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Abstract

We survey a burgeoning and promising new research area
that considers the online nature of many practical fair divi-
sion problems. We identify wide variety of such online fair
division problems, as well as discuss new mechanisms and
normative properties that apply to this online setting. The on-
line nature of such fair division problems provides both op-
portunities and challenges such as the possibility to develop
new online mechanisms as well as the difficulty of dealing
with an uncertain future.

Introduction
Fair division (Brams and Taylor 1996) is an important prob-
lem facing society today as increasing economical, environ-
mental, and other pressures require us to try to do more with
limited resources. Much previous work in fair division as-
sumes the problem is offline and fixed. That is, we suppose
that the agents being allocated resources, and the resources
being allocated to these agents are all known and fixed.
But practical reality is often quite different (Walsh 2014a;
2015). Fair division problems are often online, with either
the agents, or the resources to be allocated, or both not be-
ing fixed and potentially changing over time. This presents
a number of technical challenges and opportunities.

Consider allocating deceased organs to patients, donated
food to charities, electric vehicles to charging stations, view-
ing slots to a telescope, etc. We often cannot wait till all re-
sources are available, preferences known or agents present
before starting to allocate the resources. For example, when
a kidney is donated, it must be allocated to a patient within a
few hours. As a second example, when food items arrive at a
food bank, they must be allocated to charities promptly. As
a third example, when allocating charging slots to electric
cars, we may not know when or where cars will arrive for
charging in the future but must commit to providing charg-
ing slots to cars now. As a fourth example, when allocat-
ing landing slots at an airport for the next hour, there might
be considerable uncertainty about the demands in six hours
time. As a fifth example, when scheduling viewing slots on
an expensive telescope, we might need to commit to the cur-
rent period, before future viewing conditions and demands
are fully known.
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The online nature of such fair division problems changes
the mechanisms available to allocate items. For example,
consider the well-known and widely used sequential al-
location mechanism studied in (Bouveret and Lang 2011;
Kalinowski et al. 2013; Kalinowski, Narodytska, and Walsh
2013; Aziz, Walsh, and Xia 2015; Aziz et al. 2016; Walsh
2016). This mechanism has agents taking turns to pick their
most preferred remaining item. This is used in many offline
settings due to its simplicity and nice normative properties.
For instance, it can be used to return allocations where an
agent’s envy for the allocation of another agent is limited to
at most one item. However, this mechanism cannot be used
in an online setting as an agent’s most preferred item may
not be currently (or even ever) available. We, therefore, need
to develop new online mechanisms that account for the fact
that some items might never become available.

The online nature of such fair division problems also
changes the normative properties that we might look to de-
mand. For example, suppose we are interested in strategy-
proof mechanisms that encourage agents to report their sin-
cere preferences. In deciding if agents have any incentive to
misreport preferences in an online setting, we may take into
account the online nature of the problem, and thus consider
fixed past decisions and unknown future. This leads to an
online and weaker form of strategy-proofness. It is weaker
because agents have committed to their past decisions and
uncertainty about the future reduces their strategic options.
On the plus side, this means that it may be easier to achieve
strategy-proofness in the online setting than in the offline
setting. On the minus side, this also means that it could be
harder in the online setting to achieve other properties. For
instance, items that arrive in the future may require us to
change the allocation of items made in the present to ensure
Pareto efficiency.

Dimensions of online fair division

We can characterize models of problems concerning online
fair division along a number of orthogonal dimensions.

Resource types

We can classify online fair division problems according to
whether resources are divisible or indivisible. For instance,
(Walsh 2011) considers an online cake cutting problem in
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which the resource (“the cake”) is divisible, whilst (Alek-
sandrov et al. 2015; Aleksandrov and Walsh 2017c; Mattei,
Saffidine, and Walsh 2017a; Aleksandrov and Walsh 2017a;
2017b) consider fair division problems where items arrive in
an online fashion but are indivisible.

Further, we can characterize online fair division prob-
lems along the number and nature of those resources. Do
we have one or multiple resources, and are those resources
homogeneous or heterogeneous? For instance, (Walsh 2011)
considers a single, heterogeneous and divisible cake, whilst
(Kash, Procaccia, and Shah 2014) considers multiple, ho-
mogeneous and divisible resources (e.g. disk space, memory
and CPUs in a server farm).

And, online fair division problems can be characterized
on the number of resources allocated to each agent. Do we
allocate a single resource to each agent (e.g. a single or-
gan to each patient in (Mattei, Saffidine, and Walsh 2017b;
2018))? Or do we allocate multiple items to each agent (e.g.
multiple food products in (Aleksandrov et al. 2015), multi-
ple charging slots in (Gerding et al. 2019))?

Online features

Another dimension on which to decompose online fair divi-
sion problems is whether agents, resources or both are on-
line. For instance, (Walsh 2011) considers the resource (“the
cake”) to be fixed, and the agents being allocated this re-
source to arrive and depart over time. Think of people turn-
ing up over time for a birthday party and cutting off slices of
the cake for people as they arrive. On the other hand, (Alek-
sandrov et al. 2015) considers the agents to be fixed, but the
items to arrive over time and to be allocated immediately
on arrival. Think of foods products being donated to a food
bank over the course of the day but being allocated imme-
diately to charities on donation. And, in the third case, both
agents and items arrive over time. Think of an online organ
matching problem (e.g. (Mattei, Saffidine, and Walsh 2018))
in which both the patients and the organs can arrive at partic-
ular points in time and, in addition, patients can also depart.

Mechanism features

Another dimension to consider is whether mechanisms are
informed or uninformed about the future. In the informed
setting (e.g. (He et al. 2019)), the mechanism might have
information about items yet to arrive. In the uninformed set-
ting, such information is not known. In this case, we may
make an adversarial risk-averse assumption that agents act
supposing the worst possible future (Walsh 2011). We can
also distinguish between centralized and distributed mecha-
nisms. Finally, we can distinguish between mechanisms that
make decisions one by one (e.g. (Aleksandrov et al. 2015))
or in batches (e.g. (Benade et al. 2018)).

Formal background

We suppose there are n agents being allocated m items. Al-
locations may be whole (e.g. in the case of indivisible items),
fractional (e.g. in the case of divisible items), or randomized
(e.g. in the case of indivisible items, this represents a proba-
bility distribution over whole allocations). Often, as in many

other areas, we will assume additive utilities. Additive utili-
ties offer a compromise between simplicity and expressivity.
However, some work in this area has considered more gen-
eral utilities (e.g. (Aleksandrov and Walsh 2019a) studies
the more general class of monotone utilities). We consider a
number of classical normative properties such as Pareto ef-
ficiency and envy-freeness. An allocation is Pareto efficient
iff there is no other allocation where all agents have as much
utility, and at least one agent has strictly more. An alloca-
tion is envy-free iff no agent has strictly greater utility for
the items allocated to another agent than the utility for their
own items. Envy-freeness is a desirable but often unachiev-
able fairness property (consider two agents and one indivis-
ible item that they both like). Therefore, we also consider a
relaxation that can be always achieved: envy-free up to one
item (EF1). An allocation is EF1 iff no agent has envy for
another agent’s bundle, supposing we can remove one item
from this bundle. EF1 can be achieved with a simple round-
robin mechanism that allocates the most desired item left to
the next agent in a round-robin fashion. We say that a mech-
anism is Pareto efficient / envy-free / EF1 iff it only returns
allocations that are Pareto efficient / envy-free / EF1. See
(Aleksandrov and Walsh 2019b) for more details.

Technical approaches
There are a number of technical responses to the challenges
and opportunities introduced by the online nature of such
fair division problems.

Online mechanisms

One approach to deal with the challenges of online fair di-
vision is to propose new mechanisms that exploit the on-
line nature of the fair division problem. Indeed, many offline
mechanisms cannot be used in an online setting because they
make assumptions, such as all the items are available at one
time, that are violated. We, therefore, often need to “flip”
mechanisms around to work in an online fashion.

Many mechanisms for the offline fair division of indivis-
ible items take an agent-centered view where one or more
agents get to pick an item or items from a set of items.
For example, in offline fair division, the probabilistic se-
rial mechanism (Bogomolnaia and Moulin 2001) has every
agent “eating” their most preferred item at uniform speed,
generating a randomized allocation of items to agents. Such
offline mechanisms need to be adapted to work in an online
setting as an agent’s most preferred item might not be cur-
rently, or even ever available.

An online setting where items arrive over time also natu-
rally invites an item-centric view. For example, (Aleksan-
drov et al. 2015) propose the LIKE mechanism where an
item on arrival is allocated uniformly at random between
agents that declare strictly positive utility for the item. This
online mechanism has nice normative properties. For exam-
ple, it is strategy-proof and envy-free in expectation. The
LIKE mechanism can be seen as the online analog of the
(offline) probabilistic serial mechanism with agents “eating”
each next item which they like.

Many other online mechanisms for the fair division of in-
divisible items can be described as choosing uniformly be-
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tween some subset of agents that are feasible for an arriving
item. Thus, an agent from this set receives the item with con-
ditional probability that is uniform with respect to the other
agents that are feasible for the item. Such mechanisms re-
turn a probability distribution over allocations, and an actual
allocation with some positive probability that is obtained
as a product of the conditional randomizations. Some such
mechanisms are studied in (Aleksandrov and Walsh 2019b):

• ONLINE SERIAL DICTATOR: there is a strict priority or-
der σ of the agents prior to round one, and the unique
feasible agent for each next item is the first agent in σ that
bids positively for it.

• ONLINE RANDOM PRIORITY: this draws uniformly at
random a strict priority order σ of the agents prior to
round one, and runs ONLINE SERIAL DICTATOR with it.

• PARETO LIKE: an agent is feasible for an item if allocat-
ing the item to the agent is Pareto efficient ex post.

• LIKE: an agent is feasible for an item if they bid positively
for it.

• BALANCED LIKE: an agent is feasible for an item if they
bid positively for it, and they are amongst the agents bid-
ding positively with the fewest items in the current allo-
cation.

• MAXIMUM LIKE: an agent is feasible for an item if they
are amongst the agents making the largest bid for it.

It should be clear that the online setting introduces a new
design space in which to define mechanisms for fair division.
It is likely that there are many interesting parts of this space
yet to explore.

Online properties

Another technique to deal with the challenges of online fair
division is to consider relaxed normative properties that are
applicable to the online setting. For example, (Aleksandrov
and Walsh 2019b) relax the definition of strategy-proofness
to suppose past decisions are fixed while future decisions
could still be strategic. A mechanism is strategy-proof if,
an agent cannot improve their (expected) utility by bidding
insincerely, supposing the entire information (i.e. the items,
their arriving order and the mechanism) about the allocation
process is available to each agent. That is, for each prob-
lem and agent ai, u(ui1, . . . , uim) ≥ u(vi1, . . . , vim) for
any (possibly strategic) bids vi1, . . . , vim of agent ai for
the m items. On the other hand, we can relax this defini-
tion to a weaker online version of strategy-proofness. We
say that a mechanism is online strategy-proof if, for each
problem and round j ∈ [1,m], u(ui1, . . . , ui(j−1), uij) ≥
u(ui1, . . . , ui(j−1), vij) for any (possibly strategic) bid vij
of agent ai for the final jth item.

Online strategy-proofness is less onerous to achieve than
strategy proofness. It supposes all earlier decisions are now
fixed and the agent can only be strategic about the current
decision. It is not hard to see that a strategy-proof mecha-
nism is further online strategy-proof but the opposite may
not hold. Indeed, whilst the only online mechanisms that are
strategy-proof are rather unresponsive mechanisms such as

the random mechanism which just allocates items randomly
irrespective of the bids of agents, the class of mechanisms
that are online strategy-proof is far larger and can be respon-
sive to the bids of agents. In fact, Theorem 2 in (Aleksandrov
and Walsh 2019b) characterizes the class of online mecha-
nisms that are online strategy-proof as “step” mechanisms
that allocate items uniformly between agents that bid over
some threshold of utility for an arriving item.

Stronger normative properties can also be useful in the on-
line setting. For instance, (Aleksandrov and Walsh 2019b)
introduce shared envy-freeness which requires that each
pair of agents are envy-free of each other over only the items
that both agents in the pair like in common. If you get an
item that I don’t like, it does not cause me any envy. Shared
envy-freeness implies envy-freeness but not the other way
around. Shared envy-freeness is one of the normative prop-
erties that distinguishes between the LIKE and BALANCED
LIKE mechanisms. Table 1, which is taken from (Aleksan-
drov and Walsh 2019b), summarizes many of the differences
in normative properties of the different online mechanisms
discussed in the previous section.

Impossibility results

Another approach to understand the challenges of online fair
division is to identify normative properties which are impos-
sible to achieve in the online setting which can be achieved
in the offline setting. For example, in offline fair division,
Pareto efficiency and envy-freeness ex ante are possible to
achieve simultaneously, e.g. the allocations returned by the
probabilistic serial mechanism are Pareto efficient and envy-
free ex ante (Bogomolnaia and Moulin 2001). In online fair
division, these two normative properties are also possible to
achieve simultaneously with 0/1 utilities, For instance, the
LIKE mechanism, allocating each next item uniformly at
random to any agent who declares strictly positive utility,
is Pareto efficient and envy-free ex ante. But, with general
(i.e. non-0/1) utilities, there is no online mechanism that can
be both Pareto efficient and envy-free ex ante (proved first
in (Aleksandrov and Walsh 2019b)).

Theorem 1 With general utilities, no online mechanism is
envy-free ex ante and Pareto efficient ex ante.

Proof: Let us consider the below simple fair division prob-
lem with two agents and two arriving items.

agent item 1 item 2
1 1 2
2 2 1

To ensure envy-freeness ex ante, a mechanism must give
to each agent a probability of 1/2 for each item. This is not
Pareto efficient ex ante. Giving each agent just their most
valued item Pareto dominates. �

In Figure 1, we summarize a range of possibility and
impossibility results that characterize whether there exist
mechanisms that have combinations of properties such as
strategy proofness (SP), envy-freeness ex ante (EFA), Pareto
efficiency ex ante (PEA) and Pareto efficiency ex post (PEP).
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Mechanism
SP OSP EFA SEFA EFP SEFP BEFP PEA PEP

general cardinal utilities
ONLINE RANDOM PRIORITY � � � � × × × × �
ONLINE SERIAL DICTATOR � � × × × × × � �

MAXIMUM LIKE × × × × × × × � �
PARETO LIKE × × × × × × × × �

LIKE � � � � × × × × ×
BALANCED LIKE × � × × × × × × ×

identical cardinal utilities
LIKE � � � � × × × � �

BALANCED LIKE × � � � × × × � �
binary cardinal utilities

LIKE � � � � × × × � �
BALANCED LIKE × � � × × × � � �

Table 1: Normative properties of different online mechanisms. SP is strategy proof. OSP is online strategy proof. EFA is envy-
free ex ante. SEFA is shared envy-free ex ante. EFP is envy-free ex post. SEFP is shared envy-free ex post. BEFP is bounded
envy-free ex post. PEA is Pareto efficient ex ante. PEP is Pareto efficient ex post.

Intractability results

Another angle to understanding online fair division is to
study the complexity of relevant computational problems
such as computing outcomes or strategic actions. For ex-
ample, consider again the LIKE mechanism and the related
BALANCED LIKE mechanism which allocates the next item
uniformly at random to any agent who declares strictly pos-
itive utility for the item from amongst the agents currently
allocated the fewest items (Aleksandrov et al. 2015). The
BALANCED LIKE mechanism is designed to balance the
number of items allocated to each agent.

Now, the LIKE mechanism is strategy-proof. If an agent
has strictly positive utility for an item, they should bid for it.
On the other hand, the BALANCED LIKE mechanism is not
strategy-proof, even when restricted to 0/1 utilities. Agents
may decide not to bid now, even when they have strictly pos-
itive utility for an arriving item, as it may be more profitable
to wait for an item that arrives later which is less compet-
itive. Furthermore, they may thus receive multiple items in
future.

In response, Aleksandrov and Walsh ((Aleksandrov and
Walsh 2017a)) consider the computational complexity for an
agent to compute strategic bids to improve their (expected)
outcome. Such computational problems are intractable in
general. So the fact that the BALANCED LIKE mechanism
is not strategy-proof is tempered by the intractability of
computing strategic actions. In more general terms, there is
a trade-off between computability of strategic actions and
achievability of fairer allocations.

Asymptotic guarantees

Another response to the challenge of online fair division is to
try to achieve properties asymptotically. Even in the offline
setting, desirable fairness property such as envy-freeness
cannot be guaranteed. Consider, for instance, two agents
and one indivisible item that both agents like. Envy-freeness
is even harder to guarantee in the online setting. Suppose
two agents both like the next indivisible item. If we want
to ensure envy-freeness, we cannot allocate this item fairly

without ultimately knowing what items will arrive next, that
might compensate the agent not allocated the current item.

However, we can look for online mechanisms that limit
how envy grows over time. For example, (Benade et al.
2018) consider whether mechanisms can achieve vanishing
envy. That is, after m items have arrived in an online fash-
ion, if the maximum amount of envy an agent has for any
other agent is envym, can we design mechanisms so that the
ratio of envym

m goes to zero as m goes to infinity? This is
indeed possible and, in fact, easy to achieve. (Benade et al.
2018) show that randomly allocating items gives envy that
vanishes in expectation. Unfortunately, it is not possible to
do better than such a “blind” mechanism. Indeed, the ran-
dom mechanism is asymptotically optimal up to logarithmic
factors.

Reallocating items

A final technique to deal with the online nature of fair di-
vision is to consider allocations that can be adjusted once
subsequent items are revealed. By re-allocating items allo-
cated in the past when new items arrive, we can perhaps re-
store desirable normative properties. For example, with two
agents, additive valuations and m online items, (He et al.
2019) prove that any uninformed algorithm requires Θ(m)
items to be re-allocated to ensure an EF1 allocation. Unsur-
prisingly, an informed algorithm requires no re-allocations
to ensure EF1. For the case of three or more agents, (He et
al. 2019) prove that even informed algorithms require Ω(m)
items to be reallocated to ensure an EF1 allocation, and de-
sign an uninformed algorithm that makes do with O(m3/2).
These results leave open the question of whether there is a
separation between the number of items that informed and
uninformed algorithms must re-allocate in order to achieve
EF1 (like the strict separation proven in the case of two
agents) in the general case of three or more agents.

Conclusions

Online fair division is a promising and active research area
that looks to take account of the online nature of many re-
source allocation problems. Whilst recent work has identi-
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Figure 1: Summary of results about online mechanisms satisfying (combinations of) properties such as strategy proofness (SP),
envy-freeness ex ante (EFA), Pareto efficiency ex ante (PEA) and Pareto efficiency ex post (PEP). Any part of the Venn diagram
marked “∅” is impossible (e.g. no mechanism is envy-free ex ante and Pareto efficient ex post). Any part of the Venn diagram
marked “∞” represents a combination of properties which an infinite number of different mechanisms can satisfy (e.g. any
probabilistic combination of the LIKE and ORP mechanisms returns a probability distribution of allocations that is envy-free ex
ante). OSD* represents any probability distribution of online serial dictator (OSD) mechanisms. MEM STEP is any “memoryless
step” mechanism where the current item is allocated irrespective of the past (i.e. memoryless), and whether an agent is feasible
is simply a step function of their bid. This figure is taken from (Aleksandrov and Walsh 2019b).

fied many important features of such problems, there are
many research directions still to be considered. For example,
how do we extend recent results such as (Aziz et al. 2015b;
2015a; Aziz, Schlotter, and Walsh 2016; Aziz et al. 2017;
Gerding et al. 2019; Aziz et al. 2019; Aleksandrov and
Walsh 2018) about the (offline) fair division of goods and
bads to the online setting? As a second example, the pref-
erences of agents are often highly correlated. How can we
exploit this fact in an online setting? As a third example,
we can apply online mechanisms like those discussed here
to an offline setting by imposing an “artificial” arrival order
to the agents or items. Can this help achieve desirable nor-
mative properties? And, as a fourth example, can we extend
these ideas to the online versions of other problems in social
choice such as capacitated facility location (Aziz et al. 2020)
or peer assessment (Walsh 2014b).
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