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Abstract

Machine learning has become prevalent across a wide vari-
ety of applications. Unfortunately, machine learning has also
shown to be susceptible to deception, leading to errors, and
even fatal failures. This circumstance calls into question the
widespread use of machine learning, especially in safety-
critical applications, unless we are able to assure its correct-
ness and trustworthiness properties. Software verification and
testing are established technique for assuring such proper-
ties, for example by detecting errors. However, software test-
ing challenges for machine learning are vast and profuse -
yet critical to address. This summary talk discusses the cur-
rent state-of-the-art of software testing for machine learning.
More specifically, it discusses six key challenge areas for soft-
ware testing of machine learning systems, examines current
approaches to these challenges and highlights their limita-
tions. The paper provides a research agenda with elaborated
directions for making progress toward advancing the state-of-
the-art on testing of machine learning.

1 Introduction

Applications of machine learning (ML) technology have be-
come vital in many innovative domains. At the same time,
the vulnerability of ML has become evident, sometimes
leading to catastrophic failures1. This entails that compre-
hensive testing of ML needs to be performed, to ensure the
correctness and trustworthiness of ML-enabled systems.

Software testing of ML systems is susceptible to a num-
ber of challenges compared to testing of traditional soft-
ware systems. In this paper, by traditional systems we mean
software systems not integrating ML, and by ML systems
we mean software systems containing ML-trained compo-
nents (e.g self-driving cars, autonomous ships, or space ex-
ploration robots). As an example, one such challenge of
testing ML systems stems from non-determinism intrinsic
to ML. Traditional systems are typically pre-programmed
and execute a set of rules, while ML systems reason in a
probabilistic manner and exhibit non-deterministic behavior.

Copyright c© 2020, Association for the Advancement of Artificial
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1Tesla failure, www.theguardian.com/technology/2016/jul/01/
tesla-driver-killed-autopilot-self-driving-car

This means that for constant test inputs and preconditions,
an ML-trained software component can produce different
outputs in consecutive runs. Researchers have tried using
testing techniques from traditional software development
(Hutchison et al. 2018), to deal with some of these chal-
lenges. However, it has been observed that traditional test-
ing approaches in general fail to adequately address funda-
mental challenges of testing ML (Helle and Schamai 2016),
and that these traditional approaches require adaptation to
the new context of ML. The better we understand current
research challenges of testing ML, the more successful we
can be in developing novel techniques that effectively ad-
dress these challenges and advance this scientific field.

In this paper, we: i) identify and discuss the most chal-
lenging areas in software testing for ML, ii) synthesize the
most promising approaches to these challenges, iii) spotlight
their limitations, and iv) make recommendations of further
research efforts on software testing of ML. We note that
the aim of the paper is not to exhaustively list all published
work, but distill the most representative work.

2 Testing ML

As ML technologies become more pervasive enabling au-
tonomous system functionality, it is more and more impor-
tant to assure the quality of autonomous reasoning supported
by ML. Testing is such a quality assurance activity that aims
(in a broad sense) to determine the correctness of the system-
under-test, for example, by checking whether the system re-
sponds correctly to inputs, and to identify faults which may
lead to failures.
Interpreting ”Testing ML”: Two distinct communities
have been studying the concept of testing ML, the ML scien-
tific community (MLC) and the software testing community
(STC). However, as the two communities study ML algo-
rithms from different perspectives, they interpret the term
testing ML differently, and we think it is worth noting the
distinction. In MLC, testing an ML model is performed to
estimate its prediction accuracy and improve its prediction
performance. Testing happens during model creation, using
validation and test datasets, to evaluate the model fit on the
training dataset. In STC, testing an ML system has a more
general scope aiming to evaluate the system behavior for
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a range of quality attributes. For example, in case of inte-
gration or system level testing, an ML component is tested
in interaction with other system components for functional
and non-functional requirements, such as correctness, ro-
bustness, reliability, or efficiency.

Challenges of Testing ML

Challenges of testing ML stem from the innate complex-
ity of the underlying stochastic reasoning. Unlike traditional
systems, for which the code is built deductively, ML systems
are generated inductively. The logic defining system behav-
ior is inferred from training data. Consequently, a fault could
originate not only from a faulty software code, but also er-
rors in training data. However, existing approaches often as-
sume that high quality datasets are warranted, without ap-
plying systematic quality evaluation. Furthermore, ML sys-
tems require advanced reasoning and learning capabilities
that can give answers in conditions where the correct an-
swers are previously unknown (Murphy, Kaiser, and Arias
2007). Even though this may be the case for traditional sys-
tems, ML systems have inherent non-determinism which
makes them constantly change behavior as more data be-
comes available, unlike traditional systems. Furthermore,
for a system containing multiple ML models, the models
will affect each other’s training and tuning, potentially caus-
ing non-monotonic error propagation (Amershi, Begel, and
Bird 2019).

We elaborate further challenges of testing ML in the
following sections. Specifically, we identify six key chal-
lenge areas and discuss their implications. We synthesize
existing work pertaining to these challenges and provide its
structured presentation corresponding to the identified chal-
lenges.

3 Missing Test Oracles

Unlike traditional systems which operate pre-programmed
deterministic instructions, ML systems operate based on
stochastic reasoning. Such stochastic or probability-based
reasoning introduces uncertainty in the system response,
which gives rise to non-deterministic behavior, includ-
ing unpredictable or underspecified behavior. Due to non-
determinism, ML systems can change behavior as they learn
over time. The implications for testing are that system out-
puts can change over time for the same test inputs. This fact
largely complicates test case specification.

Test cases are typically specified with specific inputs to
the system under test and expected outputs for these inputs,
known as test oracles. However, due to stochastic reasoning,
the output of an ML system cannot be specified in advance,
rather it is learned and predicted by an ML model. This
means that ML systems do not have defined expected val-
ues against which actual values can be compared in testing.
Thus, the correctness of the output in testing ML cannot be
easily determined. While this problem has been known for
traditional systems, called ”non-testable” systems (Weyuker
1982), ML systems have non-determinism as part of their
design, making the oracle problem even more challenging.

An approach that has been considered for non-testable

systems are pseudo-oracles (Weyuker 1982). Pseudo-
oracles are a differential testing technique that consists in
running multiple systems satisfying the same specification
as the original system under test, then feeding the same in-
puts to these systems and observing their outputs. Discrep-
ancies in outputs are considered indicative of errors in the
system under test. A limitation of differential testing is that
it can be resource-inefficient as it requires multiple runs of
the system, and error-prone, as the same errors are possible
in multiple implementations of the system under test (Knight
and Leveson 1986).

Metamorphic Testing

Metamorphic testing is another approach to testing of soft-
ware without test oracles. In this approach, a transforma-
tion function is used to modify the existing test case input,
and produce a new output. If the actual output for the mod-
ified input differs from the expected output, it is indicative
of errors in the software under test. Metamorphic testing has
been applied to machine learning classifiers (Xie, Ho, and
et al. 2011) (Dwarakanath et al. 2018). However, in testing
ML systems with a large input space, writing metamorphic
transformations is laborious, and there is a great potential for
ML to circumvent this difficulty by automating the creation
of metamorphic relationships.

Test Data Prioritization

Since automated oracles are typically not available for test-
ing of big and realistic ML models, there is a great effort in-
volved in manual labeling of test data for ML models. Deep-
Gini (Shi et al. 2019) is an initial work on reducing the effort
in labeling test data for DNNs by prioritizing tests that are
likely to cause misclassifications. The assumption made by
DeepGini is that a test is likely to be misclassified if a DNN
outputs similar probabilities for each class. The limitation
of this approach is that it requires running all tests first, to
obtain the output vectors used to calculate the likelihood of
misclassification.

4 Infeasibility of Complete Testing

ML systems are commonly deployed in application areas
dealing with a large amount of data. This creates large and
diverse test input space. Unfortunately, testing is rarely able
to cover all valid inputs and their combinations to examine
the correctness of a system-under-test, and therefore cover-
age metrics are typically applied to select an adequate set of
inputs from a large input space (Gotlieb and Marijan 2014),
to generate tests, or to assess the completeness of a test set
and improve its quality (Marijan, Gotlieb, and Liaaen 2019).

Test Coverage

The first attempts to define coverage metrics for testing of
neural networks are inspired by the traditional code cover-
age metrics. A metric called neuron coverage was proposed
in DeepXplore (Pei et al. 2017) for testing deep neural net-
works (DNN). DeepXplore measures the amount of unique
neurons activated by a set of inputs out of the total num-
ber of neurons in the DNN. The limitation of this coverage
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metric is that a test suite that has full neuron coverage (all
neurons activated) can still miss to detect erroneous behav-
ior if there was an error in all other DNNs that were part
of a differential comparing (Pei et al. 2017) used by neuron
coverage (DeepXplore leverages the concept of differential
testing). Furthermore, it has been shown that neuron cov-
erage can be too coarse a coverage metric, meaning that a
test suite that achieves full neuron coverage can be easily
found, but the network can still be vulnerable to trivial ad-
versarial examples (Sun, Huang, and Kroening 2018). Sun
et al. therefore proposed DeepCover, a testing methodology
for DNNs with four test criteria, inspired by the modified
condition/decision coverage (MC/DC) for traditional soft-
ware. Their approach includes a test case generation algo-
rithm that perturbs a given test case using linear program-
ming with a goal to encode the test requirement and a frag-
ment of the DNN. The same author also developed a test
case generation algorithm based on symbolic approach and
the gradient-based heuristic (Sun et al. 2019). The difference
between their coverage approach, based on MC/DC crite-
rion, and neuron coverage is that the latter only considers
individual activations of neurons, while the former consid-
ers causal relations between features at consecutive layers of
the neural network.

Neuron coverage has been further extended in Deep-
Gauge (Ma et al. 2018a), which aims to test DNN by com-
bining the coverage of key function regions as well as cor-
ner case regions of DNN, represented by neuron boundary
coverage. Neuron boundary coverage measures how well
the test datasets cover upper and lower boundary values.
DeepRoad (Zhang et al. 2018) is another test generation
approach for DNN-based autonomous driving. DeepRoad
is based on generative adversarial networks and it gener-
ates realistic driving scenes with various weather conditions.
DeepCruiser is an initial work towards testing recurrent-
neural-network (RNN)-based stateful deep learning (Du et
al. 2018). DeepCruiser represents RNN as an abstract state
transition system and defines a set of test coverage crite-
ria for generating test cases for stateful deep learning sys-
tems. Other approaches were proposed extending the no-
tion of neuron coverage, such as DeepTest (Tian et al. 2018)
for testing other types of neural networks. DeepTest applies
image transformations such as contrast, scaling, blurring to
generate synthetic test images. However, such generated im-
ages were found to be insufficiently realistic for testing real-
world systems.

In summary, a common limitation of techniques based on
neuron coverage is that they can easily lead to combinato-
rial explosion. Ma et al. initiated the work on the adapta-
tion of combinatorial testing techniques for the systematic
sampling of a large space of neuron interactions at differ-
ent layers of DNN (Ma et al. 2018c). This approach can be
promising for taming combinatorial explosion in testing of
DNN based systems, given that its current limitations are
overcome. First, only 2-way interactions of input parame-
ters are supported, while real systems typically have much
higher interaction levels of inputs. Second, the approach has
been found to face scalability problems for large and com-
plex DNNs.

Fuzzing

Since the input space of DNNs is typically large and highly-
dimensional, selecting test data for DNNs can be highly la-
borious. One approach to deal with this challenge is fuzzing,
which generates large amounts of random input data that is
checked for failures. TensorFuzz is an initial work that ap-
plies fuzzing to testing of TensorFlow DNNs (Odena and
Goodfellow 2018). TensorFuzz uses a coverage metric con-
sisting of user-specified constraints to randomly mutate in-
puts. The coverage is measured by a fast approximate near-
est neighbour algorithm. TensorFuzz has showed to outper-
form random testing. Another similar approach is Deep-
Hunter (Xie et al. 2018). This is an initial work on auto-
mated feedback-guided fuzz testing for DNNs. DeepHunter
runs metamorphic mutation to generate new semantically
preserved tests, and uses multiple coverage criteria as a feed-
back to guide test generation from different perspectives.
The limitation of this approach is that it uses only a single
coverage criteria at the time, not supporting multi-criteria
test generation. Moreover, the general limitation of fuzzing
is that it cannot ensure that certain test objectives will be
satisfied.

Concolic Testing

To provide more effective input selection that increases test
coverage, a concolic testing approach has been proposed in
DeepConcolic (Sun et al. 2018). The approach is param-
eterised with a set of coverage requirements. The require-
ments are used to incrementally generate a set of test inputs
with a goal to improve the coverage of requirements by al-
ternating between concrete execution (testing on particular
inputs) and symbolic execution. For an unsatisfied require-
ment, a test input within the existing test suite that is close to
satisfying that requirement is identified, based on concrete
execution. Later, a new test input that satisfies the require-
ment is generated through symbolic execution and added to
the test suite, improving test coverage.

5 Quality of Test Datasets for ML Models

When training ML models, the quality of the training dataset
is important for achieving good performance of the learned
model. The performance is evaluated using a test dataset.

Mutation Testing

To evaluate the quality of test dataset for DNNs, DeepMuta-
tion (Ma et al. 2018b) proposes an initial work, inspired by
traditional mutation testing concepts. DeepMutation first de-
signs a set of mutation operators to inject faults into training
data. Then, it retrains models with the mutated training data
to generate mutated models, which means that faults are in-
jected in the models. After that, mutated models are tested
using a test dataset. Finally, the quality of the test dataset
is evaluated by analysing to what extent the injected faults
are detected. The limitation of this approach is that it em-
ploys basic mutation operators covering limited aspects of
deep learning systems, so that the injected faults may not be
representative enough of real faults. MuNN (Shen, Wan, and
Chen 2018) is another mutation testing approach for neural
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networks, which needs further work for the application on
DNNs. Specifically, the authors of the approach showed that
neural networks of different depth require different muta-
tion operators. They also showed the importance of develop-
ing domain-dependent mutation operators rather than using
common mutation operators.

6 Vulnerability to Adversaries
ML classifiers are known to be vulnerable to attacks where
small modifications are added to input data, causing misclas-
sification and leading to failures of ML systems (Szegedy et
al. 2014). Modifications made to input data, called adver-
sarial examples, are small perturbations designed to be very
close to the original data, yet able to cause misclassifications
and to compromise the integrity (e.g. accuracy) of clasiffier.
Such attacks have been observed for image recognition (Xie
et al. 2017), text (Sato et al. 2018), and speech recognition
tasks (Carlini et al. 2016) (Carlini and Wagner 2018) (Jia
and Liang 2017). In the latter, it was shown that adversari-
ally inserted sentences in the Stanford Question Answering
Dataset can decrease reading comprehension of ML from
75% to 36% of F-measure (harmonic average of the preci-
sion and recall of a test).

Generating Adversarial Examples

Adversarial examples can be generated for the purpose of
attack or defense of an ML classifier. The former often use
heuristic algorithms to find adversarial examples that are
very close to correctly classified examples. The latter aim
to improve the robustness of ML classifiers.

Some approaches to adversarial example generation in-
clude Fast Gradient Sign Method (FGSM) (Goodfellow,
Shlens, and Szegedy 2015), which showed that linear be-
havior in high-dimensional spaces is sufficient to cause ad-
versarial examples. Later, FGSM was shown to be less effec-
tive for black-box attacks (Tramèr et al. 2017), and the au-
thors developed RAND-FGSM method which adds random
perturbations to modify adversarial perturbations. DeepFool
(Moosavi-Dezfooli, Fawzi, and Frossard 2016) is another
approach that generates adversarial examples based on an
iterative linearization of the classifier to generate minimal
perturbations that are sufficient to change classification la-
bels. The limitation of this approach lies in the fact that
it is a greedy heuristic, which cannot guarantee to find
optimal adversarial examples. Further, a two-player turn-
based stochastic game approach was developed for generat-
ing adversarial examples (Wicker, Huang, and Kwiatkowska
2018). The first player tries to minimise the distance to an
adversarial example by manipulating the features, and the
second player can be cooperative, adversarial, or random.
The approach has shown to converge to the optimal strat-
egy, which represents a globally minimal adversarial im-
age. The limitation of this approach is long runtime. Extend-
ing the idea of DeepFool, a universal adversarial attack ap-
proach was developed (Moosavi-Dezfooli et al. 2017). This
approach generates universal perturbations using a smaller
set of input data, and uses DeepFool to obtain a minimal
sample perturbation of input data, which is later modified
into a final perturbation.

Adversarial examples can be generated with generative
adversarial networks, such as AdvGAN (Xiao et al. 2018).
This approach aims to generate perturbations for any in-
stance, which can speed up adversarial training. The limi-
tation of the approach is that the resulting adversarial exam-
ples are based on small norm-bounded perturbations. This
challenge is further addressed in (Song et al. 2018) by de-
veloping unrestricted adversarial examples. However, their
approach exploits classifier vulnerability to covariate shift
and is sensitive to different distributions of input data.

Countering Adversarial Examples

To counter adversarial attacks, reactive and proactive defen-
sive methods against adversaries have been proposed. De-
fensive distillation is a proactive approach which aims to
reduce the effectiveness of adversarial perturbations against
DNNs (Papernot et al. 2016). Defensive distillation extracts
additional knowledge about training points as class proba-
bility vectors produced by a DNN. The probability vectors
are fed back into training, producing DNN-based classifier
models that are more robust to perturbations. However, it has
been shown that such defensive mechanisms are typically
vulnerable to some new attacks (Carlini and Wagner 2017).
Moreover, just like in testing, if a defense cannot find any
adversarial examples, it does not mean that such examples
do not exist.

Automated verification is a reactive defensive approach
against adversarial perturbations which analyses the robust-
ness of DNNs to improve their defensive capabilities. Sev-
eral approaches exist to deal with the robustness challenge.
An exhaustive search approach to verifying the correct-
ness of a classification made by a DNN has been pro-
posed (Huang et al. 2017). This approach checks the safety
of a DNN by exploring the region around a data point to
search for specific adversarial manipulations. The limita-
tion of the approach is limited scalability and poor com-
putational performance induced by state-space-explosion.
Reluplex is a constraint-based approach for verifying the
properties of DNNs by providing counter-examples (Katz
et al. 2017), but is currently limited to small DNNs. An ap-
proach that can work with larger DNNs is global optimiza-
tion based on adaptive nested optimisation (Ruan, Huang,
and Kwiatkowska 2018). However, the approach is limited
in the number of input dimensions to be perturbed. A com-
mon challenge for verification approaches is their compu-
tational complexity. For both approaches (Katz et al. 2017)
and (Ruan, Huang, and Kwiatkowska 2018), the complexity
is NP-complete. For the former, the complexity depends on
the number of hidden neurons, and for the latter, on input
dimensions.

7 Evaluating the Robustness of ML Models

To reduce the vulnerability of ML classifiers to adversaries,
research efforts are made on systematically studying and
evaluating the robustness of ML models, as well as on pro-
viding frameworks for benchmarking the robustness of ML
models.
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Robustness Metrics

Lack of robustness in neural networks raises valid concerns
about the safety of systems relying on these networks, es-
pecially in safety-critical domains such as transportation,
robotics, medicine, or warfare. A typical approach to im-
prove the robustness of a neural network would be to iden-
tify adversarial examples that make the network fail, then
augment the training dataset with these examples and train
another neural network. The robustness of the new network
is the ratio between the number of adversarial examples
that failed the original network and that were found for
the new network (Goodfellow, Shlens, and Szegedy 2015).
The limitation of this approach is the lack of objective ro-
bustness measure (Bastani et al. 2016). Therefore, a met-
rics for measuring the robustness of DNNs using linear pro-
gramming (Bastani et al. 2016) was proposed. Other ap-
proaches include defining the upper bound on the robust-
ness of classifiers to adversarial perturbations (Fawzi, Fawzi,
and Frossard 2018). The upper bound is found to depend
on a distinguishability measure between the classes, and can
be established independently of the learning algorithms. In
their work, Fawzi et al. report two findings: first, non-linear
classifiers are more robust to adversarial perturbations than
linear classifiers, and second, the depth (rather than breath)
of a neural network has a key role for adversarial robustness.

Benchmarks for Robustness Evaluation

There is a difficulty of reproducing some of the methods
developed for improving the robustness of neural networks
or methods for comparing experimental results, as different
sources of adversarial examples in the training process can
make adversarial training more or less effective (Goodfel-
low, Papernot, and McDaniel 2016). To alleviate this chal-
lenge, Cleverhans (Goodfellow, Papernot, and McDaniel
2016) and Foolbox (Rauber, Brendel, and Bethge 2017)
are adversarial example libraries for developing and bench-
marking adversarial attacks and defenses, so that different
benchmarks can be compared. The limitation of both of
these frameworks is that they lack defensive adversarial gen-
eration strategies (Yuan et al. 2019). Robust Vision Bench-
mark 2 extends the idea of Foolbox, by allowing the devel-
opment of novel attacks which are used to further strengthen
robustness measurements of ML models. Other initiatives
include a competition organized at NIPS 2017 conference
by Google Brain, where researchers were encouraged to de-
velop new methods for generating adversarial examples and
new methods for defense against them (Kurakin et al. 2018).

Formal Guarantees over Robustness

For safety-critical domains which need to comply with
safety regulation and certification, it is of critical importance
to provide formal guarantees of performance of ML under
adversarial input perturbations. Providing such guarantees
is a real challenge of most of defense approaches, including
the approaches discussed above. Existing attempts in this di-
rection include (Hein and Andriushchenko 2017), by using
regularization in training, and (Sinha, Namkoong, and Duchi

2http://robust.vision/benchmarks/leaderboard

2018), by updating the training objective to satisfy robust-
ness constraints. While these initial approaches are interest-
ing, they can provably achieve only moderate levels of ro-
bustness, i.e. provide approximate guarantees. As such, fur-
ther research advances on providing robustness guarantees
for ML models are needed.

8 Verifying Ethical Machine Reasoning

ML systems can be deployed in environments where their
actions have ethical implications, for example self-driving
cars, and as a consequence, they need to have the capabil-
ities to reason about such implications (Deng 2015). Even
more so, if such systems are to become widely socially ac-
cepted technologies. While multiple approaches have been
proposed for building ethics into ML, the real research chal-
lenge lies in building solutions for verifying such machine
ethics. This research area has remained largly unaddressed.
Existing efforts are limited and include a theoretical frame-
work for ethical decision-making of autonomous systems
that can be formally verified (Dennis et al. 2016). The frame-
work assumes that system control is separated from a higher-
order decision-making, and uses model checking to verify
the rational agent (model checking is the most widely used
approach to verifying ethical machine reasoning). How-
ever, as a limitation, the proposed approach requires ethics
plans that have been correctly annotated with ethical con-
sequences, which cannot be guaranteed. Second, the agent
verification is demonstrated to be very slow. For situations
where no ethical decision exists, the framework continuous
ethical reasoning, negatively affecting overall performance.
Third, the approach scales poorly to the number of sensors
and sensor values, due to non-deterministic modelling of
sensor inputs. Furthermore, the approach cannot provide any
guarantees that a rational agent will always operate within
certain bounds regardless of the ethics plan.

Regarding the certification of autonomous reasoning, a
proof-of-concept approach (Webster et al. 2014) was de-
veloped for the generation of certification evidence for au-
tonomous aircraft using formal verification and flight simu-
lation. However, the approach relies on a set of assumptions,
such as that the requirements of a system are known, or that
they have been accurately translated into a formal specifica-
tion language, which may not always hold. Finally, ethical
machine reasoning should be transparent to allow for check-
ing of the underlying reasoning. These findings emphasize
the need for further progress in verifying and certifying eth-
ical machine reasoning.

9 Summary and Future Directions

Software testing of ML faces a range of open research chal-
lenges, and further research work focused on addressing
these challenges is needed. We envision such further work
developing in the following directions.

Automated test oracles. Test oracles are often missing in
testing ML systems, which makes checking the correctness
of their output highly challenging. Metamorphic testing can
help address this challenge, and further work is needed on
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using ML to automate the creation of metamorphic relation-
ships.

Coverage metrics for ML models. Existing coverage
metrics are inadequate in some contexts. Structural cover-
age criteria can be misleading, i.e. too coarse for adversarial
inputs and too fine for misclassified natural inputs (Li et al.
2019). High neuron coverage does not mean invulnerability
to adversarial examples (Sun et al. 2019). In addition, neu-
ron coverage can lead to input space explosion. Adaptation
of combinatorial testing techniques is a promising approach
to this challenge, given that progress is made on improving
its scalability for real-word ML models.

Quality of test datasets for ML models. Evaluation of
the quality of datasets for ML models is in its early stages.
Adaptation of mutation testing can alleviate this challenge.
Common mutation operators are insufficient for mutation
testing of DNNs. Instead, domain-specific operators are re-
quired.

Cost-effectiveness of adversarial examples. Generation
strategies for adversarial examples need further advancing to
reduce computational complexity and improve effectiveness
for different classifiers.

Cost-effectiveness of adversarial countermeasures.
Current techniques are mainly vulnerable to advanced
attacks. Verification approaches for DNNs to counter ad-
versarial examples are computationally complex (especially
constraint-based approaches) and unscalable for real DNNs.
More cost-effective verification approaches are required.

Robustness evaluation of ML models. Metrics for ro-
bustness evaluation of ML models and effectiveness eval-
uation of adversarial attacks need further advancing. Open
benchmarks for developing and evaluating new adversar-
ial attacks and defense mechanisms can be useful tools to
achieve an improved robustness of defense. Further efforts
on understanding the existence of adversarial examples is
desired (Yuan et al. 2019).

Certified guarantees over robustness of ML models.
Such guarantees are required for the deployment of ML
in safety-critical domains. Current approaches provide only
approximate guarantees. Also, further research progress is
needed to overcome high computational complexity of pro-
ducing the guarantees.

Verification of machine ethics. Formal verification and
certification of ethical machine reasoning is uniquely chal-
lenging. Further efforts are needed to enable the scalability
of these approaches for real systems operating in real-time,
and to reach lower computational complexity. In addition,
verification approaches may leverage different formal meth-
ods, which underlines the open challenge of interoperabil-
ity between different methods. Finally, research advances on
enabling the transparency of ethical decision making pro-
cess is required.

In conclusion, with this paper we hope to provide re-
searchers with useful insights into an unaddressed chal-
lenges of testing of ML, along with an agenda for advancing
the state-of-the-art in this research area.
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