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Abstract

Machine learning applied to financial transaction records
can predict how likely a small business is to repay a loan.
For this purpose we compared a traditional scorecard credit
risk model against various machine learning models and
found that XGBoost with monotonic constraints outper-
formed scorecard model by 7% in K-S statistic. To deploy
such a machine learning model in production for loan appli-
cation risk scoring it must comply with lending industry reg-
ulations that require lenders to provide understandable and
specific reasons for credit decisions. Thus we also developed
a loan decision explanation technique based on the ideas of
WoE and SHAP. Our research was carried out using a his-
torical dataset of tens of thousands of loans and millions
of associated financial transactions. The credit risk scoring
model based on XGBoost with monotonic constraints and
SHAP explanations described in this paper have been de-
ployed by QuickBooks Capital to assess incoming loan ap-
plications since July 2019.

1 Introduction

Intuit QuickBooks Online (QBO) offers software solutions
for millions of small businesses in US for accounting,
recording sales and bill payments, running payroll, etc. Our
research shows that the financial records generated by these
activities can predict how likely a small business is to re-
pay a loan. This is economically important because accurate
loan outcome predictions, by reducing information asym-
metry (Akerlof 1970), benefit both lenders and borrowers.
Lenders benefit because when loan outcome predictions are
more accurate, losses due to loan defaults are reduced and
with lower losses lenders can offer more competitive loan
interest rates and expand their business to borrowers who
would otherwise be denied loans. Small businesses bene-
fit because good loan candidates can now access loans that
were unavailable before and/or at better interest rates, while
poor loan candidates are prevented from taking loans that
are likely to harm both them and their lenders.

A unique challenge of using machine learning for credit
risk decisions is that many countries (including USA) have
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regulations that require lenders to clearly explain their deci-
sions. These regulations are motivated by findings that errors
in the information collected by credit reporting agencies ad-
versely impacts millions. For example, America’s Federal
Trade Commission (FTC 2013; 2015) found that: “One in
four consumers identified errors on their credit reports that
might affect their credit scores;one in five consumers had an
error that was corrected by a credit reporting agency after
it was disputed, on at least one of their three credit reports;
Four out of five consumers who filed disputes experienced
some modification to their credit report.”

Almost all lenders use financial information about the
borrower to assess their financial health. For business bor-
rowers, underwriters want to know the type of business,
the purpose of the loan and liquidity/solvency/profitability
of the business as assessed using financial health ratios
such as: Debt Ratio, Debt-to-Income Ratio, Debt-to-Equity
Ratio, Loan-to-Value Ratio, Debt Service Coverage Ratio,
Current Ratio, Inventory Ratio, etc. When a loan applica-
tion is rejected using these eligibility rules and ratios, it
is relatively straightforward to explain the reason for re-
jection by listing the set of failed criteria. However mod-
ern statistical and machine learning techniques (Perlis 2011;
Duffie 2003; Chen and Guestrin 2016) can model credit risk
using much richer information extracted from transactions
directly downloaded from borrowers’ financial accounts.
When loan decisions are the results of machine learning
models tracking thousands of relationships across hundreds
of interdependent factors, explaining credit decision requires
a more sophisticated approach.

2 Outline

The rest of the paper is organized as follows: First, we dis-
cuss our loan outcomes dataset and how credit risk mod-
els are evaluated. Traditional scorecard risk models are de-
scribed followed by risk models that use machine learning
algorithms such as XGBoost (Chen and Guestrin 2016). Sec-
ond, we discuss the generation of decision explanations and
compare results from two different approaches. Next, we
discuss some practical aspects of explaining credit risk deci-
sions. Then we describe the impact of our research on how
QuickBooks Capital issues loans. Finally, we conclude the
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paper with a summary of what we have learned.

3 Data, Features, Outcomes and Models

Our research was carried out using loan performance data
from Intuit QuickBooks Capital which has offered business
loans to users of QBO since 2017. These loans are repaid
weekly or monthly over a period of six, nine or 12 months.
The average loan size is $19,000 with APRs from 12% to
32%. See (Intuit 2019) for details. QBO users are eligible
for these loans if they can show good financial health.

Between 2017 and 2019, tens of thousands of loans have
been issued, and over a quarter of issued loans have reached
maturity. Each loan applicant supplies about six months of
business banking data downloaded directly from their finan-
cial institutions. Thus alongside the tens of thousands of ap-
plications our dataset has hundreds of millions of business
banking transactions. A number of features are derived cor-
responding to: account balance patterns, cash flow trends,
composition of recurring liabilities, seasonality and other
spending patterns, frequency of negative financial events
such as overdrafts and late payments, etc.

We will not discuss here the hundreds of features that can
be extracted from banking transactions apart for noting that
this kind of data is intrinsically noisy. Some of the noise is
generated during download: transactions may include web
scraping errors, some transactions may be duplicated, others
may entirely disappear. Noise also comes from the processes
of financial systems that generate transaction descriptions as
representation of the actual business events. Dedicated ma-
chine learning systems process these noisy representation in
order to recognize what they represent (income vs refunds
vs account transfers, expenses vs loan payments vs late fees,
etc). Despite the noisy channels that generate and transmit
transaction information, these machine learning systems to-
day are ˜80% accurate when predicting where each finan-
cial transaction belongs in the personal chart of accounts
of each small business. Our development of these dedicated
systems has been discussed in (Lesner et al. 2019). In addi-
tion to noise introduced by information representation and
transmission, our dataset exhibits significant variability due
to the differences in the nature of business among loan ap-
plicants. QuickBooks Capital serves a widely varied popula-
tion of small businesses: building contractors, flower shops,
cement factories, delivery services, etc.

Loan Outcomes

The outcome of a credit decision is not fully known until the
loan has matured and either the full amount due is repaid in
the expected time or what is repaid is a partial amount and/or
over a much longer period of time. We define a loan to be
in good standing when timely payments are being made or
payments are less than 60 days past due. Using this defini-
tion for our discussion, we will simplify loan outcomes as
follows:

• Indeterminate Outcome loans are all those in good stand-
ing which mature in more than 30 days – these loans we
exclude from further consideration.

• Good Outcome loans are all those loans still in good
standing which will mature in 30 days plus all those loans
already repaid in full.

• Bad Outcome loans are all the rest – the ones that are
delinquent (60+ days past due) plus the loans not fully
repaid (write-offs due to default).

Scorecard Risk Models

Credit risk models predict how likely a given loan will end
in a bad outcome. A long-established and commonly used
type of risk model, called a Scorecard (Perlis 2011), can be
thought of as a table listing loan application features each
having a number of feature bins with corresponding weights.
In such a table there may be a feature called “credit his-
tory depth” with the following possible bins: less than one
year, less than two years, less than four, less than eight,
more than eight years. The weights associated with these
five bins might be -100, 0, 20, 40, 100 and only one of these
weights would be selected when that application feature is
being scored. Thus each feature contributes one feature bin
weight and the overall application risk score is computed as
the sum of these feature bin weights in log-odds space and
then back-transformed to score space.

Construction of scorecard risk models requires two con-
cepts: weight of evidence (WoE) and information value
(IV):

• WoE tells the predictive power of a given feature bin. It
measures how well that one feature value separates good
outcome loans from bad outcome loans.

• IV ranks the relative importance of features and feature
bins, i.e., higher IV indicates higher predictive power
which makes it possible to construct a scorecard risk
model from just those features that matter most.

WoE and IV are computed as follows:

WoE = ln(
Pr(Good)

Pr(Bad)
) (1)

IV =

n∑

i=1

(Pr(Goodi)−Pr(Badi))× ln(
Pr(Goodi)

Pr(Badi)
) (2)

Table 1 shows WoE and IV for a sample feature. While
it is trivial to bin categorical features, binning continu-
ous variables needs more sophistication. For our score-
card risk model, we use the Break and Heal (XENO 2008;
Perlis 2011) algorithm in order to maximize feature IV. Man-
ual adjustment of bins is then applied to satisfy monotonic
relationship requirement (see discussion in section 4).

Scorecard risk models are often designed by subjecting
loan application features and historical loan outcomes to fit-
ting techniques such as logistic regression. Missing and ex-
treme feature values can be binned separately and both cat-
egorical and continuous variables can be handled with opti-
mized binning (XENO 2008). During the construction, the
goal is to find bins and bin weights so that resulting score-
cards separate good and bad outcomes as evaluated using
portions of data held back and not used for optimizing bins
and weights.
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Table 1: WoE and IV calculated for a sample feature
Interval Levels % Good % Bad % Total P(Bad) P(Good) WoE IV

0 - 0.007 60.2% 87.6% 84.7% 0.07 0.93 -0.375 0.103
0.007 - 518.8 3.4% 0.2% 0.6% 0.62 0.38 2.617 0.082
518.8 - 1732.0 5.5% 0.7% 1.2% 0.47 0.53 2.035 0.097
1732.0 - 6070.6 9.1% 1.9% 2.7% 0.36 0.64 1.561 0.113
6070.6 - 10103.1 5.1% 1.3% 1.7% 0.32 0.68 1.383 0.053
10103.1 - 17505.6 4.4% 1.7% 2.0% 0.24 0.76 0.981 0.027
17505.6 - 89016.7 8.2% 4.3% 4.7% 0.18 0.82 0.647 0.025

89016.7 - Inf 4.1% 2.3% 2.5% 0.17 0.83 0.578 0.010

Total 100.0% 100.0% 100.0% 0.10 0.90 0.510

Table 2: Risk Model K-S Performance
Model Type K-S Statistic

Logistic Regression 0.335
Neural Network 0.385
Random Forest 0.390
GBDT (sklearn) 0.408
Scorecard 0.410
XGBoost 0.437

Due to their simplicity, scorecard models are easy to use
and easy to understand and explain. To use one requires just
a sheet of paper and it is relatively straightforward to ex-
plain decisions based on a scorecard model. The main dis-
advantage of scorecard models is that their simplicity can
also limit their predictive power.

Non Linear Risk Models

Non Linear Risk models (such as those based on deci-
sion trees, random forests, boosted trees and neural net-
works) may perform better than scorecard models when fea-
ture interactions are complex. We used our lending dataset
(See section 3) to benchmark a number of different models
and found that XGBoost (Chen and Guestrin 2016) outper-
formed all others by 7% maximum separation in cumula-
tive distribution between loans with good and bad outcomes.
This performance measure is known as the K-S statistic
(Kolmogorov 1933; Smirnov 1948). Our benchmark results
are summarized in Table 2. Models were built on 75% of the
available data and their K-S performance was measured on
the remaining held back 25%.

Surprisingly Neural Network risk model performed rel-
atively poorly on our loan outcomes dataset, however this
confirms others’ findings (Guegan, Addo, and Hassani 2018)
and might be due to a large number of features compared
to the limited number of training examples (Hughes 1968).
Also notable is that despite its relative simplicity Scorecard
ranks second in performance. Based on these benchmark re-
sults we focus further discussion to just Scorecard and XG-
Boost risk models.

4 Explaining Risk Model Results

Adverse Action (AA) Codes

In the USA the Fair Credit Reporting Act (FCRA 1970) re-
quires lenders to explain all unfavourable credit decisions.
This is commonly done using Adverse Action (AA) codes.
About 100 different codes are used so just a small sample
is shown in Table 3. To comply with this requirement we
associate each AA code with a group of related risk model
features. As part of this association we indicate whether high
values of a given feature increase or decrease the credit risk.
This is done to ensure that features in each group are se-
mantically related and that each reason code is assigned a
mutually exclusive set of features. Table 4 shows what this
association looks like.

Table 3: Adverse Action (AA) Reason Codes
AA# Reason

1 Amount owed on accounts is too high
2 Level of delinquency on accounts
3 Too few bank revolving accounts
... ...
99 Lack of recent account information

Table 4: AA Codes Assigned to Features
AA# Feature# Rejection Reason

1 12 High feature 12 value lowers risk
1 5 High feature 5 value lowers risk
1 10 High feature 10 value lowers risk
2 9 High feature 9 value raises risk
... ... ...
13 6 High feature 6 value raises risk

Explaining Scorecard Model Decisions

To explain why a borrower was rejected due to their score-
card risk score being too high, all one needs to do is identify
the feature value bins with the largest contribution to that
borrower’s scorecard risk score. For example if the feature
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bin Average bank balance is less than $200 has the great-
est impact on a scorecard risk score the adverse action AA
explanation could be: Your average bank balance is too low.

Risk Model Monotonicity

Construction of Scorecard risk models that give acceptable
explanations requires that as long as a feature’s value con-
tinues to move in the same direction (either increasing or
decreasing) the resulting risk score must not change direc-
tion (it also continues to increase or decrease). For example
if a feature like “increased borrower income” reduces loan
risk there should be no point beyond which greater income
raises loan risk. Only features that satisfy this monotonicity
requirement can be used when building scorecard risk mod-
els.

Explaining XGBoost Model Decisions

As shown above, when a loan application is rejected using a
Scorecard it is relatively straightforward to explain the rea-
son for rejection. However when relationships are nonlinear
and feature interactions are complex and methods like XG-
Boost are used, the generation of credit decision explana-
tions requires a more sophisticated approach. We know of
two that are suitable:

1. LIME generates random neighborhood samples to weigh
features according to the distance from the record in
question (Tulio Ribeiro, Singh, and Guestrin 2016).

2. SHAP calculates feature attribution using Shapley values
(Lundberg and Lee 2017).

Since SHAP has better consistency with human intuition
(Lundberg and Lee 2017), this was the technique we se-
lected.

To explain the risk score for a given loan application using
SHAP we compute the Shapley value (using SHAP package
(Lundberg and Lee 2017)) for each feature of that loan ap-
plication. The feature with the largest Shapley value is then
mapped to the AA reason code using table 4.

Monotonicity with XGBoost

The monotonicity requirement that ensures credit decisions
have acceptable explanations (as described in section 4) was
satisfied using a feature in XGBoost (DMLC/xgboost 2016)
which forces predictions to monotonically increase or de-
crease with respect to each feature when other features are
unchanged. For a tree based model, the right child’s value is
constrained to be higher than the left child’s value for each
split of a particular feature. Without this constraint, the tree
algorithm ignores this feature and finds another feature to
split.

To measure the effect with and without monotonic con-
straints, we used repeated 5-fold cross validation. Figure 1
shows that models with monotonic constraints improve K-S
performance by 8% on average. As part of this evaluation we
also computed ROC-AUC and as shown in figure 2 mono-
tonic constraints improve ROC-AUC performance by about
3%.

We suspect monotonic constraints improve performance
because they reduce the influence of noise much like regu-
larization constraints do for Neural Networks (Hinton et al.
2012; Kukacka, Golkov, and Cremers 2017). Some noise in
our feature dataset is introduced during transaction down-
load and some during transaction understanding (see section
3), most of it however we believe exists due to natural vari-
ation between loan applications.

Figure 1: Comparison of K-S between XGBoost with and
without monotonic constrains.

Figure 2: Comparison of AUC between XGBoost with and
without monotonic constrains.

Monotonic SHAP Pitfall

When using SHAP with monotonic constraints one has to
pay close attention to identified relationships between fea-
tures and risk score. It is important to verify the observed
direction of impact is reasonable because features with a
highly unbalanced distribution over the bins can cause prob-
lems. For example when missing features are encoded, using
an arbitrary feature value like zero, the resulting distribution
can be skewed towards the zero value bin. Now if the real
relationship between a feature and the outcome is weak that
arbitrary decision to use zero for missing features may cause
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a reverse interpretation by the model of the feature/outcome
dependence. Situations like this lead to generation of incor-
rect explanations of credit decisions and thus must be pre-
vented.

Figures 3 and 4 illustrate this pitfall using two diagrams.
In the top diagram SHAP values are plotted in red and blue
horizontally with one plot per feature stacked from top to
bottom, most important to least important. Red denotes large
feature values (e.g. average account balance is a large num-
ber). Blue denotes small feature values (e.g. average account
balance is a small number). A gray circle selects the plot of
the feature at the top which by its high position we know is
the most important. The bottom diagram shows the skewed
84.7% popularity of this feature’s 0–0.007 bin and its nega-
tive WoE, yet large values of this one feature work to lower
risk for all feature values above 0. Since this feature (when
present) is very predictive we can continue to use it as long
as the missing information situation (which happens 84.7%
of the time) is handled properly – for example by creating a
separate dummy feature for it.

Figure 3: SHAP global summary plot.

Scorecard vs. XGBoost Explanations

Figure 5 shows how often Scorecard and XGBoost risk
model decision explanations agree about AA reason codes
at different risk score levels. For risk scores falling in the
top 10% , the models agree ˜52% of the time. Agreement
falls as risk scores decrease, yet even in the lowest 10% of
risk scores the two models still agree 42% of the time.

The 42% - 52% agreement is reasonable because the deci-
sion boundary in XBGoost is more complex than scorecard,
and feature attribution in the two models is also different.
We suspect that disagreement occurs in situations where no
single reason dominates. For example the drop in agreement

Figure 4: WoE pattern of the feature circled in Figure 3.

when moving from high to low risk scores makes intuitive
sense since riskier groups tend to have the same feature attri-
bution regardless of the model – the more risky the borrower
the easier it is to identify features that are indicative of high
risk and to provide matching explanations.

Figure 5: Fraction of loans that would have been rejected
with the same reason from scorecard and XGBoost model.
X-axis shows descending risk score decile.

5 Deployment and Impact

The machine learning XGBoost risk model and SHAP ex-
planations here described have been deployed by Quick-
Books Capital to evaluate incoming loan applications since
July 2019.

So far the main benefits include: (1) increased trans-
parency into automated loan decisions (2) ability to offer
loans to wider range of customers

Over time, as the outcomes of loans issued so far be-
come known, we expect machine learning risk models to
cut QuickBooks Capital loan default rates by 20%. Figure
6 shows that with the scores predicted from our XGBoost
model, rejecting top 20% loan applications with highest risk
scores will result in a decrease in loan bad outcome rate by
42% (from 8.5% down to 4.9%). And with some investment
we expect the number of loan applications that can be han-
dled entirely by our machine learning models to grow fur-
ther. Loan application review is a major business cost thus
effective automation has a large economic payoff.
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Figure 6: Cumulative bad outcome rate vs. descending score
percentile. X-axis is on descending score percentile.

6 Conclusions

In this paper, we have shared how small business loan deci-
sions can be made using machine learning risk models ap-
plied to financial transactions and how decision explanations
can be generated to comply with lending regulations which
is essential for production deployment.

We benchmarked risk models constructed using score-
card, Random Forest, Neural Networks, GBDT and XG-
Boost. Notably risk models designed using XGBoost
achieved K-S 7% better than anything else on our dataset
of tens of thousands of small business loans issued over the
last two years.

To comply with lending industry regulations that require
lenders to provide understandable and specific reasons for
credit decisions, we developed a technique that combines the
ideas of WoE and Shapley values for local model-agnostic
explanations with monotonic constraints in XGBoost. Us-
ing this technique we empirically evaluated the AA reason
codes generated from risk models using scorecard and XG-
Boost, showing how their explanations differ across various
levels of risk score. The observed differences require further
research including how to automate the evaluation of tens of
thousands of generated explanations.
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