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Abstract

Modern software systems are highly complex and often have
multiple dependencies on external parts such as other pro-
cesses or services. This poses new challenges and exacerbate
existing challenges in different aspects of software Quality
Assurance (QA) including testing, debugging and repair. The
goal of this talk is to present a novel AI paradigm for software
QA (AI4QA). A quality assessment AI agent uses machine-
learning techniques to predict where coding errors are likely
to occur. Then a test generation AI agent considers the error
predictions to direct automated test generation. Then a test
execution AI agent executes tests, that are passed to the root-
cause analysis AI agent, which applies automatic debugging
algorithms. The candidate root causes are passed to a code
repair AI agent that tries to create a patch for correcting the
isolated error.

1 Scientific Background

Testing, debugging, and other software Quality Assurance
(QA) activities are performed by software development
teams to increase software quality throughout the soft-
ware development process and in particular prior to deploy-
ment. Estimates of the time spent for QA in software prod-
ucts range from 20% to 50% of overall development costs
(Tassey 2002). Recent years have demonstrated that the rele-
vant time-to-market for software products decreases rapidly,
while the value expected by end-users is not decreasing,
thereby leaving less time for QA. This suggests software
products quality is expected to degrade, potentially leading
to a new software crisis (Cerpa and Verner 2009).

To avoid this crisis, we believe that a novel Artificial In-
telligence (AI) paradigm for software development and QA
is required. In this paradigm a range of techniques from the
AI literature could guide human and computer QA efforts
in a cost-effective manner. Figure 1 illustrates the workflow
of this AI-driven QA paradigm (AI4QA). Each one of the
workflow components, described below, poses an interest-
ing research challenge which can be addressed by different
well-known AI methods.
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Figure 1: An illustration of the proposed AI4QA paradigm.

A quality assessment AI agent (marked 1 in Figure 1)
continuously monitors the software development process by
collecting information from existing software engineering
tools, learning over time to predict where coding errors are
likely to occur. A test generation AI agent (2) considers the
error predictions to direct automated and manual test genera-
tion. The test execution AI agent (3) executes tests and anal-
yses their outputs, searching for failed tests and abnormal
behaviour. These potential failures are passed to the root-
cause analysis AI agent (4), which applies automatic diag-
nosis and debugging algorithms to isolate their root cause.
In some cases, additional testing is needed to isolate the root
cause, in which case the root-cause analysis AI agent will in-
teract with the test generation AI agent to create customized
tests to provide additional diagnostic information. After iso-
lation, the candidate diagnoses – root causes – are passed
to a code repair AI agent (5) that tries to create a patch
for correcting the isolated error, or assign it automatically
to a human developer that is most likely to be able to solve
it. After an error is corrected, the test generation AI agent
generates suitable tests to prevent regression. This QA pro-
cess is constantly monitored by the quality assessment AI
agent, which provides immediate feedback to management,
suggesting when a software is deployment-ready and which
processes need executive attention.

Algorithms for some elements of the AI agents in AI4QA
exist in the academic literature and even in industry. How-
ever, their adoption has been limited. This is because cur-
rent algorithms are not powerful enough and do not provide
a full solution to the QA process. For example, there are sev-
eral automated test generation tools (Fraser and Arcuri 2011;
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Fraser and Rojas 2019). but without assessing the quality of
the tested software or analysing which parts are more likely
to contain bugs, it is not possible to guide the test generation
in an informed manner.

Indeed, to achieve a ground breaking impact on software
development it is crucial not only to develop the individ-
ual AI agents in AI4QA, but also to create multi-agent
mechanisms that allow these agents to cooperate effectively
with each other and with their human counterparts. AI4QA
paradigm poses many research and engineering challenges,
but the expected outcome is a revolution in how software
is developed, leading to increased quality, lower costs, and
faster QA process.

2 The State-of-the-Art and Open Challenges

The AI agents in AI4QA paradigm build on range of exist-
ing lines of research. We provide a brief summary of these
lines of research, highlighting current successes and open
challenges to the AI community.

2.1 Software Fault Prediction

Software fault prediction is a classification problem: given
a software component – a class, a method, or a line of
code – the goal is to determine whether it contains a fault
or not. This topic has been studied extensively in the lit-
erature, including several recent surveys (Malhotra 2015;
2018). The state of the art approach for building a software
fault prediction model is to use supervised machine learning
algorithms as follows. As input, these prediction algorithms
accept a training set comprising software components and
their correct label – faulty or not. Then, they extract various
features from every component in the training set, and learn
a relation between a component’s features and its label. The
output of these algorithms is a fault prediction model based
on this relation: it accepts features of a software components
and outputs a predicted label. Software fault prediction al-
gorithms vary in where they obtain their training set, in the
machine learning techniques they use, and the features they
extract from each component.

Obtaining a training set. The common approach to ob-
tain a training set is to collect it from issue tracking and ver-
sion control systems (e.g., Jira and Git). Previously reported
bugs are matched with source code revisions that fixed them,
and every such pair is a component labelled as faulty in the
training set, while all other components are assumed to be
correct. Within-project software defect predictions learn a
prediction model for a project by using a training set col-
lected from that project (Pan et al. 2019).

Learning algorithms. A range of machine learning algo-
rithms have been used for software defect prediction, such as
Random Forest (Elmishali, Stern, and Kalech 2016), Sup-
port Vector Machines (Niu et al. 2018), and deep learning
(Fan et al. 2019).

Defect prediction features. The features used by exist-
ing software prediction algorithms can be categorized into
three metric families: code complexity, object-oriented, and
process. Code complexity and object oriented metrics are

extracted by static code analysis. Code complexity met-
rics include simple metrics like number of lines of code
and more complex metrics such as McCabe’s cyclomatic
complexity metric (McCabe 1976) and Halsted’s metrics
(Halstead 1977). Object-oriented metrics measure various
object-oriented properties such as the number of classes it
is coupled with, and the cohesion of the functions in a class.
Process metrics are extracted from the version control sys-
tem, and try to capture the dynamics of the software devel-
opment process, such as the number of lines added in the last
revision and time since the last edit (Choudhary et al. 2018).

Open Challenges: The accuracy of state-of-the-art pre-
diction algorithms is pretty high. Theoretical models of cost-
effectiveness also suggest that guiding QA efforts using soft-
ware defect prediction should yield high return on invest-
ment (Hryszko and Madeyski 2017). However, there are still
open challenges:

Imbalance data. There are much more valid software
components than buggy components. This is a known chal-
lenge for prediction models. The high accuracy reported in
the literature is mainly due to the extremely high number of
valid components (true negatives), however, the recall is usu-
ally still low. Recently prior work explored using techniques
for handling imbalanced datasets (Khuat and Le 2019).

Cross-projects learning. Most previous work focus on
learning prediction models within project. This approach is
not expected to work well for new projects. It is challenging
to learn prediction models from multiple projects and use
them to generate a prediction model for a new project. This
task raises interesting challenges such as how to integrate
the learnt prediction models for the new project? How to
compute the similarity of the new project to the projects that
used for the training? (Goel and Gupta 2020) It seems that
transfer learning (Weiss, Khoshgoftaar, and Wang 2016) can
be a key to cope with these challenges.

The synergy of software defect prediction in AI4QA.
This AI agent is the main driving forces in AI4QA, direct-
ing the tasks exerted by all the other AI agents and provid-
ing them with a better understanding of the tested software.
In addition, input from the other AI agents can further im-
prove existing fault prediction algorithm, e.g., with knowl-
edge about which components have been tested recently.

2.2 Automated Test Generation and Execution

Automatic test generation is one of the most studied problem
in automated software engineering (Fraser and Arcuri 2011;
Fraser and Rojas 2019). Broadly speaking, a test is an ac-
tivity that stimulates a system and observes its behaviour.
The main challenges addressed in the literature are how a
test should stimulate the system under test (SUT), and how
to decide whether the observed behaviour is correct or not,
corresponding to the test passing or failing, respectively. The
first challenge is known as the reliable test set problem and
the second challenge is known as the oracle problem (Chen
et al. 2018).

Reliable test set problem. Several approaches have been
proposed for the reliable test set problem. Random testing is
such an approach, in which the SUT is used in different ways
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by generating random input values or random sequences of
instructions. A different approach for addressing the reliable
test set problem is based on symbolic execution (Trabish et
al. 2018). Symbolic execution refers to the execution of pro-
gram with symbols as argument, rather than concrete values.
Assignment statements are represented as functions of their
(symbolic) arguments, while conditional statements are ex-
pressed as constraints on symbolic values. Then, a constraint
solver can be used to find input values for the SUT that will
execute any desired paths in the SUT. Symbolic execution
is also often used in conjunction with real execution of the
SUT. This is known as dynamic symbolic execution or con-
colic testing, and is used in test generation algorithms (Bal-
doni et al. 2018).

Search-based test generation algorithms approach the re-
liable test set problem as a combinatorial optimization prob-
lem and apply combinatorial search algorithms. To do so,
an optimization criteria such as path coverage is defined.
Then, search-based test generation algorithms use search al-
gorithms to search the space of possible tests so that the re-
sulting test set maximizes the chosen optimization criteria.
EvoSuite (Fraser and Arcuri 2011) is a state-of-the-art ex-
ample of search-based test generation algorithm that uses
a genetic algorithm for searching the space of possible test
suites. Such approach has also been used to generate system-
level test (Arcuri 2018).

The Oracle problem. The Oracle problem has received
less attention than the reliable test set problem, but nonethe-
less there are several approaches for addressing it (Barr et al.
2014). One approach is to assume that a test fails if it causes
the SUT to crash or throw an exception. A second approach
is designed for building regression tests: it assumes the cur-
rent behavior of the SUT is correct, and creates tests to verify
that this behavior is maintained. A third approach is to ac-
cept from the user some specification or invariants that the
SUT must conform to, and verify that they are maintained.
For example, recent work by Pill and Wotawa showed how
to extract test oracles from specifications given in linear tem-
poral logic (Pill and Wotawa 2018).

Open Challenges: Reliable tests. Despite the many in-
vested efforts to solve this challenge, the industry has not yet
adopted these methods and in fact we are far from a working
tool. In the light of recent successes of machine learning and
deep learning methods in other areas, it could be that these
approaches will work also to generate reliable tests.

Oracle. The major limitation of previous approaches that
they cope with the simple cases of crash, exceptions and
specific user-defined specification rules, however, most tests
check the specification and logical errors. Automated oracle
for such cases is still challenging.

The synergy of automated testing in AI4QA. An im-
portant challenge for the AI4QA paradigm is how to use
input from the quality assessment AI agent,to divert testing
efforts to areas in the software that are more likely to con-
tain bugs. Moreover, how the test generation AI agent can
identify which parts of the software it cannot test properly
and require a human tester. Lastly, how the test generation
AI agent could be integrated in AI4QA to generate tests

on-the-fly during debugging, in order to provide useful di-
agnostic information.

2.3 Automated Software Diagnosis

Failed tests suggest that one or more software compo-
nents are not behaving as expected. Software diagnosis, also
known as software fault localization and debugging, is the
process of finding these faulty components, given the set of
passed and failed tests. Various approaches have been pro-
posed for automated software diagnosis (Wong et al. 2016).

Model-based software diagnosis. A logical model of the
diagnosed software is assumed or learned, and then used to
analyse the discrepancies between this model and the ab-
normal observations (Pill and Wotawa 2018). This approach
is principled and allow using model-based diagnosis algo-
rithms, but cannot scale to real-size programs due to the dif-
ficulty of obtaining a useful model for the SUT.

Spectrum-based fault localization (SFL). SFL-based
software diagnosis identifies faulty components by col-
lecting traces of executed tests, which are vectors that
state which software component was involved in each test.
Barinel (Abreu, Zoeteweij, and van Gemund 2011) is a
prime example of a software diagnosis algorithm from this
approach. It uses a hitting set algorithm to find sets of com-
ponents such that each set contains a component from the
trace of every failed test. Then, it uses an optimization algo-
rithm to rank these sets of components in order to identify
the most likely root cause. Many improvements have been
proposed to Barinel, such as improving it with information
about the system’s state (Perez and Abreu 2018).

Slicing-based software diagnosis. Slicing-based soft-
ware diagnosis removes parts of the SUT that are not rel-
evant to the failed test, thereby narrowing the number of
components that may have caused the bug. The challenge
in slicing techniques is how to identify and cut out only
the relevant parts of the SUT. Some slicing techniques are
based on a static analysis of the source code (Kusumoto et
al. 2002), while others use dynamic slicing, which analy-
ses a specific execution of the program (Wong et al. 2016).
Software diagnosis via program slicing is limited to the size
of the smallest slice, which theoretically can be as large as
the entire program. However, program slicing can be used
effectively in conjunction with another software diagnosis
method, e.g., by first narrowing down to the smallest slice
that maintain the desired behaviour, and then applying a dif-
ferent approach on that slice (Hofer and Wotawa 2012).

Text-based software diagnosis. A fundamentally differ-
ent approach that has gain some attention in recent years is
to learn the relation between the text in the bug report – the
report in which the bug is described – and the location of its
root cause. These techniques consider the source code of the
SUT as a collection of text document, and apply techniques
from the Information Retrieval literature to search for soft-
ware components that contain similar text to the text in the
bug report (Khatiwada, Tushev, and Mahmoud 2018). The
main advantage of these approaches is that they do not re-
quire executing the SUT, which is time consuming and can
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be challenging due to configurations differences. However,
these methods rely on having meaningful bug reports with
text that suggests the location of the bug.

Open Challenges: Although the topic of software diagno-
sis has been studied in recent years and there are even tools
for this task (Elmishali, Stern, and Kalech 2019), these algo-
rithms are not commonly used in industry, probably the next
challenges should be addressed first.

Isolating difficult bugs. Current automated debugging
methods succeed to isolate bugs that mostly would be eas-
ily isolated by human. There is still a challenge to isolate
bugs that are known to be difficult to isolate such as bugs
of omission, which are bugs due to missing lines of code, or
bugs that caused due to multi-thread programming.

Diagnoses ranking. Software diagnosis algorithms tend
to produce a large number of candidate diagnoses, thus rank-
ing the diagnoses effectively is crucial and challenging.

The synergy of root cause analysis in AI4QA. In the
proposed AI4QA paradigm, an important challenge of the
root-cause analysis AI agent is to identify the suitable course
of action for isolating each bug. This includes challenges as
how to choose the appropriate diagnosis algorithm for the
observed failure, and how to identify when delegating to a
human is a better option.

2.4 Automated Software Repair

The next step after diagnosing the root cause of a bug is
to fix it. There are several algorithms that attempt to auto-
mate the bug fixing step. The output of these algorithms is a
patch that fixes the bug, which is then presented to the hu-
man developer to approve or reject. Some software repair al-
gorithms are general-purpose while others focus on specific
types of bugs. For example, Code Phage is a code repair al-
gorithm designed specifically for repairing buffer overflow
bugs (Sidiroglou-Douskos et al. 2015). Some algorithms re-
strict themselves to use specific code repair templates, or
try to learn from previously used patches (Long and Rinard
2016), while others try to synthesize the patch by adding and
manipulating raw code instructions. A recent comprehensive
survey (Gazzola, Micucci, and Mariani 2017) divided soft-
ware repair techniques to two classes: generate-and-validate
and semantic driven.

Generate-and-validate software repair. Software repair
algorithms from this class modify the existing code in vari-
ous ways until all tests pass, without a deep understanding of
what the code is supposed to do. To this end, several atomic
code manipulation operators are defined and the software
repair problem becomes a search problem of finding the se-
quence of code manipulation operators that results in pass-
ing tests. Since the number of possible sequences of opera-
tors is infinite, software repair algorithms apply a range of
heuristic search algorithms to search this space effectively.
GenProg (Le Goues et al. 2011) uses a genetic algorithm
to search for the appropriate sequence of code manipula-
tions. Then, it applied delta debugging to reduce found se-
quence code manipulation so that as to produce a minimal
patch. Other code repair algorithms from this class use dif-

ferent search algorithms, different code manipulation opera-
tors, and different fault localization methods.

Semantic-driven software repair. Algorithms that follow
this approach convert the software repair problem to a soft-
ware synthesis problem. They usually have three main steps:
behavior analysis, problem generation, and fix generation.
In the behavior analysis step, the system’s incorrect behav-
ior (the bug) and the system’s desired behavior are both
encoded in some formal way. In the problem generation
step, a formal problem is defined such that its solution is
a patch that corrects the system’s behavior. In the fix gen-
eration step, the generated problem is solved, e.g., using a
general problem solving technique, outputting the desired
patch. For example, the Angelix algorithm reduces the sys-
tem repair problem to a Partial Max Satisfiability-Modulo-
Theory (pMaxSMT) problem, and then applies a general-
purpose pMaxSMT solver. For the behavior analysis step,
Angelix relies on the software tests to define the desired be-
havior. An alternative is to derive the desired behavior for
software specifications or from a reference implementation
(Mechtaev et al. 2018).

Open Challenges: Current software repair algorithms
work surprisingly well on academic benchmarks. However,
this has not translated to the expected transformation in how
software is developed in industry.

Efficiency. Existing algorithms are not powerful enough.
The search space of repair is extremely high even for dis-
crete variables and thus a major challenge is to focus the
search on more probable repair patches. This can be investi-
gated by learning methods.

Isolation and repair tradeoff. As mentioned, the root-
cause analysis AI agent returns a large set of candidate di-
agnoses, where most of them are false positive. Repairing
false positive candidate bugs is time consuming. There is a
tradeoff between the bug isolation process and the bug re-
pair. The more efforts invested to isolate the correct bug the
less required efforts in repairing it. Balancing between these
two tasks is challenging.

The synergy of repair in AI4QA. Fundamental ques-
tions that must be answered is when an identified bug can be
fixed by an automated repair algorithm and when it is better
to delegate it to a human developer. To properly address this
question, a preliminary challenge should be addressed, how
to assess the importance of an identified bug and its pre-
dicted complexity to repair. Given the broader view of the
developed project, the code repair AI agent will choose the
appropriate course of action for each bug: whether to dele-
gate or solve by a code repair algorithm, and if so, which
code repair algorithm to use.

3 From Blue-Sky to Practical Research
Developing successful and efficient AI algorithms to address
the presented open challenges will make a revolution in how
QA is maintained during software development. AI agents
will collaborate effectively with each other and with their
human counterparts in a broad range of QA activities. In-
stead of investing human efforts in each one of the QA com-
ponents: testing, debugging and repair, adopting the AI4QA
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paradigm, proposed in this paper, will reduce the human ef-
forts and accelerate the QA process.
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