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Abstract

Robots are a popular platform for introducing computing and
artificial intelligence to novice programmers. However, pro-
gramming state-of-the-art robots is very challenging, and re-
quires knowledge of concurrency, operation safety, and soft-
ware engineering skills, which can take years to teach. In
this paper, we present an approach to introducing comput-
ing that allows students to safely and easily program high-
performance robots. We develop a platform for students to
program RoboCup Small Size League robots using JavaScript.
The platform 1) ensures physical safety at several levels
of abstraction, 2) allows students to program robots using
JavaScript in the browser, without the need to install soft-
ware, and 3) presents a simplified JavaScript semantics that
shields students from confusing language features. We dis-
cuss our experience running a week-long workshop using this
platform, and analyze over 3,000 student-written program re-
visions to provide empirical evidence that our approach does
help students.

1 Introduction

Robots are frequently used to introduce computing to novice
programmers (Osborne, Thomas, and Forbes 2010; Feath-
erston et al. 2014; Magnenat et al. 2014; Dee et al. 2017;
Gucwa and Cheng 2017; Musicant, Laddha, and Choi 2017;
Paramasivam et al. 2017; Doran and Clark 2018; Paspallis
et al. 2018). Since they are a hands-on medium, it is rela-
tively easy to make an engaging robotics-based curriculum.
Moreover, robots are a natural platform to introduce a vari-
ety of core STEM subjects, including geometry, mechanics,
and programming. However, many robotics-based curricula
use robots that are designed for education, and do not repre-
sent the state-of-the-art in robotics (Osborne, Thomas, and
Forbes 2010; Featherston et al. 2014; Magnenat et al. 2014;
Dee et al. 2017; Gucwa and Cheng 2017; Musicant, Lad-
dha, and Choi 2017; Estrada 2017; Doran and Clark 2018;
Paspallis et al. 2018).

Our research group maintains a team of soccer-playing
robots that compete in the RoboCup Small Size League
(SSL) tournament (Weitzenfeld et al. 2015). We designed,
built, and programmed these robots ourselves, and wanted
to use them in an outreach workshop for several reasons.
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Figure 1: A schematic representation of the major compo-
nents and data flow in our system.

1) SSL robots are compelling because they exhibit high-
performance behaviors and demonstrate what state-of-the-
art robots can do. For example, they are omnidirectional,
move at high speeds, and can manipulate a ball rapidly.
2) We can explain and demonstrate how the robots were built
and the equipment needed to do so, namely CNC mills and
CAD tools. 3) SSL robots are designed to compete in teams,
thus students can use them to write cooperative and compet-
itive agents for soccer and other activities (e.g. robot tag or
navigation in a maze). 4) Soccer is a well-known domain.

However, high-performance robots such as ours, are not
well-suited for novice programmers. 1) If programmed in-
correctly, the robots can cause injury because they are able
to move very rapidly. 2) We program the robots using a so-
phisticated low-level C++ API that lends itself to writing
high-performance code, but requires significant expertise to
use. 3) For competitive play, the robots employ a multi-tier
abstraction for high-level team-wide planning and low-level
control that continuously updates the robots’ roles (Brown-
ing et al. 2005), which makes it difficult to issue simple
movement commands to an individual robot.

Contributions The diagram in Figure 1 depicts the design
of our system, which addresses these challenges.

1. We develop a robot control platform that checks for
safety at several layers of abstraction, which allows
novices to safely work with high-performance RoboCup
SSL robots.

13469



2. We develop a simplified programming stack for control-
ling robots over the network (Middleware in Figure 1).
This programming stack is resilient to transient network
faults and provides simple interfaces to low-level robot
motion controllers that provide functionality like grid
navigation and ball interception.

3. Although we use a professional programming language,
and not a programming language designed for educa-
tion, we take several measures to shield students from
complex and confusing behavior that the language nor-
mally exhibits. Specifically, we use JavaScript and build
a source-to-source compiler that simplifies the semantics
of JavaScript to make it more intuitive.

4. We develop a curriculum for a week-long outreach
workshop that gradually introduces students to progres-
sively more advanced mathematics and more sophisti-
cated forms of robot control. Our robot programming
APIs have multiple layers of abstraction that support this
curriculum design.

We discuss our experience running a week-long workshop
using this platform, and analyze over 3,000 program revi-
sions created over the course of the workshop to argue that
our approach does help students.

The rest of this paper is organized as follows. §2 reviews
related work. §3 presents our robot programming platform
and our approach to safety. §4 presents our JavaScript pro-
gramming environment, and the approach we use to sim-
plify JavaScript for novice programmers. §5 presents our
workshop curriculum. §6 presents evidence that our pro-
gramming environment helps students catch bugs. Finally,
§7 discusses future work and concludes.

Our software can be found on GitHub within the
ut-amrl/robo-js repository.

2 Related Work

Young children exposed to basic computer science concepts
with robots exhibit promising levels of comprehension by
way of such a hands-on medium (Magnenat et al. 2014; Mar-
tinez, Gomez, and Benotti 2015). These sessions—and oth-
ers including (Featherston et al. 2014)—use a block-based
programming language alongside a simplified robotics plat-
form. Scratch1, Alice2, and Blockly3 are some of the most
common block-based programming languages. Lego Mind-
storms4, Thymio5, and Linkbot6 are popular educational
robots; for each there is support of both block and text-based
programming, either natively or through a third-party.

In contrast to other outreach workshops and exploratory
activities within the high-school age range (Osborne,
Thomas, and Forbes 2010; Musicant, Laddha, and Choi
2017; Paspallis et al. 2018), our students do not build or

1https://scratch.mit.edu
2https://www.alice.org
3https://developers.google.com/blockly
4https://www.lego.com/mindstorms
5https://www.thymio.org
6https://www.barobo.com

augment robotics hardware. All our robots were created in-
dependently; on-site setup and maintenance was performed
by the workshop instructors.

Our formalization of a layer-based abstraction appears to
be a novel design for short-term computer science outreach.
There is an analogous approach outlined on a much differ-
ent scale; a university curriculum (Doran and Clark 2018).
Students begin with Java in CS1 using Lego Mindstorms by
way of leJOS7, a Java based replacement for the existing
Lego firmware. In future courses, native Lego hardware is
replaced with an Arduino and Raspberry Pi for use of com-
mon libraries in C, Java, and Python.

Using simulation in conjunction with physical robots is
quite common. Industrial grade simulation, provided by
Gazebo8, is excessive for introductory use as it can easily
overwhelm students. For this reason, simulators wherein the
target audience is users new to CS have been developed into
products such as Robot Virtual Worlds9 and RoboSim10. The
latter can be used seamlessly with physical robots (Gucwa
and Cheng 2017). They outline ideal principles of a sim-
ulated environment, including uniform code and accurate
real-world representation.

We use a modification of the standard vision sys-
tem (Zickler et al. 2014) of RoboCup SSL. There exists an
implementation of a similar lower-end system to interface
with Lego Mindstorms using a web-cam and sending com-
mands over Bluetooth (Estrada 2017).

To our knowledge, the most similar work to date is that
done by a group from the University of Washington (Para-
masivam et al. 2017). They conducted a week-long outreach
workshop for high school students using JavaScript. Provid-
ing a small API for robot control, students wrote programs in
a browser-based editor for a TurtleBot11. Perhaps the biggest
difference was the robots that were used. The standalone
TurtleBots with a touchscreen and speech input-output sup-
plied a platform for programs centered around human-robot
interaction. By contrast, our RoboCup SSL robots are in use
simultaneously from the afternoon of the first day, thus ac-
tivities are rather focused on multi-agent systems.

RoboCup serves as a challenging test-bed for several re-
search problems, including failure recovery (Holtz, Guha,
and Biswas 2018), time-optimal control (Balaban, Fischer,
and Biswas 2018), and multi-agent planning (Biswas et al.
2014). In particular, RoboCup Jr. (Kitano, Suzuki, and Akita
2000) serves as a bridging league where high-school stu-
dents can compete at international RoboCup competitions.
Our work continues the tradition of using RoboCup to in-
spire the future generation of robotics by catering specifi-
cally to students via introduction to computing workshops.

3 RoboCup Robots for Novice Roboticists

We present our state-of-the-art soccer-playing robots and
the associated software platform, including the existing de-

7http://www.lejos.org
8http://gazebosim.org
9http://www.robotvirtualworlds.com

10https://c-stem.ucdavis.edu/studio
11https://www.turtlebot.com
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Figure 2: One of the robots alongside another with its casing
removed. A colored golf ball is used as the ball.

sign and the necessary changes we made for the workshop.
These include increased safety measures, middleware to tie
the low-level robotics hardware layer with the end-user en-
vironment, and student access to our auxiliary simulator.

3.1 Hardware Platform

Figure 2 shows our custom-designed robots that we built to
compete in the RoboCup SSL. The robots fit within a cylin-
der of 18cm in diameter and are 15cm tall. The electron-
ics system is modular with the main circuit board handling
receiving and processing commands as well as power dis-
tribution. Auxiliary boards control wheel motors and kick
behavior. Kicking is accomplished by accelerating a ferro-
magnetic kicking rod using a custom-wound electromagnet
with energy stored in a bank of capacitors. One of the im-
mediate fascinations of these robots is that their movement
is omnidirectional, and they are capable of moving precisely
at high speeds while manipulating the ball in motion.

All robots move within a calibrated field, which is sim-
ply a Cartesian plane, thereby permitting use of standard
Euclidean geometry and algebra in calculations. The field
dimensions at our venue were 2.4m by 3.6m. An overhead
camera can uniquely identify each robot by their top dot pat-
tern (Zickler et al. 2014). This vision system can instanta-
neously observe robots and a ball on the field; positions and
velocities are updated in real-time.

3.2 Robot Software Stack

The software platform is written in C++, with networking
done over UDP multicast. It is multi-threaded in order to
support concurrent 1) state estimation to update the state of
the world based on vision data, 2) control and planning to
assign roles to agents and to compute safe collision-free con-
trol trajectories, as well as 3) collation and transmission of
commands to the robots.

Multi-robot coordination and task allocation is performed
using Skills-Tactics-Plays (STP) (Browning et al. 2005).
Skills define low-level actions, which the physical robot can
perform, such as movement or kicking. Tactics group skills
and determine which one to execute at a given time. For ex-
ample, a Goalie tactic will try to block the ball if the trajec-
tory of the ball would land in its goal. Finally, Plays group

tactics for synchronized activity among multiple robots. Ex-
amples of plays include Kickoff or Free-kick.

We add a single tactic named Marionette to the STP stack
running on our soccer robots. This tactic is special in the
sense that it simply acts on data received from outside the
system, after applying safety checks. It has the skills to
move, dribble, catch, block, and kick. These skills are suffi-
cient for the workshop and have corresponding library meth-
ods for the end programmer to interface with. For some
skills there are multiple library methods exposed to the stu-
dents; see section 4.4. Given the nature of the Marionette,
there is no need for plays as all robots only run this tactic.

Also, we republish the current world state to UDP so it
may be consumed outside the platform. These two items;
the addition of the Marionette tactic and the modification to
expose system state were the two main changes we had to
make. In this sense we leverage all existing capabilities of
the system by providing a means to exchange data, through
our application middleware. This middleware serves as the
intermediary between the low-level C++ code that runs on
the robot controller and the high-level JavaScript code the
students write in the browser.

3.3 Robot Safety Measures

Given these are high-performance robots it is important that
safety be taken into account both for the students and the
robots. As such, we employ the following safety measures:

1. Reduced Motion Model: To ensure safe gameplay on a
reduced field size, we limited the maximum speed of the
robots to 1m/s (the robots are capable of maximum speeds
in excess of 4m/s).

2. Crash Prevention Buffer: Each robot has a uniform
safety margin that surrounds it, enforced by Dynamic
Safety Search (Bruce and Veloso 2006). This margin ac-
counts for multi-robot dynamics and prevents robots from
running into each other, even if the student-written pro-
grams erroneously command them to do so.

3. Command Timeouts: The robots have a command time-
out such that if the robot control stack does not receive any
commands from the student programs within a sliding five
second window, the control stack aborts any active actions
and brings the robots to a halt. Execution resumes seam-
lessly with the next command received.

4. Robot Identification Number Before any robot com-
mands may be issued, the programmer must explicitly
set the number of a robot that is presently available for
control, thus disallowing the program from commanding
robots that are not on the field.

5. Field Boundaries If a statement in a student’s program
erroneously instructs the robot to go beyond the field
boundaries then the Marionette tactic truncates the com-
manded locations to allowable value(s).

6. Skill-based Checks The Marionette tactic verifies that
the low-level skill commanded by the student program is
indeed applicable based on the current world state – this
allows it to catch errors where the student program for
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Figure 3: Two robots passing in simulation.

example tries to kick the ball when it is far from the robot
or not in front of the robot.

3.4 A Simulation Viewer in the Browser

We provide a web-based viewer for corresponding simula-
tors hosted on remote servers. The viewer displays the world
state, relayed to it by way of the middleware intermediary
in real-time. Beneath the visual pane are basic configuration
options. Based on the programming activity, the students can
select initial simulator conditions from a supplied list. Such
items vary the number of robots, the ball and robot posi-
tions, and in some cases the background (e.g. soccer pitch or
a maze). Some configurations involve randomization, so to
provide a better means for program testing. Figure 3 shows
our viewer while a simulation is running; the animations
are 2D from a top-down perspective and are made using the
HTML Canvas.

The choice to provide simulator viewing and control in
the browser is twofold. For one it allows us to easily abstract
away the exhaustive detail of the native viewer and the rigid
command-line interface of the simulator. Also, by using the
browser, the need for installation and hardware requirements
is alleviated.

4 JavaScript for Novice Programmers

In this section, we first discuss why JavaScript seems to be
a reasonable language to introduce computing to novices.
We then show that JavaScript has several counterintuitive
features that make it a poor choice for teaching beginning
programmers. We then present RoboJS, a source-to-source
compiler for JavaScript that transparently simplifies its se-
mantics, which makes it behave like a “normal” language.
Finally, we outline our end-user robotics library and how
these pieces come together in the RoboJS IDE.

4.1 Why JavaScript?

There are several reasons why JavaScript is a good choice
for an introduction to computing. First, JavaScript is one
of the most widely used programming languages in the

world (Ganesan 2019; TIOBE Software BV 2019; Stack Ex-
change, Inc. 2019), thus it introduces students to a technol-
ogy that they are likely to encounter again. Second, there are
several web-based IDEs for JavaScript that allow students to
write and run programs within a web browser, without the
need to install any further software. Finally, since JavaScript
is a dynamically-typed language, there is no need to teach
students how to work with a type-checker, which is neces-
sary to program in Java or C.

4.2 The Case Against JavaScript

JavaScript has several peculiar features, which can confound
novice and expert programmers (Maffeis, Mitchell, and Taly
2008; Guha, Saftoiu, and Krishnamurthi 2010). In this sec-
tion, we present a few of these features and argue that they
make JavaScript a poor choice for teaching programming.

No Arity Mismatch Errors JavaSript does not have arity-
mismatch errors, thus it is not an error to call a function with
too many or too few arguments. If a function receives too
many arguments, the extra arguments are silently dropped. If
a function receives too few arguments, the elided arguments
are set to the special value undefined. For example, our
robot programming API has a moveTo function that takes
three arguments: an x-coordinate, a y-coordinate, and an an-
gle. We found that students frequently forget to supply the
angle argument, and would call moveTo with only the coor-
dinates. In most other languages, this omission would trigger
an error (either during compilation or at runtime). However,
no error occurs in JavaScript.

Implicit Type Conversions JavaScript performs many
implicit type conversions under the hood. Whereas some
type conversions can be valuable, others are very counter-
intuitive. For example, the relational operators of JavaScript
convert all values to numbers, including functions and ob-
jects. Functions and objects are converted to NaN, which is
a floating-point number, and all comparisons with NaN pro-
duce false. In our robot programming API there is a func-
tion called getBallPosX that takes zero arguments and
returns the current position of the ball. Students would fre-
quently forget to call zero-argument functions using paren-
thesis, and write code such as the following:

if (robot.getBallPosX > 0) { ... }

The code above is wrong, since it is comparing the func-
tion, and not the result of calling the function. However,
it does not raise an error. In other languages, including
dynamically-typed languages such as Python, the equivalent
code would raise an error. A mistake such as this is very hard
to identify, even for experts.

Non-Existent Fields In JavaScript, it is not an error to ac-
cess a non-existent field from an object. When a program
does so, JavaScript returns the special value undefined.
Worse, a program can explicitly set a field to the value
undefined, which makes it even harder to discern if the
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1 function checkedGT(lhs, rhs) {
2 if (typeof lhs !== 'number' || typeof rhs !== 'number') {
3 throw Error('Arguments of ">" must both be numbers.');}
4 return lhs> rhs;}

Figure 4: A simplified version of the runtime check for the
greater-than operator in RoboJS.

field exists or not. Due to this behavior, simple spelling mis-
takes can produce undefined. In contrast, accessing non-
existent fields produces an error in Java (during compilation)
and Python (at runtime).

4.3 A Comprehensible Subset of JavaScript

We develop a subset of JavaScript that we call RoboJS,
which eliminates the problems listed above (among others).
Moreover, our IDE transparently ensures that students’ pro-
grams are in RoboJS, using a source-to-source JavaScript
compiler that runs in the browser. The RoboJS compiler
uses static checks when possible to catch errors before the
program runs. When static checks are infeasible, it inserts
dynamic checks that execute at runtime. Therefore, when a
user uses a forbidden language feature (knowingly or not),
it produces an error and aborts the program. The compiler
is careful to ensure that its operation is transparent: the user
never sees the inserted checks and the source locations are
preserved so that the inserted checks do not affect how other
errors are reported. Finally, since RoboJS is a strict subset of
JavaScript, any RoboJS program runs outside the IDE.

For instance, we have seen that the comparison opera-
tors in JavaScript, such as the greater-than operator, perform
unintuitive implicit type conversions. In contrast, RoboJS
requires both arguments of the greater-than operator to be
numbers. To do so, it replaces all occurrences of x > y in
students’ code with a call to a library function that ensures
that x and y are numbers (checkedGT(x, y) in Fig-
ure 4). Note that students never see this function nor know
that their code is being rewritten in this manner.

Similarly, in RoboJS, a function must receive exactly
as many arguments as it declares. To accomplish this,
the RoboJS compiler adds a check to the start of every
function to assert that the number of actual arguments
(arguments.length) is equal to the number of declared
arguments. If not, RoboJS produces an error. Again, this
check is transparent to the programmer.

RoboJS has several other checks and carefully con-
structed error messages, which shield students from
JavaScript’s peculiar features. In §6, we present evidence to
show that RoboJS is effective and does help students catch
mistakes early.

4.4 Programming Robots with JavaScript

In addition to shielding students from JavaScript’s peculiar
semantics, RoboJS also allows students to control robots
using JavaScript. The RoboJS API is designed to gradu-
ally increase the amount of control that students have over
the robots. For example, RoboJS provides several different

1 // Beginner move commands:
2 robot.moveForward(); robot.turnLeft(); robot.turnRight();
3
4 // Intermediate move commands:
5 robot.moveByXCells(cellsX); robot.moveByYCells(cellsY );
6
7 // Advanced move commands:
8 robot.moveByX(distanceX); robot.moveByY(distanceY );
9 robot.moveByXY(distanceX, distanceY ); robot.turnBy(degrees);

10 robot.moveBy(distanceX, distanceY , degrees);
11
12 robot.moveToX(x); robot.moveToY(y); robot.moveToXY(x, y);
13 robot.turnTo(degrees); robot.moveTo(x, y, degrees);

Figure 5: Progression of precision and detail with respect to
how the students programmed robot movement.

1 robot.moveToXY(100, 100, function() {
2 robot.turnTo(180, function() {
3 console.log('Done');
4 });});

(a) Programming a robot using callback functions.

1 robot.moveToXY(100, 100);
2 robot.turnTo(180);
3 console.log('Done');

(b) Programming a robot with RoboJS.

Figure 6: JavaScript does not support blocking I/O, which
can make it hard to write programs that communicate with
any external service, including our robots. However, RoboJS
simulates blocking I/O, which makes programming easier.

functions to move robots (Figure 5). At the beginning of
the workshop, we introduced students to basic motion com-
mands that moved the robots on a discrete grid (Figure 5,
line 1). This allowed students to get comfortable typing
JavaScript code, without the need to understand geometry
in detail. Subsequently, we had students use functions that
moved the robot by a given number of cells (Figure 5, line 4).
This gave the students experience with function parameters
and helped reduce repetitive coding. Finally, we presented
movement in a continuous environment with angles of rota-
tion, absolute motion, and relative motion (Figure 5, line 7).
By gradually introducing students to more advance features
as the workshop progressed, we made an effort not to over-
whelm them with too much new content at once.

Another aspect of the library methods are the lack of data
structures. Everything is a primitive value, both as input to
the methods, and output from them. We only taught the stu-
dents about numbers, booleans, and strings. For instance, in-
stead of a single method to return the position of a robot in
the continuous plane there were three; one each for the x-
coordinate, y-coordinate, and angle. This API design allows
us to avoid introducing arrays and objects.

4.5 An In-Browser IDE and Runtime for RoboJS

RoboJS includes an IDE that runs in a browser. The RoboJS
IDE has a straightforward interface: 1) a handful of buttons,
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including buttons to start the program, stop the program, and
open the robot simulator (section 3.4), 2) a list of files, 3) a
code editor based on Monaco12, and 4) a REPL where stu-
dents can view textual output and execute simple expres-
sions immediately.

The RoboJS runtime system shields students from a key
limitation of web browser APIs, which is that all network
I/O is non-blocking. Thus code that makes a network request
must use a callback function to receive the response. Since
our platform relies on the network to issue commands to
robots, it appears that we need to teach callbacks and higher-
order functions to have students do anything of interest. For
example, if we wanted to have a robot first move to a location
and turn only after the move command completes, we would
have to teach students to write nested functions (Figure 6a).
This style of programming is not suitable for beginners.

Instead, the RoboJS runtime allows students to write sim-
ple, straight-line programs (Figure 6b). Its APIs simulate
blocking I/O on top of the web browser’s non-blocking
primitives by building on a tool called Stopify (Baxter et
al. 2018). Stopify is a source-to-source JavaScript compiler
that simulates multiple, cooperative threads of execution in
JavaScript.13 Using Stopify, RoboJS maintains two logical
threads: one thread runs the user’s program and the other
performs I/O operations. To perform an I/O operation, the
user thread sends a message to the I/O thread, and then
suspends itself. When the I/O operation completes, the I/O
thread wakes the sleeping user thread and sends it the result.

5 Computing and Robotics Workshop

We ran a week-long workshop with twelve high-school stu-
dents. The only prior programming experience in this group
was that one student was familiar with TI-Basic and sev-
eral had worked with Lego Mindstorms using a block-based
language. Table 1 summarizes the curriculum and program-
ming activities that we used over the course of the week.
The curriculum incrementally introduces more sophisticated
concepts in geometry, which was supported by the layers
of abstraction in the RoboJS API. The students started ev-
ery activity by programming in simulation. However, we en-
couraged them to frequently test their programs on physical
robots (with modest supervision by the course staff). In the
early activities that use discrete coordinates, programs reli-
ably behave the same in simulation and on the real robots.
However, with continuous coordinates and more sophisti-
cated behaviors, such as catching and passing a ball, there
are inevitable discrepancies between the simulation environ-
ment and the physical environment. This is an important les-
son to learn when programming robots; it is necessary to
frequently test programs on actual robots.

6 Evaluation of RoboJS

In this section, we evaluate the effectiveness of RoboJS by
studying the kinds of errors that RoboJS caught during our
workshop. We leverage data from our web-based IDE which

12https://microsoft.github.io/monaco-editor
13Technically, Stopify simulates first-class continuations, which

we use to simulate cooperative threads (Wand 1980).

Day Summary

1 Topics: Introduction to the robots and program-
ming environment by example. Statements, vari-
ables, conditionals, and loops. Actuation, inputs,
and sensing. Activities: Mazes with multiple open
repetitive paths with and without dynamic obsta-
cles.

2 Topics: Discrete coordinate geometry and relative
motion. Functions. Planning and robot hardware.
Activities: Fixed item collection based on a ran-
dom robot location with and without adversarial
obstacles.

3 Topics: Continuous coordinate geometry and ab-
solute motion. Multi-agent robotics, navigation,
and more on planning (i.e. dynamic and adver-
sarial). Activities: Robot tag, both chasing and
avoiding agents to compete amongst each other
and against supplied programs.

4 Topics: More geometry, with special attention to
angles. Feature and API exposure needed to in-
teract with the ball and play soccer. Activities:
Penalty shootout, both goalie and striker agents to
compete amongst each other and against supplied
programs.

5 Topics: No new material. Activities: 2v2 soccer
with 4 distinct roles; goalie, defender, primary and
secondary attacker. Students worked in teams to
write these agents, with elementary default code
provided.

Table 1: An overview of the topics and activities for each
day of the workshop.

saves a history of edits for every file, so that students can
easily revert to an older version if needed. Specifically, if a
file has changed since the last run, then the IDE saves a copy
of the program to the cloud when a user tries to run it again.
Therefore, we expect that most revisions are programs that
should have (partially) worked. We gathered 3,230 revisions
total across ten student groups (i.e. accounts) over the course
of one week. Table 2 summarizes the number of lines, revi-
sions, files, and their sizes across all accounts.

6.1 JavaScript Syntax Errors

JavaScript reports syntax errors itself and our IDE gives a
modicum of feedback: it highlights matching brackets and
parenthesis. Therefore, we first checked the syntax of all re-
visions and found that 10% of the revisions had syntax errors
(Table 3). We found far fewer errors on the last day of the
workshop, which may be because students had gained expe-
rience or were modifying programs written earlier.

Most of the syntax errors we found involved missing
or mismatched parentheses. Other common errors included
writing else instead of else if, using an assignment
operator directly before a block statement, and redeclared
let-bound variables.

13474



Account Lines (L) Revisions (R) Files (F) L/R R/F

1 7,591 180 23 42.2 7.8
2 6,478 208 14 31.1 14.9
3 3,795 164 26 23.1 6.3
4 7,871 296 25 26.6 11.8
5 4,227 196 24 21.6 8.2
6 5,253 194 18 27.1 10.8
7 13,598 508 32 26.8 15.9
8 18,796 462 29 40.7 15.9
9 23,087 590 29 39.1 20.3

10 15,472 432 17 35.8 25.4
Total 106,168 3,230 237 32.9 13.6

Table 2: An aggregate summary of program data per stu-
dent account, which also shows the approximate program
size (i.e. lines per revision) and number of edits (i.e. revi-
sions per file).

Account Syntax Errors RoboJS Errors Revisions

1 10 82 180
2 26 28 208
3 6 12 164
4 39 43 296
5 18 46 196
6 29 10 194
7 22 60 508
8 49 89 462
9 80 54 590

10 45 205 432
Total 324 629 3,230

Table 3: A count of JavaScript syntax errors and RoboJS
runtime errors per student account. Note the RoboJS errors
are estimated; see section 6.2 for context.

6.2 Estimation of Errors Caught by RoboJS

A post hoc analysis of the errors caught by RoboJS is less
straightforward, because these programs cannot run without
a (simulated) robot and the playing field in a particular con-
figuration. Therefore, instead of counting the number of er-
rors exactly, we conservatively estimate them by searching
the text of all revisions for patterns that fail in RoboJS. For
example, it is straightforward to check for arity-mismatch
errors that involve RoboJS library functions, because we
know their arity beforehand. In all, we wrote 340 regular
expressions that represent patterns of code that RoboJS re-
jects and manually audited all matches to verify that they
were valid. This approach is certain to produce false nega-
tives and thus undercounts the effectiveness of RoboJS. On
the other hand, false positives would only occur if students
had unreachable code. In summary, 19% of the revisions had
errors that RoboJS catches and JavaScript does not.

Table 4 breaks down the errors that RoboJS catches by
category. The table has an example for each category, de-
scribes how JavaScript ordinarily behaves and the conse-
quences of its behavior. In almost all cases, RoboJS catches
the error early and halts the program with a sensible error
message, instead of silently failing, which is what ordinary

Pitfall Count Contrasting JavaScript and RoboJS

Loose comparison
Ex: true == 1

18 JS Behavior: Operand type coercion.
Consequence in JS: Potential false positives.
RoboJS Behavior: Not allowed.

Uninitialized vari-
able
Ex: let x;

21 JS: undefined reference.
Consequence: Propagation of undefined (if
referenced before initialization).
RoboJS: Not allowed.

Conditional as-
signment
Ex: if(x = 0)

28 JS: Branches on value of RHS as a Boolean.
Consequence: Potential branching based on
non-Boolean literals.
RoboJS: Same branch behavior, but only al-
lowed if RHS evaluates to true or false.

Op type mismatch
Ex: ‘x’ * 2

42 JS: NaN reference in the case of arithmetic/bit-
wise operators and shorthand assignment.
Consequence: Potential propagation of NaN.
RoboJS: Not allowed.

Arity mismatch
Ex: setX();

213 JS: Treats elided parameters as undefined;
silently discards extra parameters.
Consequence: Propagation of undefined de-
pending on function implementation.
RoboJS: Only allowed for native JS functions.

Table 4: A comparison of behaviors with respect to a handful
of beginner programming pitfalls.

JavaScript does.
Note that arity mismatch errors account for two-thirds of

all errors caught by RoboJS. Moreover, two library methods
accounted for nearly all the arity mismatch errors (particu-
larly for account 10). As such, this suggests these methods
were not properly explained or have misleading names, and
thus presents an opportunity for improvement in the future.

To summarize, we find that when students ran their pro-
grams, they failed with syntax errors 10% of the time and
with RoboJS errors 19% of the time. These RoboJS failures
are helpful to students, because without RoboJS, JavaScript
simply fails silently and behaves in unintuitive ways. There-
fore, we conclude that RoboJS helped students catch errors
earlier than if we had used ordinary JavaScript.

7 Future Work and Conclusion

With some technological improvements and feature devel-
opment, we plan to continue doing similar outreach work-
shops to further evaluate our methodology effectiveness.

It is also interesting to explore other avenues to utilize our
existing platform. One idea is to use our system for future
RoboCup team tryouts. Potential aspiring team members
could have the opportunity to showcase their programming
abilities and understanding of robotics principles through
this higher-level medium. Should they exhibit proficiency in
our environment, they can move onto the actual low-level
C++ development necessary for RoboCup. A second possi-
bility would be the use of RoboJS in other teaching scenar-
ios. Taking away the robotics library from RoboJS, reveals a
strict subset of JavaScript that removes the hard edges of the
language. This could be used for instructional purposes, and
even general use, for better JavaScript programs and devel-
oper practice.

In conclusion, we present a means for teaching introduc-
tory computing and robotics principles with an industry-
standard programming language and high-performance
robots. This is made possible by careful learning abstrac-
tions coupled with safe and robust technology interfaces that
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are made available in a conducive environment.
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