newly labeled positive and negative ex-
amples obtained at each iteration. Each search expansion
brings a set of ranked examples relevant to the input data.
Here, the ranking scores from the search engine are dis-
carded and each set of results is weakly labeled as positive or
negative, depending on whether the expansion was on pos-
itive or negative labeled data, respectively. Thus, at the k"
iteration in Algorithm 1 we are able to construct 2k weak
models (half of which are positive expansions, and the other
half negative). This automatic construction of weak models
eliminates the need for domain experts to encode relevant
heuristics about the classes, or the need for many crowd-
sourced workers. Instead, a single labeler can quickly label
a small number of examples over a few iterations and gener-
ate a larger label matrix, A.

We further truncate the expanded ranked examples list in
each weak model to the top 50 to ensure we retrieve high
precision subsets from the unlabeled data and to control the
level of noise introduced in the weak labeling process. Af-
ter training the generative model, we finally retrieve a list
of computed probabilistic labels over examples in our un-

13335

labeled corpus (where we default to a score of O for those
examples that are not covered by at least one weak model).
These probabilistic labels are used to rank examples for se-
lection in future iterations of Algorithm 1.

We employ this in our procedure to create a hybrid ex-
pansion method where rankings obtained both by search ex-
pansions and data programming expansions at each itera-
tion are merged into a final ranked examples lists via round-
robin merging. This is done because training the probabilis-
tic model incurs time and computational overhead while us-
ing search does not, so we introduce a re-train frequency
parameter, f, to control how often re-training of the proba-
bilistic model occurs.

The most recent ranked examples obtained from the gen-
erative model are merged with the latest search expansion
rankings until the next time the probabilistic model is re-
trained (e.g. in the f subsequent iterations of the algorithm
after the generative model is trained). This merging scheme
ensures that at each iteration there is an expansion method
that reflects the latest qualities of the labeled data (search),
as well as an expansion method that produces stronger, less
noisy rankings at the cost of being slightly outdated relative
to the current set of labeled data (data programming).

The effect of using f > 1 is two-fold, in that an iteration
may not provide enough newly labeled data to be worth re-
training the generative model on. As such, we continue to
expand via search until we have retrieved enough examples
to affect the rankings list in a more substantial way. In this
work, we set f = 3, meaning the model is only re-trained
when there are at least 6 new weak models to evaluate.

Experiments and Results

We use three sentence classification sets for experiments.
From each dataset, we keep only the classes with over 110
examples, and merge the rest into an “others” class. Our ex-
perience indicates that most users can afford to hand-write
or hand-select a very small set of examples per class. So we
hand-select such examples as the initial training set in our
experiments. The remaining training examples are stripped
of labels and used as the unlabeled corpus ingested into the
search engine.

Reddit: Reddit self-post classification dataset 2has 1,013
sub-reddits from which we choose titles as examples from
81 sub-reddits related to the technology domain. We pre-
process the titles (and subreddit names as labels) by remov-
ing newlines, tabs, special characters, and extraneous spaces
and any duplicates. The final Reddit dataset consists of 8§10
labeled titles to start with, 63,990 unlabeled titles and 16,200
titles as test set.

Customer Service Inquiries: We construct two data sets
of utterances, one in English and one in Japanese, from
privately sourced customer service dialogues. They cover
topics from general customer service requests to domain-
specific questions in several industries like banking, insur-
ance, and utilities. This data primarily consists of short ques-
tions and demands mapped to intents (categories) defined by

The dataset can be downloaded from https://www.kaggle.com/
mswarbrickjones/reddit-selfposts/

—— videogame_controller
— sl

—— graphics_tablet

—— laptop_notebook
—— home_security

—— videogame_controller
— sal

—— graphics_tablet

—— laptop_notebook

—— home_security
—— devops
computer_keyboard

\

—— devops
computer_keyboard

(a) Reddit I-MLT
Recall vs. # Examples

(b) Reddit I-DP
Recall vs. # Examples

(c) Reddit I-MLT
KL vs. # Iterations

(d) Reddit I-DP
KL vs. # Iterations

Figure 2: Comparison plots for 7 classes sampled from the Reddit data set. (a,b): Expansion paths plotting recall on test set vs.
number of examples added. The points at the far right of each curve mark the maximum recall if all relevant training samples
are found and included. (c,d): KL-Divergence vs. number of iterations of expansion. We measure KL-Divergence between the
vocabulary distribution at each iteration to the optimal distribution per-class.

subject-matter experts. The English data set, CS-En, is split
into an unlabeled corpus of 15,236 examples, initially la-
beled set of size 1,998, and test set of size 15,177 spanning
97 categories. The Japanese data set, CS-Ja, is split into an
unlabeled corpus of 1,709 examples, initially labeled set of
size 733, and test set of size 1,691 covering 38 categories
that are a subset of those in English.

Experimental Procedure

To evaluate the effectiveness of our expansion procedure un-
der different selection models, we start with the initial la-
beled set and expand each class independently as described
in Algorithm 1. After the expansion procedure finishes for
each class, we combine all of the fully expanded classes to-
gether to create the final labeled training data set.

Finally, we train a text classifier 3 on this labeled set and
evaluate accuracy on the held-out test set. This accuracy is
called the terminal accuracy for the given method used in
expansion. We compare the terminal accuracy to the opti-
mal accuracy, which is obtained by training the same clas-
sifier on using the ground truth for the entire corpus from
which the examples are selected, and evaluating on the test
set. For further analysis, we measure the KL-Divergence be-
tween the vocabulary distribution (at each iteration) of the
class being expanded to the optimal vocabulary distribution
of that class (as computed from all examples of that class
from the corpus).

Results and Discussion

We present our main results for -MLT and I-DP in Table 1,
along with comparisons to a baseline system that uses a ran-
dom ranker as selection “model”. The accuracy results there
reflect the quality of a classifier trained on labeled examples
obtained by each method, and are evaluated on the held out
examples. Another assessment of the quality of the obtained
training set is given by the estimated KL divergence of the
word distributions in the training set and the word distribu-
tion in the optimal set. It is clear in all cases that the I-DP

*https://www.ibm.com/cloud/watson-assistant/

13336

Methods Reddit CS-En CS-Ja

Initial 0.3035 0.7434 0.5523
Optimal 0.6219 0.8725 0.7776
Random 0.3070 0.7541 0.6375
I-MLT 0.4081 0.7806 0.6606
1I-DP 0.4660 0.8081 0.6972

Table 1: Accuracy results for Random, I-MLT, and I-DP on
Reddit, English and Japanese Customer Service test sets. We
compare the initial and optimal train sets to the terminal train
sets, using a downstream classifier for evaluation.

Method Reddit CS-En CS-Ja
Initial 810 1,998 733
Optimal 64,715 17,234 2,442
Random 842 2,030 974
I-MLT 6,934 6,975 1,517
I-DP 16,006 10,125 1,769

Table 2: Constructed training data size comparisons on our
benchmark data for each expansion method. We also present
the counts for the initial labeled data set and optimal set.

approach is able to construct a training set that performs best
on the held-out test sets.

Figure 1 shows how many examples are able to be labeled
at each iteration of I-MLT and I-DP for two classes sampled
from the Reddit data. We see that [-DP is able to consistently
find more relevant data for labeling and for more iterations
before terminating. With these results, we built a tool to as-
sist human annotators to find examples in chat logs to build
up intent training data. Early users are finding it very helpful.

Figure 2 shows the expansion paths, per-class, of seven
classes sampled from the Reddit data. In each plot, the ter-
minal point to the far right of the opaque lines depict the
optimal recall of each class, being 1.0 as all training data

is included. Each plotted point in the main expansion lines
represents an iteration step of the expansion procedure.

One way to assess the ability of these methods is to eval-
uate the recall of the system at different steps. Also, the as-
sessment on how much recall the end system gives gives a
better indication of how much useful data can be pulled from
the unlabeled corpus when the data is skewed. Hence, we
compare the expansion paths of [-MLT in Figure 2a to that of
I-DP in Figure 2b to see how the different selection models
affect the rate of recall increase. It is evident that with the I-
DP procedure, we have a more rapid ascent than I-MLT, and
are able to continue to find useful examples for many more
rounds before hitting the termination condition. This can
be seen more clearly for the class “videogame_controller”,
where I-MLT seems to converge earlier and reach a recall
asymptote whereas I-DP, at the same number of examples
sent for labeling, continues to expand.

We further analyze the effectiveness of each expansion
method in Figures 2c - 2d by plotting the KL-Divergence
between the vocabulary distribution at each iteration to
the optimal vocabulary distribution. We see that the KL-
Divergence curves approach O at similar rates as their rel-
ative recall curves. We see the KL-Divergence seems to ta-
per off for a few iterations and then begins a steeper descent
again, indicating that our procedures are able to explore and
push into new areas of the data space and not prematurely
terminate. We notice such exploration more so in Figure 2d,
which utilizes the I-DP expansion process.

While the I-DP algorithm expands the training data more
than I-MLT, we see in Figure 2 that the per-class recall
curves, though they taper off as more examples are added,
still do not reach convergence yet. This indicates that there
is room for future research on steering the expansion. For
instance, the method assumes that the full scope of a class
can be reached through chains of neighbors. When this is
not true with heavily fragmented classes, we need alterna-
tive ways to scatter some seeds to every fragment, by ran-
domization or in-depth analysis of the data characteristics.
The generative model also needs to be made more efficient
if we are to use it in every iteration.

Conclusion

We present iterative applications, of a search-based selec-
tion strategy and a data programming strategy employ-
ing weak learning, for expanding text classification data
that is independent of knowledge of downstream classi-
fiers.Observations from experiments confirm that the itera-
tive data programming approach can sustain a longer expan-
sion path, allowing the downstream learner to reach better
accuracy than the simpler approach. Iterative data program-
ming also leads to better quality training sets sooner, and
terminate at obtaining non-exhaustive, labeled training sets
with which the learner can attain accuracies very close to
those allowed by an optimal training set where all examples
must be labeled.

References

Attenberg, J., and Provost, F. 2010. Why label when you can
search? alternatives to active learning for applying human re-

13337

sources to build classification models under extreme class imbal-
ance. ACM SIGKDD Conference on Knowledge Discovery and
Data Mining.

Bach, S.; He, B.; Ratner, A.; and Ré, C. 2017. Learning the struc-
ture of generative models without labeled data. Proceedings of the
34th International Conference on Machine Learning.

Du, J.; Ling, C. X.; and Zhou, Z.-H. 2010. When does co-training
work in real data. /EEE Transactions on Knowledge and Data En-
gineering.

Guzman-Cabrera, R.; Montes-y Gémez, M.; Rosso, P.; and Vil-
lasefior-Pineda, L. 2009. Using the web as corpus for self-training
text categorization. Information Retrieval Journal 400—415.

Karlos, S.; Fazakisb, N.; Kotsiantisc, S.; and Sgarbas, K. 2017. An
empirical study of active learning for text classification. Interna-
tional Conference on Knowledge Based and Intelligent Information
and Engineering Systems.

Liu, W.; Dai, B.; Humayun, A.; Tay, C.; Yu, C.; Smith, L. B.; Rehg,
J. M.; and Song, L. 2017. Iterative machine teaching. Proceedings
of the 34th International Conference on Machine Learning.
Mallinar, N.; Shah, A.; Ugrani, R.; Gupta, A.; Gurusankar, M.; Ho,
T. K.; Liao, Q. V.; Zhang, Y.; Bellamy, R. K.; Yates, R.; Desmarais,
C.; and McGregor, B. 2019. Bootstrapping conversational agents
with weak supervision. Innovative Applications of Artificial Intel-
ligence Conferences.

Nashaat, M.; Ghosh, A.; Miller, J.; Quader, S.; Marston, C.; and
Puget, J.-F. 2018. Hybridization of active learning and data pro-
gramming for labeling large industrial datasets. 2018 IEEE Inter-
national Conference on Big Data.

Nigam, B.; Ahirwal, P.; Salve, S.; and Vamney, S. 2011. Document
classification using expectation maximization with semi supervised
learning. International Journal on Soft Computing.

Ratner, A.; De Sa, C.; Wu, S.; Selsam, D.; and Ré, C. 2016. Data
programming: Creating large training sets, quickly. 30th Confer-
ence on Neural Information Processing Systems.

Ratner, A.; Bach, S.; Ehrenberg, H.; Fries, J.; Wu, S.; and Ré, C.
2018. Snorkel: Rapid training data creation with weak supervision.
The 44th International Conference on Very Large Data Bases.
Settles, B. 2009. Active learning literature survey. Computer Sci-
ences Technical Report 1648, University of Wisconsin—Madison.
Simard, P. Y.; Amershi, S.; et al. 2017. Machine teaching: A new
paradigm for building machine learning systems. arXiv preprint
arXiv:1707.06742.

Williams, J. D.; Niraula, N. B.; Dasigi, P.; Lakshmiratan, A.;
Suarez, C. G. J.; Reddy, M.; and Zweig, G. 2015. Rapidly scal-
ing dialog systems with interactive learning. In Natural Language
Dialog Systems and Intelligent Assistants. Springer. 1-13.

Zhu, X. 2015. Machine teaching: An inverse problem to machine
learning and an approach toward optimal education. AAAL

