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Abstract

Automatic short answer scoring (ASAS) is a research sub-
ject of intelligent education, which is a hot field of natural
language understanding. Many experiments have confirmed
that the ASAS system is not good enough, because its perfor-
mance is limited by the training data. Focusing on the prob-
lem, we propose MDA-ASAS, multiple data augmentation
strategies for improving performance on automatic short
answer scoring. MDA-ASAS is designed to learn language
representation enhanced by data augmentation strategies,
which includes back-translation, correct answer as reference
answer, and swap content. We argue that external knowl-
edge has a profound impact on the ASAS process. Mean-
while, the Bidirectional Encoder Representations from Trans-
formers (BERT) model has been shown to be effective for
improving many natural language processing tasks, which
acquires more semantic, grammatical and other features in
large amounts of unsupervised data, and actually adds exter-
nal knowledge. Combining with the latest BERT model, our
experimental results on the ASAS dataset show that MDA-
ASAS brings a significant gain over state-of-art. We also per-
form extensive ablation studies and suggest parameters for
practical use.

Introduction

In recent years, the number of online educational applica-
tions has been growing rapidly, consisting of intelligent tu-
toring systems, e-learning environments, distance education,
and massive open online courses. Automatically scoring
short student answers is important for building intelligent tu-
toring systems. In general, computer-aided assessment sys-
tems are particularly useful because scoring by humans can
become monotonous and tedious (Kumar et al. 2017). Au-
tomatic scoring systems can help teachers save lots of time
from duplication of marking student’s homework. Formally,
the problem of automatic scoring short answer is defined as
scoring the question in the context of the student answer and
its reference answer. Table 1 shows an example of a short
answer scoring task.
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In general, traditional methods and neural network meth-
ods are employed in the ASAS task. Traditional methods
are driven by handcrafted features, such as lexical similarity
features (Dzikovska, Nielsen, and Brew 2012), clear crite-
ria (Siddiqi, Harrison, and Siddiqi 2010), and graph align-
ment features (Mohler, Bunescu, and Mihalcea 2011). Neu-
ral network methods are driven by the rapid development of
deep learning techniques (Mueller and Thyagarajan 2016;
Zhao et al. 2017). Recently, Saha et al. (Saha et al. 2019)
have used InferSent (Conneau et al. 2017) and neural do-
main adaptation to obtain state-of-art results in the ASAS
task. Deep learning has proven to be effective in long text
NLP tasks. Due to the lack of information in the short sen-
tence of the ASAS corpus, it seems not good enough in the
ASAS task. The urge to obtain more information is the key
to the current problem.

In fact, data augmentation is very popular in the research
areas of vision (Krizhevsky, Sutskever, and Hinton 2012)
and speech (Ko et al. 2015). However, it is rarely applied
in the NLP task. In the past three years, many scholars have
explored some methods to augment data, which have also
proven to be effective in the ASAS task. General methods of
text data augmentation are to replace words with their syn-
onyms selected from a handcrafted ontology such as Word-
Net (Zhang, Zhao, and LeCun 2015) or word similarity cal-
culation (Wang and Yang 2015). However, these methods
are done at the word level, which is easy to lose the seman-
tic information of the entire sentence.

In this paper, we propose MDA-ASAS, multiple data
augmentation strategies for improving performance on au-
tomatic short answer scoring. It is designed to learn lan-
guage representation enhanced by data augmentation strate-
gies, which includes three data augmentation strategies. In
the first strategy, we propose back-translation to augment
the ASAS training data. The second strategy, we hypothe-
size that the student answers which received correct scores
by the teacher are equivalent to teacher-provided reference
answers. The third strategy, we propose a swapping con-
tent method between original data and twin data to achieve
the best performance of data augmentation. Meanwhile, the
BERT (Devlin et al. 2018) model has achieved excellent
results in question-answer and natural language inference.
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Question You used several methods to separate and identify the substances in
mock rocks. How did you know the crystals were salt?

Reference Answer The water was evaporated, leaving the salt.
Student#1 We poured just the water into another thing and let the water evaporate.
Student#2 By looking very closely at it.

Table 1: An illustrative example showing question, reference answer, and student answers (Student#1 and Student#2) from a
science course.

Therefore, our MDA-ASAS combines with the latest BERT
model, which can bring a significant gain.

We demonstrate that MDA-ASAS combines with the lat-
est BERT model, which leverages the power of external
knowledge to enhance the ASAS task. The paper makes the
following contributions:

• We propose three data augmentation strategies to enrich
the training dataset and can help get a better representa-
tion of the sentences.

• Our MDA-ASAS combines with the latest fine-tuned
BERT model for the ASAS task, which can bring a sig-
nificant gain.

• We also make extensive ablation studies and suggest pa-
rameters for practical use in the ASAS task.

The rest of the structure of this paper is constructed as fol-
lows: after reviewing related work in section 2, we present
three data augmentation strategies in section 3. Section 4 re-
ports the experiments. And section 5 concludes the paper.

Related Work

In this section, the prior work is divided into three rele-
vant research areas, automatic short answer scoring, transfer
learning in ASAS and data augmentation in NLP.

Automatic Short Answer Scoring

Traditional methods utilize handcrafted features, such as
lexical similarity features (Dzikovska, Nielsen, and Brew
2012), a clear criteria (Siddiqi, Harrison, and Siddiqi 2010),
graph alignment features (Mohler, Bunescu, and Mihalcea
2011), n-gram features (Heilman et al. 2013), softcardi-
nality text overlap features (Jimenez, Becerra, and Cic-Ipn
2013), averaged word vector text similarity features (Sultan,
Salazar, and Sumner 2016) and other shallow lexical fea-
tures (Ott et al. 2013).

More recently, deep learning approaches have been uti-
lized for the automatic short answer scoring task. Mueller
et al. (Mueller and Thyagarajan 2016) proposed a siamese
adaptation of the LSTM network for labeled data comprised
of pairs of variable-length sequences. Zhao et al. (Zhao et al.
2017) proposed an efficient memory networks-powered au-
tomated scoring model. Riordan et al. (Riordan et al. 2017)
explored simple LSTM and CNN-based architectures for
short answer scoring. Kumar et al. (Kumar et al. 2017) pro-
posed a method involving Siamese biLSTMs, a novel pool-
ing layer based on the Sinkhorn distance between LSTM
state sequences, and a support vector ordinal output layer.

Transfer Learning in ASAS

Transfer learning has been shown to be effective for im-
proving many natural language processing tasks. In general,
transfer learning actually adds external knowledge because
most of their models are learned using large amounts of un-
supervised data. The short answer scoring problem is of-
ten modeled as a classification task. Thus, we can use the
transfer learning downstream task to score the short answer.
InferSent (Conneau et al. 2017) used a max pooled bidi-
rectional LSTM network to learn universal sentence em-
beddings from the MultiNLI corpus (Williams, Nangia, and
Bowman 2017). These embeddings have been employed as
features in conjunction with hand-crafted features by Saha
et al. (Saha et al. 2018) for ASAS. Hassan et al. (Hassan,
Fahmy, and El-Ramly 2018) proposed a supervised learning
approach for short answer automatic scoring based on para-
graph embeddings, which included Word2Vec (Pennington,
Socher, and Manning 2014), GloVe (Pennington, Socher,
and Manning 2014), Fasttext (Joulin et al. 2016) and Elmo
(Peters et al. 2018). Liu et al. (Liu, Xu, and Zhao 2019)
used sentence embeddings by pre-trained BERT (Devlin et
al. 2018) model to score automaticly.

Data Augmentation in NLP

Text data augmentation has been extensively studied in natu-
ral language processing. Prior work has explored using para-
phrasing for data augmentation on NLP tasks. Zhang et al.
(Zhang, Zhao, and LeCun 2015) augmented their data by
swapping out words for synonyms from WordNet (Miller
1995). Wang and Yang (Wang and Yang 2015) used a sim-
ilar strategy, but identified similar words and phrases based
on cosine distance between vector space embeddings. Yu et
al. (Yu et al. 2018) generated new data by translating sen-
tences into French and back into English.

Jia and Liang (Jia and Liang 2016) proposed grammar in-
duction to augment the training data. Silfverberg et al. (Sil-
fverberg et al. 2017) proposed task-specific heuristic rules to
generate new data. Bergmanis et al. (Bergmanis et al. 2017)
proposed neural decoders of autoencoders to augment the
training data. Xia et al. (Xia et al. 2017) proposed encoder-
decoder models to augment the training data. Kobayashi
et al. (Kobayashi 2018) proposed contextual augmentation
with a bi-directional RNN language model to augment the
training data. Wu et al. (Wu et al. 2019) proposed condi-
tional BERT (Devlin et al. 2018) contextual augmentation to
augment the training data. Recently, research has proposed
some easy data augmentation techniques on text classifica-
tion tasks (Wei and Zou 2019).
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You used several methods to separate and identify the substances
in mock rocks. How did you separate the salt from the water?

You've used several ways to separate and identify substances
in wet rocks. How did you separate the salt from the water?

English-Japanese Japanese-English

(input sentence) (paraphrased sentence)

(translation sentence)

Figure 1: An illustration of the whole procedure of back-translation with Japanese as a key language.

Multiple Data Augmentation Strategies

We propose MDA-ASAS, multiple data augmentation
strategies for improving performance on automatic short an-
swer scoring. We discuss three data augmentation strategies
for ASAS, including back-translation, correct answer as ref-
erence answer, and swap content.

Back-translation

Machine learning and deep learning have achieved high ac-
curacy on the NLP tasks, but high performance often de-
pends on the size and quality of training data, which is often
tedious to collect. Since training data constrain the ASAS
system performance, we can train it with much more data.
Therefore, we combine our ASAS model with a simple data
augmentation strategy to enrich the training data. The easy
strategy idea is to use back-translation.

We observe prior work has explored using paraphrasing
for data augmentation on NLP tasks. Zhang et al. (Zhang,
Zhao, and LeCun 2015) augmented their data by swapping
out words for synonyms from WordNet (Miller 1995). Wang
and Yang (Wang and Yang 2015) used a similar strategy, but
identified similar words and phrases based on cosine dis-
tance between vector space embeddings.

Previous data augmentation work is done at the word
level, which it is difficult to keep the semantic information
of the entire sentence. However, we use the back-translation
for data augmentation, which is to translate the entire sen-
tence and belongs to a sentence-level data augmentation, so
that the whole sentence grammar, semantics, context, and
other information can be retained intact.

Baidu translation is a popular translation tool in China,
and the same translation tool as Google translate. Baidu
translation currently supports the translation of 28 lan-
guages. Baidu translation has made significant break-
throughs in the acquisition of massive translation knowl-
edge, translation model, multilingual translation technology,
and other aspects, and responded to massive, complex, and
diverse translation requests on the Internet in a timely and
accurate manner. It has developed an online translation sys-
tem that integrates deep learning with multiple mainstream

translation models, leading the industry.
We develop a translation tool on Baidu translation API 1,

which translate English to Japanese (or any other language),
and then translate Japanese back to English, to obtain para-
phrases of texts. This approach helps automatically increase
the amount of training data for broadly any language-based
tasks, including the ASAS task that we are interested in.
With more data, we expect to generalize our model better
and make our model more robust. The augmentation process
is illustrated in Figure 1 with Japanese as a key language.

Correct Answer as Reference Answer

Our dataset is less than 5000 (reference answer, student an-
swer) training pairs, which may not fully sustain the training
of deep learning methods. To mitigate this problem, we pro-
pose a data augmentation strategy for short answer scoring
by making use of correct student answers.

In this paper, we assume that the correct student answer
is another form of reference answer to augment our training
dataset. Here, we describe our data augmentation strategy. In
our dataset, according to the teacher’s analysis, a consider-
able number of student answers are given correct scores. Be-
cause there are many students whose answer label is correct,
we hypothesize that the student answers which received cor-
rect scores by the teacher are equivalent to teacher-provided
reference answers. As shown in Figure 2, the table on the
left is an example of original data containing one question,
one reference answer, and three student answers. Through
the data augmentation strategy, 1 out of 3 students received
correct scores (1 < 3), then we can generate 1×(3−1) = 2
new (reference answer, student answer) training pairs. Fi-
nally, we can get the data-enhanced ASAS data on the right
table in Figure 2, which includes one question, two reference
answers, and five student answers. For testing, we only use
the reference answer provided by the teacher.

Swap Content

Our original training dataset contains 135 questions (q), 135
reference answers (r), and 4969 student answers (a). The

1api.fanyi.baidu.com
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Figure 2: Firstly, the table on the left is an example of the original ASAS dataset, which contains a question, a reference answer,
and three student answers. Secondly, through the correct answer as reference answer data augmentation strategy, 1 out of 3
students received correct scores (1 < 3), then we can generate 1× (3− 1) = 2 new (reference answer, student answer) training
pairs. So we can see that the red-marked data in the table on the right is enhanced data. Finally, the ASAS dataset includes one
question, two reference answers, and five student answers.

original data is generated by the back-translation data aug-
mentation strategy, which produces the back-translated data
of the original data. We call this twin data, and it also in-
cludes 135 questions (q′), 135 reference answers (r′), and
4969 student answers (a′). The original data and the twin
data have the same number of questions, reference answers,
and student answers. For the data of the twin dataset, we
carefully examine the original dataset with the naked eye
and find that the meaning of each sentence corresponding to
the original dataset is basically the same. Therefore, the data
of the twin dataset is reliable.

We propose a third simple strategy of data augmentation,
which is to randomly swap questions, reference answers, or
student answers in the two datasets. We make sure that these
two columns swap one to one. The augmentation process is
illustrated in Figure 3 with two datasets.

The data augmentation process for randomly swapping
two columns is as follows: First, we have two datasets, the
original data, and the twin data. The original data includes
questions, reference answers, student answers (q, r, a), and
the twin data also includes questions, reference answers, and
student answers (q′, r′, a′). Then the original data’s question,
reference answer, student answer, and twin data’s question,
reference answer, student answer corresponding column are
swapped. Finally, through the above strategy, our training
dataset can get eight different combinations, which are [(q,
r, a), (q′, r′, a′)], [(q′, r, a), (q, r′, a′)], [(q, r′, a), (q′, r, a′)],
[(q, r, a′), (q′, r′, a)].

Experiments

To evaluate the effectiveness of our models, we make sev-
eral comparative experiments. In the following, we will in-
troduce the dataset we used, our experiment settings, and
experimental results in order.

Dataset

SemEval-2013 dataset: This dataset is SemEval-2013
Shared Task 7 dataset, which is a part of the “The Joint Stu-
dent Response Analysis and 8th Recognizing Textual En-
tailment Challenge” in the Semantic Evaluation workshop

in 2013 (Dzikovska et al. 2013)2. We use the SciEntsBank
corpus of SemEval-2013 dataset, which contains reference
answers and student answers for 197 questions in 15 differ-
ent science domains. Each of the three categorized subtasks
has three different test sets have three different test sets,
including Unseen Answers (UA), Unseen Questions (UQ)
and Unseen Domains (UD). The three classification subtasks
consist of 1) 2-way classification into correct and incorrect
classes, 2) 3-way classification into correct, incorrect and
contradictory classes, 3) 5-way classification into correct,
partially correct, contradictory, irrelevant and non domain
classes. The statistics for questions and student answers in
the different test sets are shown in Table 2. For the dataset,
the results are reported in terms of accuracy (Acc), macro-
averaged F1 (M-F1) and weighted-average F1 (W-F1).

Experiment Settings

For the experiment settings subsection, we will introduce the
details of fine-tuned BERT model and the details of imple-
mentation in the experiment.

Fine-tuned BERT Model in ASAS The BERT model has
achieved excellent results in question-answer and natural
language inference (NLI). In this paper, we argue that the
BERT model, with its pre-training on a huge dataset and the
powerful architecture for learning complex features, can fur-
ther boost the performance of automatic short answer scor-
ing. In this paper, we focus on using the fine-tuned BERT
model to obtain sentence features for the ASAS task.

In order to fine-tune BERTBASE , we follow the same ap-
proach of Devlin et al. The prediction task in ASAS is the
task of assessing and scoring a student answer in comparison
to a reference answer for the given question. The (reference
answer, student answer) input is represented as a packed se-
quence with the reference answer assigned the A embedding
and the student answer assigned the B embedding. As illus-
trated in Figure 4 in the paper, the first token of every se-
quence is the special classification embedding ([CLS]). The

2https://www.cs.york.ac.uk/semeval-
2013/task7/data/uploads/datasets/
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q r a q’ r’ a’

r a

r’ a’

q’

q(original dataset) (twin dataset)

swap q, q’ column

(new dataset)

(new dataset)

Figure 3: An example is given to illustrate the proposed data augmentation strategy, showing that the q column of original data
is swapped the q′ column of twin data. So we generated two new datasets.

Data set Question Student answer

Training 135 4969
UA 135 540
UQ 15 733
UD 46 4562
Total 331 10804

Table 2: Question distribution and student answer distribu-
tion in the dataset.

final hidden state corresponding to this token is used as the
aggregate sequence representation for the ASAS task. At the
same time, [CLS] represents sentence features.

In the experiment, to obtain a fixed-dimensional pooled
representation of the input reference answer and student an-
swer, we take the final hidden state (i.e., the output of the
Transformer) for the first token in the input, which by con-
struction corresponds to the special ([CLS]) word embed-
ding. We assume that this vector is C ∈ RH . During the
fine-tuning process, the new parameters are added for a clas-
sification layer W ∈ RK×H , where K is the number of clas-
sifier labels. The score probabilities S ∈ RK are computed
with a standard softmax, S = softmax(CWT ). All of the
parameters of BERT and W are fine-tuned jointly to max-
imize the log-probability of the correct score. We leverage
the power of BERT by using the BERTBASE model imple-
mented HuggingFace 3.

Implementation Details We implement our experiments
in PyTorch on an NVIDIA Corporation GM200. For the
BERT model, we present a series of experiments using the
Huggingface Pytorch BERT implementation for ASAS. And
we use the BERTBASE , which has 110 million parameters
with L=12, H=768, and A=12. For the text encoder, the max-
imum length of the answers is set to 90 words. Finally, we
fine-tune the BERT model with MDA-ASAS for ASAS to
get the feature vector into softmax.

3https://github.com/huggingface/pytorch-pretrained-BERT

[CLS] word1 wordN [SEP] word1 wordM... ...

reference answer student answer

Figure 4: The BERT model in the ASAS task.

Results

In this part, we analyze the results of our experiments in
detail and prove the effectiveness of our proposed MDA-
ASAS. First, we prove the effectiveness of data augmenta-
tion. Then, we show a detailed ablation study to understand
the effectiveness of MDA-ASAS better. Finally, we compare
MDA-ASAS with the fine-tuned BERT model against pre-
vious state-of-art models on the dataset.

Effect of the Data Augmentation Strategies To prove
the effect of data augmentation strategies, we conduct dif-
ferent experiments with three data augmentation strategies
in the training data. Table 3 shows macro-averaged-F1 and
weighted-average-F1 with MDA-ASAS on 2-way, 3-way,
and 5-way of UA test sets. As described in the multiple data
augmentation strategies section, we perform three methods
of data augmentation on our original data training set, which
includes back-translation, correct answer as reference an-
swer, and swap content. Therefore, our training datasets con-
sist of the original dataset (A-origin), back-translation data
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Train Data 2-way 3-way 5-way
Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1

A-origin 0.8055 0.8003 0.8047 0.7481 0.6795 0.7435 0.6875 0.5115 0.6857
B1-backtrans-on-A 0.7796 0.7759 0.7798 0.7185 0.6662 0.7143 0.6444 0.6010 0.6420
B2-caasra-on-A 0.8166 0.8132 0.8167 0.7518 0.7036 0.7495 0.6833 0.5892 0.6859
B3-caasra-on-B1 0.7629 0.7576 0.7625 0.7324 0.6500 0.7185 0.6310 0.5570 0.6317
B4-swap-A-B1 0.8277 0.8225 0.8267 0.7631 0.6934 0.7578 0.7002 0.5256 0.6998

C1-merge-A-B1 0.8166 0.8124 0.8163 0.7524 0.7102 0.7351 0.6410 0.6012 0.6327

Table 3: Our experimental results on 2-way, 3-way, and 5-way of SciEntsBank UA test data.

Method 2-way 3-way 5-way
Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1

Non-Neural Methods

CoMeT (Ott et al. 2013) 0.7740 0.7680 0.7730 0.7130 0.6400 0.7070 0.6000 0.4410 0.5980
ETS (Heilman et al. 2013) 0.7760 0.7620 0.7700 0.7200 0.6470 0.7080 0.6430 0.4780 0.6400
SOFTCAR (Jimenez, Becerra, and Cic-Ipn 2013) 0.7240 0.7150 0.7220 0.6590 0.5550 0.6470 0.5440 0.3800 0.5370
Sultan et al. (Sultan, Salazar, and Sumner 2016) 0.7087 0.6768 0.6907 0.6042 0.4439 0.5696 0.4898 0.3298 0.4875

Neural Methods

Marvaniya et al. (Marvaniya et al. 2018) 0.7700 0.7730 0.7810 0.7000 0.6360 0.7190 0.6025 0.5790 0.6100
Saha et al. (Saha et al. 2018) 0.7926 0.7858 0.7910 0.7185 0.6662 0.7143 0.6444 0.6010 0.6420
MDA-ASAS 0.8277 0.8225 0.8267 0.7631 0.6934 0.7578 0.7002 0.5256 0.6998

Table 4: Comparation of our models with previous state-of-art results on 2-way, 3-way, and 5-way of SciEntsBank UA test data.

Max sequence length Acc M-F1 W-F1
60 0.8111 0.8074 0.8111
70 0.8111 0.8076 0.8119
80 0.8129 0.8109 0.8136
90 0.8277 0.8225 0.8267

100 0.8189 0.8170 0.8183

Table 5: Ablation study of B4-swap-A-B1 dataset under dif-
ferent maximum sequence lengths settings.

augmentation by original dataset (B1-backtrans-on-A), cor-
rect answer as reference answer data augmentation by orig-
inal dataset (B2-caasra-on-A), correct answer as reference
answer data augmentation by twin dataset (B3-caasra-on-
B1), swap content data augmentation by original dataset
and twin dataset (B4-swap-A-B1), and merge the original
dataset and twin dataset (C1-merge-A-B1). The experiments
achieve the highest result on the UA test data in the training
data of B4-swap-A-B1. Specifically, B4-swap-A-B1 dataset
achieves 2 points, 2 points, and 1 point macro-averaged-F1
gains with our original dataset in 2-way, 3-way, and 5-way
respectively. For the UA test set, B1-backtrans-on-A dataset
obtains 2 point, 1 point, and 1 point weighted-average-F1
gains with our original dataset in 2-way, 3-way, and 5-way
respectively. Experiments show that the method of using
data augmentation for our training set is effective for short
answers scoring.

Ablation Study In order to gain a detailed understanding
of the MDA-ASAS, we perform an ablation study on the B4-
swap-A-B1 training dataset. The maximum sequence length
(max sequence length) has a large impact on the fine-tuned
BERT model. In this work, we evaluate the performance

of the ASAS task with different maximum sequence length
settings in 2-way of SciEntsBank UA test data. The results
are summarized in Table 5. In data preprocessing, we have
analyzed the size of the word bag in the reference answer
and the corresponding student answer. And then we sort all
the lengths from smallest to largest. Through the analysis of
positive distribution in the data, we selected 99.73% of the
total number of all lengths and obtained through the index
of 4955/4969, which is 80. Therefore, we perform detection
experiments on the data around 80. Finally, we conduct a
search in the range of 60 to 100 lengths, with each step size
of 10.

Table 5 shows that the maximum sequence length is 90
better than the other numbers. Since we start with the ref-
erence answer and the student answer as input to our fine-
tuned BERT model, when the maximum sequence length is
set to 90, it just covers all the information of the sentence.
Therefore, the model has a maximum sequence length of 90,
which can effectively improve the performance of the ASAS
task.

Comparison with State-of-the-Art Models From Table
3, we get the best data augmentation by original data, which
is swap content data augmentation by original dataset and
twin dataset (B4-swap-A-B1), We regard the B4-swap-A-B1
training dataset as our final MDA-ASAS dataset. Therefore,
we compare MDA-ASAS with six state-of-the-art models
for ASAS. They include four non-neural models and two
neural models. The non-neural models are CoMeT (Ott et
al. 2013), ETS (Heilman et al. 2013), SOFTCAR (Jimenez,
Becerra, and Cic-Ipn 2013) and Sultan et al. (Sultan, Salazar,
and Sumner 2016). CoMeT, ETS, and SOFTCAR are three
of the best-performing systems in the SemEval-2013 task.
Note that ETS benefits from its underlying domain adapta-
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tion. Sultan et al. (Sultan, Salazar, and Sumner 2016) is re-
cent research that proposes a method for short answer scor-
ing in a feature ensemble approach involving text alignment,
semantic similarity, question demoting, term weighting, and
length ratios.

One of the two neural models is a state-of-the-art model
by Marvaniya et al. (Marvaniya et al. 2018). Marvaniya et al.
(Marvaniya et al. 2018) utilizes simple lexical baseline fea-
tures and sophisticated sentence-embedding base features.
The other neural model is Saha et al. (Saha et al. 2018). Saha
et al. utilize hand-crafted token features along with deep
learning embeddings, suggesting that such fusion is helpful
for ASAS. Table 4 reports all the results.

We find that the MDA-ASAS yields significantly better
results than all compared systems except Saha et al. (Saha
et al. 2018) in all the three tasks. We report 4 points and
3 points better macro-averaged-F1 than Saha et al. (Saha
et al. 2018) in 2-way and 3-way respectively. For 5-way,
both accuracy and weighted-average-F1 metrics are better
than all methods, and only macro-averaged-F1 is worse than
Saha et al. (Saha et al. 2018). We observe that MDA-ASAS
combined with fine-tuned BERT model can improve perfor-
mance on automatic short answer scoring.

Conclusion and Future Work

To improve the performance of ASAS systems, we propose
MDA-ASAS, multiple data augmentation strategies on au-
tomatic short answer scoring. Multiple data augmentation
strategies consist of back-translation, correct answer as ref-
erence answer, and swap content. We have shown that MDA-
ASAS combined with fine-tuned BERT model can improve
performance on automatic short answer scoring, which ex-
ploit the powerful features of external knowledge. In sum-
mary, the performance of the ASAS system can benefit from
integrating both MDA features and pre-training language
model embedding features.

Although our results are specific to the task of ASAS,
we believe that the data augmentation strategies of MDA-
ASAS can be directly applied to any semantic similarity task
that requires capturing external knowledge features. On the
other hand, the improvement in our method is sometimes
marginal. We only conduct some experiments in the UA test
set, we will plan to conduct more experiments in the UQ and
UD test set in the future. Continued work on this topic could
explore the theoretical underpinning of the data augmenta-
tion strategy. We hope that MDA-ASAS’s diversity and util-
ity make a compelling case for further thought.
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