
The Thirty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-20)

Draining the Water Hole: Mitigating
Social Engineering Attacks with CyberTWEAK

Zheyuan Ryan Shi,1 Aaron Schlenker,2 Brian Hay,3

Daniel Bittleston,1 Siyu Gao,1 Emily Peterson,1 John Trezza,1 Fei Fang1

1Carnegie Mellon University, 2Facebook, Inc., 3Security Works
ryanshi@cmu.edu, aschlenker@fb.com, bhay@securityworks.com
{dbittles, siyug, emilypet, jtrezza}@andrew.cmu.edu, feif@cs.cmu.edu

Abstract

Cyber adversaries have increasingly leveraged social engi-
neering attacks to breach large organizations and threaten the
well-being of today’s online users. One clever technique, the
“watering hole” attack, compromises a legitimate website to
execute drive-by download attacks by redirecting users to an-
other malicious domain. We introduce a game-theoretic model
that captures the salient aspects for an organization protecting
itself from a watering hole attack by altering the environment
information in web traffic so as to deceive the attackers. Our
main contributions are (1) a novel Social Engineering Decep-
tion (SED) game model that features a continuous action set
for the attacker, (2) an in-depth analysis of the SED model to
identify computationally feasible real-world cases, and (3) the
CYBERTWEAK algorithm which solves for the optimal pro-
tection policy. To illustrate the potential use of our framework,
we built a browser extension based on our algorithms which is
now publicly available online. The CYBERTWEAK extension
will be vital to the continued development and deployment of
countermeasures for social engineering.

1 Introduction

Social engineering attacks are a scourge for the well-being
of today’s online user and the current threat landscape only
continues to become more dangerous (Mitnick and Simon
2011). Social engineering attacks manipulate people to give
up confidential information through the use of phishing cam-
paigns, spear phishing whaling or watering hole attacks. For
example, in watering hole attacks, the attacker compromises
a legitimate website and redirects visitors to a malicious do-
main where the attacker can intrude the user’s network. The
number of social engineering attacks is growing at a catas-
trophic rate. In a recent survey, 60% organizations were or
may have been victim of at least one attack (Agari 2016).
Such cybercrime poses an enormous threat to the security at
all levels – national, business, and individual.

To mitigate these attacks, organizations take countermea-
sures from employee awareness training to technology-based
defenses. Unfortunately, existing defenses are inadequate.
Watering hole attackers typically use zero-day exploits, ren-
dering patching and updating almost useless (Sutton 2014).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sand-boxing potential attacks by VM requires high-end
hardware, which hinders its wide adoption (Farquhar 2017).
White/blacklisting websites is of limited use, since the adver-
sary is strategically infecting trustworthy websites.

We propose a game-theoretic deception framework to mit-
igate social engineering attacks, and, in particular, the wa-
tering hole attacks. Deception is to delay and misdirect an
adversary by incorporating ambiguity. Watering hole attack-
ers rely on the identification of a visitor’s system environment
to deliver the correct malware to compromise a victim. To-
wards this end, the defender can manipulate the identifying
information in the network packets, such as the user-agent
string, IP address, and time-to-live. Consequently, the at-
tacker might receive false or confusing information about the
environment and send incompatible exploits. Thus, decep-
tively manipulating employees’ network packets provides a
promising countermeasure to social engineering attacks.

Our Contributions We provide the first game-theoretic
framework for autonomous countermeasures to social en-
gineering attacks. We propose the Social Engineering De-
ception (SED) game, in which an organization (defender)
strategically alters its network packets. The attacker selects
websites to compromise, and captures the organization’s traf-
fic to launch an attack. We model it as a zero-sum game and
consider the minimax strategy for the defender.

Second, we analyze the structure and properties of the
SED game, based on which we identify real-world scenarios
where the optimal protection policy can be found efficiently.

Third, we propose the CYBERTWEAK (Thwart WatEring
hole AttacK) algorithm to solve the SED game. CYBER-
TWEAK exploits theoretical properties of SED, linear pro-
gram relaxation of the attacker’s best response problem, and
the column generation method, and is enhanced with domi-
nated website elimination. We show that our algorithm can
handle corporate-scale instances involving over 105 websites.

Finally, we have developed a browser extension based on
our algorithm. The software is now publicly available on the
Chrome Web Store.1 The extension is able to manipulate the
user-agent string in the network packets. We take additional
steps to improve the its usability and explain the output of
CYBERTWEAK intuitively. We believe it will be vital to the

1http://bit.ly/CyberTWEAK

13363

Figure 1: Anatomy of a watering hole attack.

continued development of social engineering defenses.
Related Work Deception is one of the most effective

ways to thwart cyberattacks. Recent papers have considered
deception techniques for protecting an enterprise network
from an attack by sending altered system environment in-
formation in response to scans performed during the recon-
naissance phase of an attack (Albanese, Battista, and Jajodia
2016; Jajodia et al. 2017). There is a rising interest in building
game-theoretic models for deception (Schlenker et al. 2018),
in particular in the use of honeypots (Durkota et al. 2015;
Pı́bil et al. 2012) in the enterprise network.

However, there is a fundamental difference between enter-
prise network defense and social engineering defense. In the
former, an adversary targets an organization by compromis-
ing computers in the network while in watering hole attacks
the attacker targets the user and compromises external web-
sites. A website in SED cannot be properly modeled as a
honeypot target, because the defender has no control over
it. Neither can the user, because the attack depends on an
external task – compromising a website. Instead of actively
querying the network, watering hole attackers passively mon-
itor the users’ traffic. This necessitates the continuous action
space for the attacker in SED, which is also different from
most previous works on enterprise network defense.

Laszka, Vorobeychik, and Koutsoukos (2015) study spear
phishing, another form of social engineering attacks. The
nature of watering hole attacks leads to additional complica-
tions. For example, watering hole attackers need to compro-
mise a website and then scan the traffic. Thus, in SED the
attacker has two layers of decision making: one continuous
and one discrete. This leads to a different problem formula-
tion and solution techniques than those in spear phishing.

2 Watering Hole Attacks

Watering hole attacks are a prominent type of social engineer-
ing used by sophisticated attackers. Before we describe our
modeling decisions, it is useful to highlight the primary steps
in executing a watering hole attack, as illustrated in Fig. 1. In
step 1, the attacker identifies a target organization. They use
surveys and external information like specialized technical
sites to understand the browsing habits of its employees. This
allows the adversary to determine the most lucrative websites
to compromise for maximum exposure to employees from
the targeted organization. In step 2, the adversary compro-
mises a set of legitimate websites. Not only do these websites

need to be lucrative, but the attacker also has to be strategic
in this choice. For example, compromising Google.com is
nearly impossible while the Polish Financial Authority, vic-
tim of the 2017 Ratankba malware attacks (Symantec 2017),
cannot invest the same security resources. Indeed, in previ-
ous attacks the attacker was not observed to compromise all
websites (Parliament 2018). In step 3, employees visit the
compromised website and are redirected to a malicious web-
site which scans their system environment and the present
vulnerabilities. To gather this information, attackers use tech-
niques such as analyzing the user-agent string, operating
system fingerprinting, etc. In Step 4, the attacker delivers
an exploit for an identified vulnerability. After these steps,
the attacker can navigate the target network and access the
sensitive information.

Our algorithm and browser extension introduce uncertainty
in step 3 of a watering hole attack. Identifying the vulnera-
bilities in a visitor relies on the information gathered from
reconnaissance. The extension modifies the network packets
so that the attacker gets false information about the visitor.
Deception is not free, though. Altering the network packet
can degrade the webpage rendered, e.g., displaying for An-
droid on a Windows desktop. Thus, the defender needs to
carefully trade-off security and the quality of service.

In reality, sophisticated attackers typically do not send all
exploits without tailoring to the packet information, as de-
fense would become easier after seeing more such unknown
exploits. Also, sending all exploits would be flagged as suspi-
cious and get blocked. The attacker would need to get a new
zero-day – a costly proposition. Thus, the attacker prefers
scanning the system environment of the incoming traffic.

3 Social Engineering Deception Game

We model the strategic interaction between the organization
(defender) and an adversary as a two-player zero-sum game,
where the defender chooses an alteration policy and the ad-
versary chooses which websites to compromise and decides
the effort spent on scanning traffic. In everyday activities em-
ployees of a target organization O visit a set of websites W
which includes legitimate sites and potential watering holes
set up by an adversary. Let tallw denote the total amount of
traffic to w ∈ W from all visitors and tw the total traffic to
w from O. The defender’s alteration policy is represented
by x ∈ [0, 1]|W | where xw is the proportion of O’s traffic to
website w ∈W for which the network packet will be altered.
We assume a drive-by download attack will be unsuccessful
if, and only if an employee’s packet is altered. However, it is
easy to account for different levels of adversary and defender
sophistication by adding an additional factor in Eq. (1) below.
We consider a cost cw to alter a single unit of traffic to w.
The defender is limited to a budget Bd on the allowable cost.

The adversary first chooses which websites to compromise,
represented by a binary vector y ∈ {0, 1}|W |. If yw = 1, i.e.,
they turn website w into a watering hole, they must pay a cost
πw. The attacker has a budget Ba for compromising websites
(w.l.o.g. we assume πw ≤ Ba ∀w ∈ W). The adversary
then decides the scanning effort for each compromised web-
site which can enable them to send exploits tailored to the

13364

packet information. We use ew to denote how much traffic
the attacker decides to scan per week for w, and refer to e as
the effort vector. The discreet attacker has a budget Be for
scanning the incoming traffic. In the special case where the
scanning effort is negligible (Be = ∞), all our complexity
and algorithmic results to be introduced still hold.

We consider an attacker who aims to maximize the ex-
pected amount of unaltered flow from target organization O
that is scanned by them, as each unit of scanned unaltered
flow can lead to a potential success in the social engineering
attack, i.e., compromise an employee and discover critical
information about O. We model it as a zero-sum game, and
therefore the defender’s goal is to minimize this amount.

Social engineering is a complex domain which we cannot
fully model. However, we build our model and assumptions
so that we can formally reason about deception, and even
when our assumptions are not met, our work provides a sensi-
ble solution. For example, cyber attackers may have tools to
circumvent existing deception techniques. Nonetheless, our
solution increases the attacker’s uncertainty about the envi-
ronment as they cannot easily obtain or trust the information
in the network packets. In appendix, we provide a detailed
discussion of the generality and limitations of our work.

4 Computing Optimal Defender Strategy

In this section, we present complexity analysis and algorithms
for finding the optimal defender strategy x∗ in this game,
which is essentially the minimax strategy, i.e., a strategy that
minmizes the attacker’s maximum possible expected amount
of scanned unaltered flow. x∗ should be the solution of the
following bi-level optimization problem P1.

P1 : minx maxy,e
∑

w∈W
κw(1− xw)ew (1)

s.t.
∑

w∈W
ew ≤ Be (2)

∑
w∈W

πwyw ≤ Ba (3)

ew ≤ tallw · yw, ∀w ∈W (4)
yw ∈ {0, 1}, ∀w ∈W (5)
ew ∈ [0,∞), ∀w ∈W (6)
∑

w∈W
cwtwxw ≤ Bd (7)

xw ∈ [0, 1], ∀w ∈W (8)

In objective function 1, κw = tw/t
all
w . Since tw(1−xw) is the

total amount of unaltered flow from the defender organization
O and ew/t

all
w is the percentage of incoming traffic that will

be scanned, κw(1 − xw)ew is the total scanned unaltered
traffic to w. Constraint 2-3 describes the budget constraint for
the attacker, and Constraint 4 requires that the attacker can
only scan traffic for the compromised websites. Constraint 7
is the budget constraint for the defender.

Unfortunately, solving P1 is challenging. It cannot be
solved using any of the existing solvers directly due to the
bi-level optimization structure, the mix of real-valued and bi-
nary variables and the bilinear terms in the objective function
(xwew). In fact, even the adversary’s best response problem
P2(x), represented as a mixed integer linear program (MILP)

below, is NP-hard as stated in Thm 1. Due to space limit, we
defer all the proofs to appendix.2

P2(x) : max
y,e

∑
w∈W

κw(1− xw)ew (9)

s.t. Constraints (2) ∼ (6) (10)
Theorem 1. Finding adversary’s best response is NP-hard.

Therefore, we exploit the structure and properties of SED
and P1 and design several novel algorithms to solve it. We
first identify two tractable special classes of SED games
which can be solved in polynomial time and discuss their real
world implications. Then we present CYBERTWEAK, our
algorithm for general SED games.

4.1 Tractable Classes

The first tractable class is identified based on the key obser-
vation stated in Thm 2: the optimal solutions of SED games
exhibit a greedy allocation of the attacker’s effort budget.
That is, for at most one website w will the attacker spend
scanning effort neither zero nor tallw .
Theorem 2. Let (x∗, y∗, e∗) be an optimal solution to P1,
WF = {w : e∗w = tallw },WZ = {w : e∗w = 0},WB = {w :
e∗w ∈ (0, tallw)}. There is an optimal solution with |WB | ≤ 1.

As a result, if the attacker’s scanning budget is so limited
that he cannot even scan through the traffic of any website, he
will use all the scanning effort on one website in the optimal
solution. Thus, the optimal defender strategy can be found
by enumerating the websites.
Corollary 1. (Small Effort Budget) If 0 < Be ≤ tallw , ∀w,
the optimal solution can be found in polynomial time.

The second tractable class roots in the fact that if the scan-
ning effort is negligible (or equivalently, Be = ∞) the at-
tacker only needs to reason about which websites to compro-
mise. Further, if the attacker has a systematic way of compro-
mising a website which makes the cost πw uniform across
websites, then the attacker only needs to greedily choose the
websites with the highest unaltered incoming traffic and the
defender can greedily alter traffic in the top websites. We
provide details about these algorithms in the appendix.
Theorem 3. (Uniform Cost + Unlimited Effort) If πw =
1, ∀w ∈ W and Be = ∞, the defender’s optimal strategy
can be found in polynomial time.

4.2 CyberTWEAK

For the general SED games, we propose a novel algorithm
CYBERTWEAK (Alg 1). It first computes an upper bound
for P1 leveraging the dual problem of the linear program
(LP) relaxation of P2(x). As a byproduct, the computation
provides a heuristic defender strategy x̂∗ (Line 2). It then
runs an optimality check (Line 3) to see if x̂∗ is optimal
for P1. When optimality cannot be verified, it solves the
original problem P1 by converting P1 to an equivalent LP
and applying column generation (Gilmore and Gomory 1961),
an iterative approach to compute the optimal strategy (Line
5-8). We further improve the scalability by identifying and
eliminating dominated website as pre-processing (Line 1).
Next we provide details about these steps.

2https://arxiv.org/abs/1901.00586

13365

Algorithm 1: CYBERTWEAK
1 Remove D ←FIND-DOMINATED-WEBSITES() from W .
2 Get heuristic defender strategy x̂∗ by solving P̂1.
3 if OPT (P2(x̂

∗)) ≤ OPT (P̃3(x̂
∗)) then return x̂∗

4 Initialize max effort vector set eA = eP2(x̂
∗).

5 while new max effort vector was added to eA do

6 x← solution of P LP
1 (eA).

7 e← solution of P2(x).
8 Add e to eA.

Upper Bound for P1 Let P̂2(x) be the LP relaxation
of P2(x) and denote the dual variables of the (relaxed) con-
straints (2) ∼ (5) as λ1, λ2, ν, η. We then include the variable
x for the defender strategy along with the dual problem, and
obtain the minimization problem P̂1.

P̂1 : min
x,λ,ν,η

Beλ1 +Baλ2 +
∑

w∈W
ηw (11)

s.t. κw(1− xw) ≤ λ1 + νw, ∀w ∈W (12)

πwλ2 − tallw νw + ηw ≥ 0, ∀w ∈W (13)
∑

w∈W
cwtwxw ≤ Bd (14)

xw ∈ [0, 1], λ1, λ2, νw, ηw ≥ 0, ∀w ∈W (15)

P̂1 is an LP which can be solved efficiently. In addition, x̂∗

in the optimal solution for P̂1 is a feasible defender strategy
in the original problem P1. Therefore, solving P̂1 leads to a
heuristic defender strategy as well as bounds for the optimal
value of P1. Denote the optimal value of a problem P as
OPT(P). We formalize the bounds below.

Theorem 4. If Be ≥ maxw tallw , OPT (P̂1) ≤ 3OPT (P1).

Theorem 5. Let x∗, x̂∗ be an optimal solution to P1, P̂1.

OPT(P1) ≤ OPT(P2(x̂
∗)) ≤ OPT(P̂1) ≤ OPT(P̂2(x

∗)).

Optimality Conditions for x̂∗ We present a sufficient
condition for optimality, which leverages the solution of the
following LP P̃3(x̂

∗).

P̃3(x̂
∗) : min

x,v
v (16)

s.t. v ≥
∑

w∈W
κw(1− xw)ew, ∀e ∈ eP2(x̂

∗) (17)
∑

w∈W
|xw − x̂∗| ≤ ε (18)

Constraints (7) ∼ (8)

ε is an arbitrary positive number and eP2(x̂
∗) denotes the

set of optimal effort vectors in P2(x̂
∗). The following claim

shows the optimality condition.

Claim 1. Given x̂∗, an optimal solution to P̂1, x̂∗ is optimal
for P1 if OPT (P2(x̂

∗)) ≤ OPT (P̃3(x̂
∗)).

Clearly, when ε is large, OPT (P̃3(x̂
∗)) is lower and it is

harder to satisfy the condition, so in CYBERTWEAK, we
use a small enough ε in P̃3(x̂

∗).

Column Generation Define êA as the set of all max
effort vectors which satisfy

∑
w ew = Be and |WB | ≤ 1.

According to Thm 2, restricting the attacker to only choose
strategies from êA will not impact the optimal solution for
the defender. As a result, P1 is equivalent to the following
LP, denoted as PLP

1 (eA), when eA = êA.

PLP
1 (eA) : min

x,v
v (19)

s.t. v ≥
∑

w∈W
κw(1− xw)ew ∀e ∈ eA (20)

Constraints (7) ∼ (8)

Although existing LP solvers can solve PLP
1 (êA), the order

of êA is prohibitively high, leading to poor scalability. There-
fore, CYBERTWEAK instead uses an iterative algorithm
based on the column generation framework to incrementally
generate constraints of the LP. Instead of enumerating all of
êA, we keep a running subset eA ⊆ êA of max effort vectors
and alternate between solving PLP

1 (eA) (referred to as the
master problem) and finding a new max effort vector to be
added to eA (slave problem). In the slave problem, we solve
the adversary’s best response problem P2(x) where x is the
latest defender strategy found. This process repeats until no
new effort vectors are found for the adversary. Recall that
we get x̂∗ and eP2(x̂

∗) when finding upper bound and veri-
fying optimality of x̂∗, which can serve as the initial set of
strategies for column generation.

Dominated Websites Not all websites are equally valu-
able for an organization as some are especially lucrative for
an adversary to target. In a Polish bank, many employees
may visit the Polish Financial Authority website daily, while
perhaps a CS conference website is rarely visited by a banker.
Intuitively, attackers will not compromise the conference
website and thus, the bank may not need to alter traffic to
it. Identifying such websites in pre-processing could greatly
reduce the size of our problem. A website w is dominated by
another website u if the attacker would not attack w unless
they have used the maximum effort on u, i.e. eu = tallu , re-
gardless of the defender’s strategy. Thm 6 presents sufficient
conditions for a website to be dominated and leads to an al-
gorithm (Alg. 6) to find dominated website to be eliminated.
Theorem 6. Consider websites u,w ∈ W . If the following
conditions hold, the website w is dominated by u:

xmax
u := Bd/(cutu) ≤ 1, κw ≤ κu(1− xmax

u),

πw ≥ πu, tallw ≤ tallu .

We conclude the section with the following claim.
Claim 2. CYBERTWEAK terminates with optimal solution.

In light of the hardness of the attacker’s best response prob-
lem (Thm 1), we also design a variant of CYBERTWEAK,
which uses a greedy heuristic to find a new max effort
vector to be added in each iteration of column generation
(denoted as GREEDYTWEAK). The algorithm allocates
the adversary’s budget to websites in decreasing order of
rw = κw(1− xw)αw, where αw is a tuning parameter. An-
other variant uses an exact dynamic programming algorithm
for the slave problem. Details about these variants can be

13366

Algorithm 2: FIND-DOMINATED-WEBSITES

1 Define U = {w ∈W : cwtw ≥ Bd}. Let D = ∅.
2 Calculate xmax

u = Bd/cutu, ∀u ∈ U
3 foreach website w ∈W do
4 Set Uw = {u ∈ U : κw ≤ κu(1− xmax

u)}
5 if exists U∗

w ⊆ Uw such that
6 (1)

∑
u∈U∗

w
πu ≤ πw, (2)

∑
u∈U∗

w
tallu ≥ tallw , and

(3)
∑

u∈U∗
w
tallu ≥ Be then D = D ∪ {w}

7 return set of dominated websites D

found in the appendix. Also, we note that the SED problem is
related to the recent work on bi-level knapsack with interdic-
tion (Caprara et al. 2016). However, our outer problem of P1

is continuous rather than discrete, and the added dimension
of adversary’s effort makes the inner problem P2(x) more
complicated than that being studied in this work.

5 Experiments

We developed and tested CYBERTWEAK to match the scal-
ability required of large-scale deployment. Unless otherwise
noted, problem parameters are described in details in the ap-
pendix. All results are averaged over 20 instances; error bars
represent standard deviations of the mean.

First, we run experiments on the polynomial time tractable
cases (Corollary 1 and Theorem 3). Fig. 2a shows that in both
cases, our solution can easily handle 105 websites, applicable
to real-world corporate-scale problems.

Moving on to the general SED games, we test 3 algorithms
(CYBERTWEAK, GREEDYTWEAK, and RELAXEDLP)
with two other baselines, MAXEFFORT and ALLACTIONS.
RELAXEDLP refers to solving P̂1. MAXEFFORT solves
PLP
1 (êA) directly without column generation. ALLACTIONS

decomposes SED into subproblems, each assuming some
adversary’s effort vector is a best response. Its details can be
found in the appendix. We test the algorithms with different
problem scales. In small and medium sized instances, we skip
dominated website eliminateion (DWE) step (Line 6) and
optimality check (OC) step (Line 3) in Alg. 1 as the problem
size is small enough, making these steps unnecessary. We use
solid lines to represent methods with optimality guarantee
and dotted lines for others (RELAXEDLP based methods).

For small instances (Fig. 2b), both baselines become im-
practical even on problems with less than 12 websites. How-
ever, CYBERTWEAK is able to find the optimal solutions
rather efficiently. GREEDYTWEAK slightly improves over
CYBERTWEAK. RELAXEDLP yields the fastest running
time, despite a solution gap above 6% as shown in Table 1.

For medium-sized instances (Fig. 2c), baseline algo-
rithms cannot run and GREEDYTWEAK stops being help-
ful, mainly because the “better” effort vectors generated in
GREEDYTWEAK far outnumbers the “best” effort vectors
in CYBERTWEAK (Fig. 2d) despite the saved time in each
iteration. RELAXED LP has negligible running time and often
solves the problem optimally (Table 1).

For large instances (Fig. 2e), CYBERTWEAK with both

(a) Tractable cases (b) Small instances

(c) Medium instances running
time

(d) Medium instances #strategies

(e) Large instances (f) Trade-off

Figure 2: Experiment results

DWE and OC steps is able to handles 105 websites in 10
seconds. When we remove (denoted as “w\o”) DWE and/or
OC step, runtime increases significantly, showing the efficacy
of these steps.3 Compared to RELAXEDLP or RELAXEDLP
enhanced with DWE step, which can also efficiently handles
105 websites, CYBERTWEAK has optimality guarantee.

Finally, we consider the trade-off between the risk expo-
sure and degradation in rendering websites, represented by
the objective OPT (P1) and defender’s budget Bd, respec-
tively. With budget B̄d =

∑
w∈W cwtw, the attacker would

have zero utility. With zero defender budget, the attacker
would get maximum utility Ū . Fig. 2f shows how the utility
ratio OPT (P1)/Ū changes with the budget ratio Bd/B̄d. As
the organization increases the tolerance for service degrada-
tion, its risk exposure drops at a decreasing rate.

3The impact of DWE varies significantly across instances and
relies heavily on the distribution of traffic. In less than 4 of the 20
instances DWE did not reduce the problem size by much. We report
in Fig. 2e the majority group where DWE eliminated a significant
number of websites. We provide further discussion in the appendix.

13367

|W | Gap # Exact |W | Gap # Exact
4 13.19% 2/20 150 7e-8 16/20
8 8.11% 5/20 200 8e-10 19/20

12 6.63% 8/20 250 0 20/20
50 2e-6 18/20 300 2e-3 17/20
100 8e-9 19/20 350 2e-8 18/20

Table 1: Solution quality of RELAXEDLP, with the number
of instances where RELAXEDLP solves the problem exactly.

Figure 3: Screenshots of the browser extension

6 Deployment

Based on CYBERTWEAK, we developed a browser exten-
sion (available on the Google Chrome Web Store1). It can
modify the user-agent string sent to websites automatically
during browsing which contains information such as the op-
erating system, browser, and services running on the user’s
machine. The extension receives from the user the websites
visited W , number of visits per week tw, the cost to alter the
user-agent string cw and budget Bd. The total traffic tallw and
attack cost πw are estimated from the Cisco Umbrella 1 Mil-
lion list (Cisco 2019). The attacker’s budgets are set in scale
with the previously mentioned parameters. The extension
runs CYBERTWEAK to set the probability of altering the
user-agent string for each website. Note that it is the relative
magnitudes, rather than the exact values, that matter.

The extension takes additional steps to make our algorithm
more usable and interpretable. First, some users may find it
hard to specify the cost of altering user-agent string cw and
budget Bd. Our extension will adjust the values based on
the qualitative feedback provided by users about whether the
degradation of the website’s rendering is acceptable when
they visit a website using the modified user-agent, as shown
in Fig. 3. Second, in addition to showing the computed alter-
ing probabilities, the extension also displays a personalized

“risk level” for each website, to help the user understand the
algorithm’s output. Less popular websites frequented more
often by the user have higher risk, as shown in Fig. 3.

As mentioned in Section 3, advanced cyber attackers might
sometimes circumvent the existing deception methods. Fu-
ture versions of the extension will leverage the latest advances
in anti-fingerprinting techniques, which entail manipulating
more than the user-agent string.

We believe this CYBERTWEAK extension is vital to the
continued study and development of the countermeasure we
develop for this domain and large scale deployments.

Acknowledgments

Co-authors Z. R. Shi and F. Fang are supported in part by
the U.S. Army Combat Capabilities Development Command
Army Research Laboratory under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA).

References

Agari. 2016. Email Security: Social Engineering Report.
Albanese, M.; Battista, E.; and Jajodia, S. 2016. Deceiv-
ing attackers by creating a virtual attack surface. In Cyber
Deception. Springer. 167–199.
Caprara, A.; Carvalho, M.; Lodi, A.; and Woeginger, G. J.
2016. Bilevel knapsack with interdiction constraints. IN-
FORMS Journal on Computing.
Cisco. 2019. Cisco Umbrella Popularity List.
Durkota, K.; Lisỳ, V.; Bosanskỳ, B.; and Kiekintveld, C.
2015. Optimal network security hardening using attack graph
games. In IJCAI.
Farquhar, D. 2017. Watering hole attack prevention.
Gilmore, P. C., and Gomory, R. E. 1961. A linear program-
ming approach to the cutting-stock problem. Operations
research 9(6):849–859.
Jajodia, S.; Park, N.; Pierazzi, F.; Pugliese, A.; Serra, E.;
Simari, G. I.; and Subrahmanian, V. 2017. A probabilistic
logic of cyber deception. IEEE Transactions on Information
Forensics and Security 12(11):2532–2544.
Laszka, A.; Vorobeychik, Y.; and Koutsoukos, X. 2015. Op-
timal personalized filtering against spear-phishing attacks. In
AAAI.
Mitnick, K. D., and Simon, W. L. 2011. The art of deception.
John Wiley & Sons.
Parliament. 2018. Watering Hole Attacks.
Pı́bil, R.; Lisỳ, V.; Kiekintveld, C.; Bošanskỳ, B.; and
Pěchouček, M. 2012. Game theoretic model of strategic hon-
eypot selection in computer networks. In GameSec. Springer.
Schlenker, A.; Thakoor, O.; Xu, H.; Tambe, M.; Vayanos,
P.; Fang, F.; Tran-Thanh, L.; and Vorobeychik, Y. 2018.
Deceiving cyber adversaries: A game theoretic approach. In
AAMAS.
Sutton, M. 2014. How to protect against watering hole
attacks.
Symantec. 2017. Attackers target dozens of global banks
with new malware.

13368

