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Abstract 
This “blue sky” paper argues that future conversational 
systems that can engage in multiparty, collaborative dia-
logues will require a more fundamental approach than ex-
isting technology.  This paper identifies significant limita-
tions of the state of the art, and argues that our returning to 
the plan-based approach to dialogue will provide a stronger 
foundation.  Finally, I suggest a research strategy that cou-
ples neural network-based semantic parsing with plan-
based reasoning in order to build a collaborative dialogue 
manager.  

 Introduction   
Imagine a not-too-distant future in which you have a 
household robot or conversational assistant that is designed 
to help your family.  Of course, as with any family discuss-
ing their daily activities, you have the usual heated conver-
sations, agreements, disagreements, etc. What can a house-
hold assistant do to help the family and its members 
achieve their goals if it cannot even represent the differ-
ences much less track their resolution and accommodate 
them?    In this paper, I argue that current technologies will 
not by themselves enable us to  build such collaborative 
multi-party dialogue systems. Instead, we should revisit a 
previous approach, namely that of  plan-based dialogue 
systems. 

A critical requirement of such a system is that it actually 
collaborate with its users.   People have learned to be help-
ful at a very young age and are strongly expected to col-
laborate as part of ordinary social interaction (Warneken 
and Tomasello, 20061). Collaborative interaction involves 
agents’  being jointly committed to their partners’ success 
(Grosz and Sidner, 1990; Cohen and Levesque, 1991).  In 
doing so, a collaborator recognizes its partner’s plans to 
achieve a joint goal, and then performs actions to facilitate 
them.  In general,  people’s plans involve  physical (and 
now digital) acts, as well as speech acts, such as requests, 
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1 Please see https://www.youtube.com/watch?v=Z-eU5xZW7cU 

questions, confirmations, etc.  When the process of collab-
oration is applied to communication, people infer the rea-
sons behind their interlocutor’s utterances and attempt to 
ensure their success by (at least) telling them what they 
need to know to be successful, and by potentially volun-
teering to perform actions on their behalf.  Such reasoning 
is apparent when a system responds to the user’s asking 
“Where is Dunkirk playing tonight?” with “It’s playing at 
the Roxy theater at 7:30pm, however it is sold out.”     
Here the literal and truthful answer (shown here in plain 
font) would be uncooperative if the respondent knew that 
the theater was sold out.  On the other hand, we would 
want a collaborator to go beyond inferring the user’s plan 
by attempting to debug it. If the plan is expected to fail, the 
collaborator may develop and suggest (or execute) an al-
ternative plan to achieve the user’s higher-level goal.   To 
continue the example,  a collaborative assistant system 
might then say “It’s also showing at the Forum theater to-
morrow at 8pm, and tickets are available.  Would you like 
me to purchase them?”  In order to provide such respons-
es, an assistant needs to infer a plan in which people want 
to know where an entity is (the location where the movie is 
showing), in order to go there (the theater), in order to per-
form a normal activity done on that entity at that location 
(watch a movie). The assistant checks the plan’s precondi-
tions (watching a movie requires that the person has a tick-
et), and also the applicability conditions (tickets must be 
available).  If the latter fails, the intention is impossible, so 
the system must drop it  and attempt to find another plan to 
achieve the higher level goal (of having seen the movie).  
This collaborative process underlies many conversations. 

Overall, except for one-off examples, current assistant 
systems are not typically engaging in collaborative behav-
ior.  In order to build collaborative systems, research is 
needed on joint action, planning, plan recognition, and rea-
soning about people’s mental and social states (beliefs, de-
sires, goals, intentions, permissions, obligations, etc.).  
Plan-based interaction acknowledges that communication 
is a special case of purposeful behavior (Allen and Per-
rault, 1980; Cohen and Perrault, 1979).  Plan recognition 
involves observing actions and inferring the (structure of) 
reasons why those actions were performed, often to enable 
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the actor to perform still other actions (Allen and Perrault, 
1980; Sukthankar, et al. 2014). 

Regarding multi-party conversation, another require-
ment is that the system must represent the participants’ dif-
ferent mental states (e.g., beliefs, desires, goals, intentions) 
and their rational balance (Cohen and Levesque, 1990a; 
Icard, Pacuit, and Shoham 2010).  Such a system should in 
principle track the family’s agreements and disagreements, 
in order to respond helpfully.    However, we argue that 
present approaches cannot represent key properties of men-
tal states. 

The next section examines the current state of the art 
and argues that a more fundamental approach is needed. 

Limitations of Current Dialogue Technologies 
Chatbots. One might imagine that end-to-end trained 

chatbot technology could be useful for participating in 
multiparty collaborative dialogue because such systems are 
built to talk about any topic for which human-human con-
versational training data is available.  However, such sys-
tems are not now able to track differences in the partici-
pants’ mental states nor track agreements and disagree-
ments in running multi-party conversation. Furthermore, a 
huge multi-party domain-independent  training corpus 
would be needed. 

 
Task-oriented dialogue systems. A more domain-

limited approach of current research and industrial interest 
is to build so-called “task-oriented” dialogue systems 
(TODS), whose restricted objective is to get an agent to 
perform actions, often termed “intents”, such as to book a 
hotel or restaurant reservation. These systems are designed 
to obtain required and optional atomic values to fill in ar-
gument positions (termed “slots”)  in an action schema or 
“frame” (Bobrow et al. 1977). For example, a TODS 
would obtain the date, time, and number of people for a 
restaurant reservation.   If an  argument is missing, it 
would ask the user to supply it.  Can this type of system as 
currently conceived support multi-party collaborative dia-
logue?  Again I claim it cannot. To see why not, let us ex-
amine TODS in more detail through the Dialogue State 
Tracking Challenge (DSTC) (Henderson, 2015). 

Limitations of Slot-Filling Dialogue Systems 
The DSTC, and much research based on it, has defined 

the term  dialog state as [emphasis mine] “loosely denoting  
a full representation of what the user wants at any point 
from the dialog system. The dialog state comprises all that 
is used when the system makes its decision about what to 
say next.” (Henderson, 2015). The DSTC has collected a 
number of relatively simple slot-filling dialogue corpora, 
which have led many groups to build such systems.   Slot-
filling TODS (called “intent+slots” or I+S systems) de-
signed from the DSTC are limited in at least four ways that 
prevent expansion to multi-party collaborative dialogues:  

1). Restricted meaning representations, 2). Restricted di-
alogue state representation, 3). Rigid dialogue initiative, 
and 4). Lack of collaboration (which we already dis-
cussed). 

1. Restricted meaning representations. First, the cur-
rent approach to building these I+S TOD systems  limits 
the set of meaning representations that the dialogue system 
can consider by assuming that the user will provide an 
atomic value to fill a slot. For example,  I+S systems can 
be trained to process simple atomic responses like “7pm”  
to the question “what time do you want to eat?”   Howev-
er, the systems typically will not accept such reasonable 
but complex responses as “not before 7pm,”  “between 7 
and 8 pm,” or “the earliest time available,”  which do not 
supply atomic values but rather state constraints, whose 
meaning involves shared variables.  What’s missing from 
these systems are true logical forms (LFs) that employ a 
variety of operators (e.g., and, or, not, all, equals, if-then-
else, some, every, before, after, count, superlatives, com-
paratives, etc.) rather than only a flat attribute=value repre-
sentation.  Many utterances have a scoped compositional 
representation. For example,  “What is the closest parking 
to the Japanese restaurant nearest to the Empire State 
building?” will have two superlative expressions, which 
are scoped one within the other.  The meaning of “What 
are the three best Chinese or Japanese restaurants within 
walking distance of Madison Square Garden?” will have a 
superlative, count, and a disjunction.  However, complex 
LFs representing the meanings of the above sentences can 
now be produced robustly from   competent neural network 
semantic parsers (e.g., Duong et al. 2018; Wang, Berant 
and Liang 2015).  

 
2. Restricted dialogue state representation. The  I+S 

approach to TODS, as exemplified in the DSTC represents 
dialogue state in terms of the user’s desires as applied to 
actions (the “intents”) whose  attribute-values are to be ob-
tained.  However, this representation of dialogue state is 
overly restrictive. For example, the I+S approach does not 
explicitly represent the user’s desire, but rather assumes it 
to be the content of the system’s so-called “belief state.”  
In our scenario, for a system to serve a family, there may 
be different desires that need to be considered so they will 
need to be made explicit. For example, when asked the 
slot-filling question “what time do you want to eat?”, a 
multi-party system should be able to handle the response 
“whenever Mary wants.”   

The concept of “belief state” as a database that encodes a 
distribution of implicitly desired actions with possible slot 
values (Young et al., 2013) is itself an overly simple  rep-
resentation that cannot support many of the important 
characteristics of belief, especially the representation of 
vague beliefs.  For example, I+S and database systems 
cannot currently  represent “John knows Mary’s phone 
number” because  one cannot simply put an expression like 
phone-number(mary,X) in a database of John’s be-
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liefs/knowledge. That essentially says John believes an ex-
istential statement, that Mary has a phone number.  Like-
wise, one cannot put in a constant for the phone number, 
because then the system already knows what John thinks it 
is.  The solution will involve the famous philosophical 
problem of  “quantifying-in” (Kaplan 1968; Kripke 1967), 
specifically, quantifying a variable into a modal operator, 
as in:  

 
This means (in a possible-worlds semantics) that there is 
some value for X such that in all possible worlds compati-
ble with John’s beliefs, X is Mary’s phone number. The 
system does not happen to know what X is, but it is the 
same value in all worlds compatible with John’s beliefs, so 
he knows what it is.2   Various early plan-based dialogue 
systems represented and reasoned with quantifying-in via 
the knowref 

:    knowref(<agent> <var>^<description>) 
meaning the agent knows the value of the variable such 
that  description is true of it (Allen 1979; Cohen and 
Levesque 1990b; Cohen and Perrault 1979; Perrault and 
Allen 1980;  Sadek, Bretier, and Panaget 1997).  This 
knowref expression appears in the preconditions and ef-
fects of  and  speech acts, which 
are used during planning. Once  dialogue systems  have to 
deal with multi-party interaction, they will need to repre-
sent such vague beliefs,  for example to decide whom to 
ask – the person whom the system asks should be someone 
whom it believes knows the answer.4 The system should 
also be able to acquire such information about someone’s 
beliefs from dialogue. For example, if the system asks: 
“what is Mary’s phone number?” it  should be able to 
handle the response  “I don’t know but Mary does” and 
plan to ask Mary. Dialogue state for task-oriented dialogue 
systems is thus considerably more complex than envi-
sioned by I+S approaches. Extensions to I+S to allow goals 
from multiple domains (Budzianowski et al. 2018) should 
consider constraints (such as temporal ones) across those 
goals, e.g., to have dinner before the movie. 
 

3. Rigid dialogue initiative. The dialogue structure of 
I+S TODS is overly prescriptive.  Essentially, the user 
makes a request, the system asks for the missing infor-
mation, the user supplies that information, the system 
(eventually) confirms the action to be performed, the user 
agrees or disconfirms, etc.   However, real dialogues can 
have many shifts of initiative in which the parties collabo-

                                                 
2 Note that quantifier’s scope may include multiple modal operators.  
3An example of an inference: knowref(agt, D^(p(D) & q(D))  implies    
  knowref(agt, D^q(D)), but not the converse. 
4 The same issue arises with “knowing whether P”, which is defined as 
(bel X P) V (bel X not(P)).

 

rate to accomplish goals.  Below is an example that shows 
the need for complex logical forms and mixed initiative: 

(1) U:  Please book the closest good restaurant to the 
Orpheum Theater on Monday for four people.  

(2) S:  OK,  I recommend Guillaume.  What time 
would you like to eat? 

(3) U:  what’s the earliest time available? 
(4) S:  6 pm 
(5) U:  too early 
(6) S:  how about 7 pm? 
(7) U:  OK 

Here the system has responded to the user’s complex re-
quest in (1) with a slot-filling question (2).  Rather than an-
swer the question, the user replies with another question 
(3),  a not infrequent occurrence though it violates the typi-
cal assumptions of simple slot-filling dialogue systems.  
Notice that Question (3) starts a subdialogue (3-7) by es-
tablishing  a constraint on the desired time in (2) (Litman 
and Allen, 1987).  The times specified by the system in (4) 
and (6) are not times the user wants to eat.  Only when the 
user accepts the system’s proposal in (7) do we learn when 
the user wants to eat. However, the slot-filling approach 
assumes that it is the user who fills the slots. System and 
user are thus collaborating to achieve the user’s goals 
(Clark and Wilkes-Gibbs 1986; Cohen et al. 1990; Grosz 
and Sidner 1990; Rich and Sidner 1998).  How then can we 
build multi-party, collaborative dialogue systems? 
 
Back to the Plan-based Model of Dialogue  
Over the years, many researchers have advocated a plan-
based model of dialogue (Allen and Perrault 1980; Allen et 
al 1995; Breen et al., 2014; Cohen and Perrault 1979; 
Galescu et al. 2018; Perrault and Allen 1980; Sadek, Bre-
tier, and Panaget 1997) in which the same planning and 
plan recognition algorithms are applied to physical, digital, 
and communicative acts. When applied to physical or digi-
tal acts, the system is planning over physical or digital 
states.  When applied to communicative acts, the system 
plans to alter other agents’ mental states, such as beliefs, 
goals, and intentions, sometimes to cause them to perform 
actions.   

The above early speech act planning work used a hierar-
chical variant of STRIPS (Fikes and Nilsson, 1972), and 
employed forward and backward chaining rules as applied 
to plan operators that represented physical and communi-
cative acts.   To formalize this, Cohen and Levesque 
(1990a) provided a multimodal logic  of mental states and 
action, analyzing intention in terms of a persistent goal 
(pgoal) to perform an action5.  We then showed (Cohen 
and Levesque 1990b) how to describe various speech acts 
in the logical language. Sadek, Bretier, and Panaget (1997) 
then built dialogue systems reasoning with a more restric-

                                                 
5 A persistent goal is one the agent is committed to keep until the agent  
believes it is achieved, impossible, or irrelevant. 
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tive modal logic, which they deployed in the France Télé-
com network.   

To show the feasibility of using the aforementioned logic 
to drive a collaborative dialogue system, we recently built 
a plan-based dialogue manager (DM) prototype that rea-
sons about actions and mental states in that logic.  The 
DM:  Asks yes/no and wh-questions when the addressee is 
believed to know the answers; requests actions when the 
system wants the effect and the addressee is believed to be 
able to perform it;  informs that a proposition is true when 
it wants the addressee to believe it and does not believe 
s/he already does; suggests actions that the addressee may 
want in order to achieve his/her goals.  The DM collabo-
rates by inferring and debugging the user’s plans, as dis-
cussed above.  Slot-filling occurs in virtue of reasoning 
about what people want, believe, and need to believe in or-
der to perform actions.  A DSTC “slot,” which involves the 
user’s desire (Henderson 2015), can be expressed by quan-
tifying an action’s arguments into the user’s pgoal that the 
action be done (Cohen 2019).  For example, the slot para-
phrased by “the day Joe wants to me to reserve XYZ  for 
him” can be expressed as: 

 
Notice the  variable is quantified into the pgoal, which 
means there is a  on which Joe is committed (i.e., has a 
pgoal) to there being a , and number of diners  such 
that the system reserves  restaurant  on that  at that 

 for  diners. The system has thus represented there 
being a particular day that Joe wants the system to reserve 
XYZ, but the system does not know what day that is. Now 
assume the system also has this belief (1): 

 
it then wants to come to know what Day that is. It can 
therefore plan the slot-filling question “what day do you 
want to me to reserve XYZ restaurant?” because it believes 
formula (1), i.e., that Joe knows the answer.  If the agent of 
the knowref in (1) were Mary, the system would plan to 
ask her. 

Expanding the Scope of Dialogue Systems 
In order to expand today’s limited dialogue systems to 

multi-party collaborative ones, I argue that we should re-
visit the foundations of dialogue and build scalable collab-
orative dialogue components based on joint action, epis-
temic reasoning, planning and plan recognition.  To do so, 
I suggest we investigate dialogue systems that are hybrids 

of semantic parsing, and planning/reasoning systems, aug-
mented with machine learning of various flavors.  We have 
found to be effective a process of building a semantic par-
ser using the crowd-sourced “overnight”  approach (Duong 
et al., 2018;  Wang, Berant, and Liang 2015), which maps 
crowd-paraphrased utterances onto LFs derived from  a 
backend API or data/knowledge base. This methodology 
involves:  1) Creating a grammar of LFs whose predicates 
are chosen from the backend application/data base, 2) us-
ing that grammar to generate a large number of LFs,  3) 
generating a “clunky” paraphrase of an  LF,  and 4) collect-
ing enough crowd-sourced natural paraphrases of those 
clunky paraphrases/LFs6.  A neural network semantic par-
ser trained over such a corpus can handle considerable ut-
terance variability, including the creation of logical forms 
both for I+S utterances, and for complex utterances not 
supportable by I+S approaches. In the past, we have used 
this method to generate a corpus of utterances and logical 
forms that supported  the semantic parsing/understanding 
of the complex utterances discussed previously (Duong et 
al., 2018).    

Planning and plan recognition are vibrant literatures but 
their approaches will need to be extended to reason about 
mental states and communication. Current planning and 
automated reasoning subsystems will no doubt be formally 
incomplete, but of course, current machine-learned I+S 
task-oriented DMs are themselves incomplete reasoners.   
On the other hand, automated reasoning systems cannot 
easily handle the uncertainty for which neural networks 
(with sufficient data) excel, but there are a variety of prob-
abilistic plan recognition approaches that could be investi-
gated (e.g., Albrecht, Zukerman, and Nicholson 1998; 
Charniak and Goldman 1993; Sukthankar et al. 2014).   

In combining these technologies, it is not obvious that 
the current dialogue research practice of learning both the 
relevant semantic parser and the dialogue policy jointly is 
advantageous. Because there is far more variability in natu-
ral language than there is in the goal lifecycle (Galescu et 
al. 2018, Johnson et al. 2018), by separating semantic pars-
ing from dialogue, a system can avoid having to relearn 
how to converse for each domain. Instead, a dialogue man-
ager that operates at the level of plans and goals as applied 
to physical, digital, and communicative acts, can be do-
main independent. We can perhaps acquire the probabilis-
tic information (facts and domain actions) that a plan-
ner/plan recognizer operates over by crowd-sourcing and 
text mining (Fast et al. 2016; Jiang and Riloff 2018). A 
plan-based DM could be trained to play both sides of a col-
laborative conversation by planning and interpreting 
speech acts and their propositional content, giving the par-
ties’ differing beliefs, goals and intentions, in a given situa-
tion.  In this way, the DM could generate possible response 
plans that then could be used to train a dialogue manage-

                                                 
6 This might take longer than overnight (cf. Wang, Berant and Liang 
2015).  
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ment component, similar to the “dialogue self-play” ap-
proach of (Shah et al. 2018). Such a system could thus 
learn how to reason, plan, and converse.  

    
Concluding Remarks 

I have argued that to build a multi-party collaborative 
dialogue manager, we should revisit the foundations of dia-
logue, and base dialogue systems on joint action, epistemic 
reasoning, planning and plan recognition.  It may be “blue 
sky” to think we can do so because that would require so-
lutions to long-standing problems.  However, I suggest it is 
time we return to such an approach, as the benefits could 
be substantial. 
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