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Abstract

Like good human tutors, intelligent tutoring systems should
detect and respond to students’ affective states. However, ac-
curacy in detecting affective states automatically has been
limited by the time and expense of manually labeling train-
ing data for supervised learning. To combat this limitation,
we use semi-supervised learning to train an affective state de-
tector on a sparsely labeled, culturally novel, authentic data
set in the form of screen capture videos from a Swahili lit-
eracy and numeracy tablet tutor in Tanzania that shows the
face of the child using it. We achieved 88% leave-1-child-out
cross-validated accuracy in distinguishing pleasant, unpleas-
ant, and neutral affective states, compared to only 61% for the
best supervised learning method we tested. This work con-
tributes toward using automated affect detection both off-line
to improve the design of intelligent tutors, and at runtime to
respond to student affect based on input from a user-facing
tablet camera or webcam.

1 Introduction and Relation to Prior Work

The field of affective computing seeks to narrow the com-
municative gap between the naturally emotional human and
the emotionally challenged computer by developing compu-
tational systems that recognize and respond to the affective
states (i.e., emotions) of the user (Picard 2000). In partic-
ular, considerable work has investigated the automated esti-
mation of affective states from facial expressions (e.g. (Faria
et al. 2017)) and other visual cues (e.g. (Bidwell and Fuchs
2011)). Emotional expressions are socially reactive, so users
may try to mask certain unpleasant emotions (McDaniel et
al. 2007).

Much of the research on affective computing has focused
on making intelligent tutoring systems react to students’
emotions (e.g., (Woolf et al. 2009), (D’Mello and Graesser
2012), (Craig et al. 2004)). This paper likewise presents
work on automated detection of children’s affective states in
RoboTutor (Mostow 2019), a tablet app that (like the other 4
Finalists in the Global Learning XPRIZE (XPRIZE 2015))
achieved dramatically higher learning gains in basic literacy
and numeracy than a delayed-treatment group in XPRIZE’s
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15-month-long independent controlled study of 2700 chil-
dren in 170 villages in Tanzania. RoboTutor’s thousands of
activities teach children who have little or no prior school-
ing. Our eventual goal for automated affect detection is to
help RoboTutor increase children’s engagement and learn-
ing gains. The work reported here is novel in several re-
spects.

Novel population: Work on affect detection in intelligent
tutors has typically focused on American high school and
college students. In contrast, the work reported here is based
on data from children ages 6-12 in Tanzania. This data is
novel in three respects. First, few databases of facial ex-
pressions include children’s faces (Egger et al. 2011) (Noja-
vanasghari et al. 2016). Second, even fewer include Africans
(Du, Tao, and Martinez 2014). Finally, emotional expression
varies from culture to culture (Matsumoto 1991), so affect
detectors trained on an American population might not work
for an East African population.

Authentic context: Foundational research on emotion de-
tection has mainly focused on six “basic” emotions (happi-
ness, sadness, surprise, disgust, anger, and fear) (Craig et al.
2008). Typically these emotions are represented by delib-
erate facial expressions (Kaulard et al. 2012) or elicited by
experimental stimuli (Valstar and Pantic 2010). In contrast,
the affective states relevant to intelligent tutors are students’
normal reactions to them, namely boredom, confusion, de-
light, frustration, surprise, and neutral or “flow” (D’Mello,
Picard, and Graesser 2007). Most facial expression data is
recorded in well-controlled laboratory conditions. In con-
trast, this paper is based on data from authentic contexts of
children using RoboTutor.

Camera-only: Even data on authentic affective states in
intelligent tutors are typically collected in heavily instru-
mented laboratory conditions using an expensive array of
devices such as pressure sensors (D’Mello and Graesser
2009) and EEG headsets (Petrantonakis and Hadjileontiadis
2009), as well as video from cameras external to the tutor it-
self. These input signals are informative for research but not
practical outside the lab.

In contrast, we use only video input recorded by Google
Pixel C Android tablets running RoboTutor in the field, both
indoors and outdoors. Limiting its temporal and spatial reso-

13407



lution served to avoid filling up tablet memory or swamping
the WiFi bandwidth required to send it to our lab for anal-
ysis. This data is therefore characterized by limited resolu-
tion, variable indoor and outdoor illumination, and occlusion
by children’s friends and their own hands.

Multi-channel: Facial expressions are an important vi-
sual channel to convey emotions, but by no means the only
one. We also use other visual features known to reflect affec-
tive states: head proximity (Stanley 2013), head orientation
(Hess, Adams, and Kleck 2007), blink rate (Haq and Hasan
2016), pupil size (Partala and Surakka 2003), and eye gaze
(Bidwell and Fuchs 2011).

Semi-supervised: Systems that rely on supervised ma-
chine learning require large amounts of labeled training
data (e.g. (Michel and El Kaliouby 2003), (Reddy et al.
2018)). Labeling affective states by hand is costly and time-
consuming. Therefore we employ a semi-supervised ap-
proach for training an affective state detector on a sparsely
labeled dataset (Chapelle, Scholkopf, and Zien 2009). That
is, we train a classifier on the manually labeled instances,
”pseudo-label” a subset of the unlabeled data using the
trained classifier, retrain it on the expanded set of labeled
data, repeat, and iterate.

In summary, this paper reports progress on using AI
(specifically computer vision) to “improve teaching and
evaluation.” From recorded screen video of children in Tan-
zania using RoboTutor on an Android tablet, we infer their
affective states. Our longer term goal is to use this infor-
mation to redesign RoboTutor off-line, and even to inform
its responses in real-time. The rest of the paper is organized
as follows: Section 2 describes our data set. Section 3 speci-
fies our methodology for training the affective state detector.
Section 4 reports our results. Finally, Section 5 summarizes
contributions, limitations, and future work.

2 Data Set
The data for the present study come from 229 screen capture
videos of approximately 30 children using RoboTutor on
two tablets in Tanzania between 6/22/2016 and 7/17/2017.
Each video typically shows one session lasting 20−30 min-
utes (until the next child’s turn). The videos were recorded
by a free app called AZ Screen Recorder (PlayStore 2018),
which displayed the front-facing camera input in a small
window and included it in the screen video it recorded, as
shown in Figure 1. To limit storage consumption, we config-
ured AZ Screen Recorder to record at a temporal resolution
of 48 frames per second and a spatial resolution of 1024 x
720 pixels, of which the camera window took 192 x 148 pix-
els.

The entire 100+ hours of video was far too large to la-
bel manually, so we selected approximately 345 short clips
to label. As in previous work (Westlund, D’Mello, and Ol-
ney 2015), we excluded the first and last minute of a video
so as to avoid artifacts at the start and end of each session.
Based on watching a few short clips, we determined that 10-
second clips were long enough to label yet short enough to
be dominated by a single affective state.

We used two types of sampling to find clips to label.
Based on previous research (D’Mello and Graesser 2010),

we expected neutral to be by far the most frequent affec-
tive state. To find likely instances of less common affective
states, we randomly selected seven of the videos, located un-
usually high or low values of various visual features, i.e., lo-
cal maxima or minima more than 3 standard deviations from
the mean, and chose 10-second windows centered at these
points. This method yielded 285 clips. To obtain an unbiased
sample more representative of typical affective behavior, we
randomly chose a total of 60 10-second clips from 10 other
videos. We randomly intermixed the two samples and parti-
tioned them into 16 batches, each comprising 15-20 pairs of
clips.

We constructed a separate Google form for each batch,
with these instructions:

1. This Google form will present a series of pairs of Robo-
Tutor screen video clips for you to annotate.

2. The first clip of each pair contains just the zoomed-in
camera input showing the kid.

3. The other clip shows the entire screen, including the cam-
era input. White dots indicate screen touches.

4. Pick the option that fits best. If it fits poorly, or if another
option fits almost as well, use the Comments field to ex-
plain why.

This protocol first elicited judges’ perception of the
child’s affective state based solely on the video clip of the
child, without any additional context, and then based on the
video showing the same time interval but in the context of
the entire RoboTutor screen. Thus changes in label from the
first clip to the second clip could reveal the influence of con-
text on the judge’s perception of the affective state.

There were two questions for each clip.

1. Is the student paying attention? (Yes, No, Can’t tell)

2. Which of the following best describes the kid’s state?
(Boredom, Confusion, Delight, Frustration, Neutral, Sur-
prise, or I can’t tell.)

We expected the first question to be easy for both humans
and computer to answer based simply on gaze, i.e. whether
the child was looking at the screen. The second question re-
quired finer-grained distinctions, and in fact proved much
harder. Figure 2 shows the six affective states manifested
while the children were using RoboTutor.

Figure 1: RoboTutor interface with camera window.
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Figure 2: The six affective states

To label our data, we recruited a Kenyan professor with
PhDs in English and International Education, a Tanzanian
with a PhD in Instructional Technology, a Tanzanian doc-
toral student in Linguistics, and two American undergrad-
uate Psychology majors, all of whom were familiar with
RoboTutor. It was important to include East African judges
not only because they understood the Swahili spoken by
RoboTutor and its users, but also because perception of af-
fective states is known to be culture-dependent (Matsumoto
1991). All the judges classified the clips independently.

2.1 Inter-rater reliability

As an intuitive measure of consistency in labeling, we com-
puted the percentage agreement between the judges. To mea-
sure the degree to which it exceeded the amount of agree-
ment expected by chance, we computed Cohen’s Kappa κ.

To quantify the influence of cultural differences on an-
notation, we compared pairwise agreement between judges
from similar backgrounds (East Africa or USA) versus
agreement between judges from different backgrounds. The
East African judges agreed 61% of the time, with κ of
0.58, compared to 55% and κ of 0.47 for the Ameri-
can judges, who averaged only 50% agreement with East
African judges, with κ of 0.41. That is, judges agreed more
often with judges from the same culture than with judges
from another culture. Accordingly, we used only the East
African judges’ labels to train and test the classifier.

Judges agreed on some distinctions more than on oth-
ers. In particular, they had trouble distinguishing frustration
from confusion. One clue to the reason comes from the la-
beling protocol. The frequency with which judges changed
their initial labels, which were based just on the camera in-
put, reflects the extent to which they inferred affective states

based at least in part on children’s interactions with Robo-
Tutor. Figure 3 shows the transition frequency from label i
to label j, represented graphically by the arrow from i to j.
The number of label changes was highest for frustration and
confusion.

To avoid training our classifier on distinctions with
low inter-rater reliability, we combined hard-to-distinguish
states, thereby reducing the original set of 6 affective states
to just 3 classes, namely pleasant (delight and surprise), un-
pleasant (boredom, confusion, and frustration), and neutral
(flow). Inter-rater reliability was higher for this reduced set,
with 67% agreement and κ of 0.63 on the cropped clips.
Reliability was higher on the uncropped clips thanks to the
additional context they provided, with 73% agreement and
κ of 0.65. We used the cropped clips where both the judges
agreed. These 231 “consensus” clips were distributed more
equally among the 3 classes than among the original 6 affec-
tive states: 42 clips were labelled as pleasant, 91 as unpleas-
ant, and 98 as neutral.

3 Approach

Our approach has 4 steps:

1. Extract features from the videos.

2. Aggregate each feature over the 10-second duration of a
video clip into a single value.

3. Use semi-supervised learning to train a classifier on la-
beled and unlabeled data.

4. Use the trained classifier to predict the affective state of a
child in a video clip.

We now describe each step in more detail.

3.1 Feature extraction

We started by extracting the camera input, which AZ Screen
Recorder displayed over RoboTutor in a translucent win-
dow as shown in Figure 1. This window overlapped with the
green banner at the top of the screen. Fortunately, this over-
lap did not prevent us from detecting faces and extracting
useful information.

As Figure 4 shows, this information consisted of visual
features relevant to affective state, namely head proximity,

Figure 3: Number of label changes from cropped to un-
cropped video clip
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Figure 4: System Architecture.

head orientation, facial action units, blink rate, pupil size,
and eye gaze. Each of these features provides a different
channel of visual information. To help extract these features
from video input, we used OpenFace (Baltrušaitis, Robin-
son, and Morency 2016), an open-source facial behavior
analysis toolkit trained on a large collection of facial data
sets, both static images and videos, diverse in age, gender,
and ethnicity.

We now describe how we computed and used each fea-
ture.

Head proximity: Research on body language has shown
that leaning forward indicates an increase in interest and
leaning backward shows disinterest (Stanley 2013). This
finding motivated us to measure head distance to the camera.
Openface gives the location of the head in millimeter coor-
dinates as (Hx, Hy , Hz) in a 3-dimensional reference frame
with the camera at the origin, where the X axis is horizontal,
the Y axis is vertical, and the camera is pointed along the Z
axis. We computed the Euclidean distance of the head from
the camera as shown in Equation 1.

Hd =
√
(H2

x +H2
y +H2

z ) (1)

Head orientation: OpenFace computes pitch (Rx), yaw
(Ry), and roll (Rz) of the head rotation relative to the lo-
cation and orientation of the camera. The rotation is in ra-
dians around the X, Y, and Z axes. When restless, humans
tend to be more fidgety and hence move their heads uncon-
sciously. Therefore, head orientation is the overall angle of
the head from the baseline and reflects affective state. Equa-
tion 2 specifies head orientation as a function of pitch, yaw,
and roll.

Ho = Rx ∗Ry ∗Rz (2)

Facial action units: Prior work on affective state recog-
nizers has focused on Facial Action Units (FAUs) that were
most diagnostic of the learning-centered emotions. Follow-
ing (McDaniel et al. 2007), we employ AU04, AU07, AU12,
AU25, AU26, and AU45. For every FAU, OpenFace outputs
a classification and regression value. We used the regression
value, which characterizes the intensity of the FAU’s pres-

ence as absent (value = 0), low (< 0.2), medium (0.2 −
0.7), or high (> 0.7).

Blink rate: Researchers have found that when nervous
or troubled, humans’ blink rate increases (Haq and Hasan
2016). Using the eye coordinates obtained from OpenFace,
we calculated an eye-aspect ratio (Haq and Hasan 2016) for
each eye and used the average value of both eyes. If the eye
aspect ratio was below a threshold θ for t frames, we con-
sidered it to be a blink. We tried different values for these
two thresholds. θ = 0.4 and t = 4 gave the best accuracy on
a sample of 10 video clips. Equation 3 formally defines the
eye aspect ratio (Er) as:

Er =
‖(h− b)‖+ ‖(f − d)‖

2 ∗ ‖(e− a)‖ (3)

where a, b, d, e, f, and h are eye landmark coordinates ob-
tained from OpenFace (Fig. 5).

Figure 5: Eye coordinates obtained from OpenFace

Pupil size: Pupil size reflects whether a person is aroused
and alert, or bored and fatigued (Kret 2018), so it is a useful
indicator of affective state. Using the eye coordinates com-
puted by OpenFace, we determined the ratio of the area of
the pupil to the area of the eye using Equation 4. The ratio
helped us deal with situations where the child was too close
to the screen, leading to a large pupil size, without any role
of affect. We used the average of this ratio for both eyes as
an input to our classifier. We used Equation 4 to compute
this ratio (Pr) as follows:

Pr =
‖(l − j)‖ ∗ ‖(k − i)‖
‖(e− a)‖ ∗ ‖(g − c)‖ (4)
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where a, c, e, g, i, j, k, and l are eye landmark coordinates
obtained from OpenFace (Fig. 5).

Eye gaze: Eye gaze has been used by many researchers
to detect alertness, attentiveness, and awareness (Bidwell
and Fuchs 2011). OpenFace outputs the gaze direction av-
eraged across the two eyes as (gaze angle x, gaze angle y)
in radians. Looking from right to left changes gaze angle x
from negative to positive; looking from up to down changes
gaze angle y from negative to positive. Looking straight
ahead is represented as zero for both gaze angle x and
gaze angle y.

3.2 Temporal aggregation

To avoid the complications and computational cost of time
series analysis (Ceballos and Sorrosal 2002), we reduced
each feature of a clip to a single summary value. To ag-
gregate discrete features, we simply counted the number of
occurrences in the video clip and divided by its duration to
obtain a rate, e.g. blinks per second. To aggregate continuous
features, we experimented with several functions:

• To summarize the feature, we computed its mean over
the 10-second window. However, this function can be dis-
torted by outliers.

• To combat distortions caused by noise, especially outliers,
we computed its median over the window. However, this
function fails to capture significant events shorter than
half the duration of the clip.

• To measure the spike caused by the main event in the clip,
we computed the maximum value of the feature. How-
ever, this function can be distorted by outliers.

• To accentuate spikes while reducing distortion by outliers,
we computed the root mean squared value. However, this
function is invariant to scrambling the order.

• To select clips based on extreme values of features, i.e.
local minima and maxima at least 3 or more standard de-
viations from the mean, we chose the 10-second clip cen-
tered around each extreme value. To focus on its central
region, we weighted the mean and root mean squared by
dividing the value at each point in the clip by its distance
t from the midpoint of the clip (plus an offset o to prevent
division by zero).

We then normalized each aggregate feature value v to the
interval [0, 1] as (v −min)/(max−min), where max and
min are the largest and smallest aggregate values of the fea-
ture over the entire set of 10-second clips. We found that
proximity-weighted root mean squared achieved the highest
cross-validated accuracy when used in a classifier trained as
we now describe.

3.3 Semi-supervised learning

Semi-supervised learning (Chapelle, Scholkopf, and Zien
2009) trains a classifier by using unlabeled data to augment
sparse labeled data in order to achieve higher classification
accuracy.

One can select an unlabelled instance at random, or
choose the one closest to a labeled instance. For efficiency,

we chose the 10 unlabeled instances closest to any of the
labeled instances. In practice the method always exhausted
all the unlabelled instances. In theory it could reach a state
where it couldn’t classify any of them with confidence τ , in
which case it should terminate.

We considered several popular classifier learning meth-
ods. We chose Random Forest because it performed best on
our data (see Table 1). We computed the confidence of a pre-
diction as the percentage of trees in the forest that predicted
class C. We set our confidence threshold τ to 0.9.

4 Results

Figure 6: Pleasant Instance

To illustrate how our detector works in practice by us-
ing the features defined in Section 3.1, Figure 6 shows an
instance classified as a pleasant affective state. After strug-
gling to write the preceding number 0, the child wrote the
number 1 correctly on the first try, and smiled when Robo-
Tutor responded Mzuri! (”good” in Swahili). This clip had
negligible deflection from typical head orientation. Eye gaze
and blink rate were normal, i.e., within one standard devia-
tion of their respective means. However, the child was very
close to the screen, i.e., head distance was less than its mean
value by more than three standard deviations. Head proxim-
ity typically indicates engagement. Also, his pupils were di-
lated, which typically indicates interest. AU04 (Brow Low-
erer) and AU45 (Blink) were absent, AU25 (Lips Part) was
present with low intensity, AU07 (Lid Tightener) and AU26
(Jaw Drop) were present with medium intensity, and AU12
(Lip Corner Puller) was present with high intensity. As this
example illustrates, our detector’s recognition of pleasant in-
stances is probably influenced by head proximity, pupil size,
and smiling. We say ”probably” because a random forest’s
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calculations are too complicated to readily analyze the in-
dividual influence of all the features. Instead, we described
their values relative to their distributions, on the assumption
that unusual values are likely to affect the classifier output.

4.1 Quantitative Evaluation

To estimate performance on unseen children, we used leave-
1-child-out cross-validation, training the classifier on all but
one child and testing it on the held-out child. We performed
this process for 5 randomly chosen children and report the
median results. Accuracy is the percentage of test instances
classified correctly. This measure is simplest and has prac-
tical significance because it predicts performance on unseen
data drawn from the same distribution. However, it is sensi-
tive to that distribution. In contrast, the following weighted
measures are weight-averaged across all three classes, and
therefore independent of the training set distribution. Each
class is assigned a weight equal to the ratio of the number
of instances in that class to the total number of instances
in the test set. Weighted precision is the percentage cor-
rect among the instances classified as positive. Weighted
recall is the percentage correct among the true positive in-
stances. Weighted F1 is the harmonic mean of weighted
recall and weighted precision. As unlabelled data, we used
1007 clips from 20 videos, sampled using the same sampling
techniques described in Section 2.

As Table 1 shows, our method beat the supervised learn-
ing methods on all four criteria:

Classifier Accuracy Precision Recall F1-Score

Naive Bayes 0.21 0.52 0.21 0.23
Decision Tree 0.44 0.43 0.44 0.43

SVM 0.51 0.49 0.51 0.46
Adaboost 0.47 0.47 0.47 0.47

Logistic Regression 0.53 0.50 0.53 0.51
KNN 0.53 0.53 0.53 0.53

Random Forest 0.61 0.63 0.61 0.60
Our Approach 0.88 0.88 0.84 0.86

Table 1: Comparison with supervised learning.

These results were for the consensus data where both
judges agreed. We further tested our classifier on all our la-
beled test data, including 55 consensus clips not used for
training and 114 clips on which the judges disagreed. This
experiment helped us quantify the degradation in perfor-
mance due to label noise. We evaluated the accuracy of the
prediction compared to both judges’ labels and took the av-
erage. As expected, average accuracy dropped from 88% to
56% when we included the non-consensus labels, compared
to testing on the consensus data alone. The lower accuracy
on the unfiltered data reflects the inherent difficulty of repli-
cating subjective judgments on which human experts dis-
agree.

To estimate the effect of cultural differences, we tested our
trained classifier on both sets of consensus labels, African
and American. Accuracy fell from 88% to 57% when tested
on American labels. This difference quantifies the effect of
cultural influence on people’s facial expressions and other
visual cues, and the consequent importance of recruiting
judges from the same culture to label their affective states.

4.2 Error Analysis

Figure 7: Confusion Matrix

Figure 7 shows that our classifier performed well in most
cases. However, the classifier incorrectly characterized four
unpleasant instances as neutral. Most of these misclassifica-
tions involved boredom. Boredom is not easily distinguish-
able from neutral based on facial features. Indeed, bore-
dom typically lacks facial expression. To detect boredom,
we may have to use additional indicators, such as posture
and acoustic-prosodic features of speech.

Accuracy is limited by the quality of the visual features
input by the classifier from OpenFace, which depend in turn
on its face detection. Our data come from authentic settings
subject to varying illumination and occlusion. Consequently,
OpenFace occasionally (especially in low-light conditions)
fails to detect a face when it is present. Inspection of sample
videos showed that OpenFace failed to detect a face approx-
imately 2% of the time, typically for a second at a time.

4.3 Sensitivity analysis

To explore the sensitivity of the results to different factors,
we varied the amount of unlabeled data, the amount of la-
beled data, and the method for selecting unlabeled data.

Effect of amount of unlabeled data: How did test ac-
curacy vary with the amount of unlabeled data? We started
with no unlabeled data, i.e., supervised learning, and added
10% of the unlabeled data at each iteration until all of the
unlabeled data was utilized. Figure 8(a) shows that as the
number of unlabeled instances increased from zero to 1007,
accuracy rose asymptotically from 61% to 88%.

Effect of amount of labeled data: To analyze the effect
of the amount of labeled data on classifier performance, we
varied the percentage of labelled instances used from 10% to
100%, keeping the unlabeled training set constant, i.e. 1007
instances. Figure 8(b) shows that:

1. Accuracy, precision, and recall increased with the amount
of labeled data, as expected.

2. Too little labeled data produced poor results, even with all
the unlabeled data.

Effect of choice of data to pseudo-label: We conducted
an experiment to understand why unlabeled data helped, and
where the action was. We hypothesized that the order in
which semi-supervised learning chose unlabeled instances
to pseudo-label had a substantial effect on the performance
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Figure 8: Classifier Performance vs. (a) Number of Unla-
beled Training Instances (b) Number of Labeled Training
Instances

of the resulting classifier. To test this hypothesis, we com-
pared choosing 10 random instances at each iteration versus
choosing the 10 instances closest to the instances labeled (or
pseudo-labeled) so far.

Data pseudo-labeled Accuracy Precision Recall F1-Score

10 Random instances 0.78 0.78 0.72 0.74
10 closest instances 0.88 0.88 0.84 0.86

Table 2: Effect of order of pseudo-labeling

Table 2 shows that choosing the 10 nearest instances at
each iteration performed better than choosing 10 random in-
stances. Why? Semi-supervised learning exploits the conti-
nuity assumption that instances near each other are likelier to
belong to the same class than other instances assigned to that
class based solely on generalization by a classifier trained on
incomplete training data.

5 Conclusion

Contributions: We presented an innovative, multi-channel
method for automating affect detection in a tablet app solely
by integrating visual cues extracted from its front-facing
camera input. We used semi-supervised learning to leverage
our sparsely labeled training data. We evaluated it against
human judges on authentic data from a novel population of
children using RoboTutor in natural settings, and analyzed
its performance both quantitatively and qualitatively. This
work constitutes significant progress in automated affect de-
tection, whether to improve tutor design off-line or to re-
spond to student affect at runtime.

Limitations and future work: To increase inter-rater re-
liability, we combined confusable affective states into the
same class. Future work to distinguish them could enhance
RoboTutor’s emotional intelligence.

The evaluated method is based solely on input from the
tablet’s front-facing camera, consistent with our focus on
identifying what information about affect we can derive
from visual cues. This type of input is more practical in re-
alistic settings than inputs currently available in lab settings,
such as EEG, pressure sensors, or even video from exter-
nal cameras. However, some other types of input are readily
available to a tablet tutor.

In particular, tablets input audio. Speech input is peda-
gogically informative when it can accurately be recognized
or analyzed for other properties, such as prosody. Both these
uses of audio input are feasible in quiet lab settings. How-
ever, in natural settings where multiple children use tablets
in close proximity and noise-canceling headset microphones
are too fragile or expensive, audio input is liberally contami-
nated with background speech from other children and their
tablets.

The tutor itself could be a fruitful source of information,
including its internal states, decisions, and actions, and stu-
dent input such as screen taps and other gestures. Such data
is tutor-specific but informative, and we plan to exploit it in
the future, especially to recognize the contextual clues that
our judges used to distinguish among boredom, confusion,
and frustration.

We implemented our detector on a Windows PC. We can
use it off-line to analyze screen-recorded sessions for guid-
ance in redesigning RoboTutor. In principle, it could be ap-
plied to any screen capture video that includes camera input
of the user, whether from the front-facing camera of a tablet,
or the webcam atop a computer monitor.

However, RoboTutor itself runs on Android tablets. In-
corporating the detector into RoboTutor will require port-
ing it to an Android tablet to detect facial expressions and
other visual cues in real time. We will also need to redesign
RoboTutor to respond to detected affective states, evaluate
the effects of such responses, and refine them accordingly.
These responses should improve RoboTutor’s ability to en-
gage children and help them learn, and may generalize use-
fully to other tutors as well.
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