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Abstract

Constraint Programming is a powerful paradigm to model
and solve combinatorial problems. While there are many
kinds of constraints, the table constraint (also called a CSP)
is perhaps the most significant—being the most well-studied
and has the ability to encode any other constraints defined on
finite variables. Thus, designing efficient filtering algorithms
on table constraints has attracted significant research efforts.
In turn, there have been great improvements in efficiency over
time with the evolution and development of AC and GAC al-
gorithms. In this paper, we survey the existing filtering algo-
rithms for table constraint focusing on historically important
ideas and recent successful techniques shown to be effective.

1 Introduction

“Constraints” is a surprisingly powerful notion. It is used
successfully in Artificial Intelligence (AI) and in diverse ar-
eas in computer science, e.g., code generation, optimization,
program synthesis, robotics, semantic web, simulation, soft-
ware engineering, type checking, verification, etc. Histori-
cally constraints were developed in AI under the framework
of Constraint Satisfaction Problems (CSP) (see (Freuder and
Mackworth 2006) for a history). A CSP is given some rela-
tions over a finite set of variables—a canonical task is to
determine satisfiability (see (Dechter 2003) for details). An-
other significant line of development comes from the inte-
gration of constraints into programming languages initiated
by the work in Constraint Logic Programming (CLP) (see
(Jaffar and Maher 1994)) which is now called Constraint
Programming (CP). CP broadened the notion of constraints,
e.g. real-valued constraints, complex global constraints (see
(van Hoeve and Katriel 2006)), etc.

A key task is how to solve constraints, i.e. solving the
CSP. We focus on finite domain (FD) constraints where the
variables of the CSP take finite values which can be used
to encode/model combinatorial problems. Since finite do-
main CSPs are NP-complete in general, the typical approach
taken to solve them is to combine a local consistency algo-
rithm with a search strategy to instantiate (or restrict) the
variables. The consistency algorithm removes (filters) some
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incompatible values but to its local nature does not remove
all such values, while the search instantiates further variables
to simplify the problem till eventually we are certain about
the values or the problem is determined to be unsatisfiable.

A canonical way of defining a FD constraint is sim-
ply to define the allowed (or disallowed) tuples of values,
thus the constraint is defined as a table hence the term ta-
ble constraint. The seminal work of Mackworth (Mack-
worth 1977) (it has > 3600 citations in Google Scholar)
defined a certain local consistency, namely, arc consistency
(AC) together with algorithms, on (binary) table constraints.
Since then there has been considerable research on AC and
its more general form, generalized arc consistency (GAC).
GAC algorithms have sped up by several orders of mag-
nitude over the years. Figure 1 shows the algorithmic im-
provements over time, for selected GAC algorithms on a
diverse set of instances.1 Newer algorithms such as GAC-
VA (Lecoutre and Szymanek 2006), STR2+ (Lecoutre 2008;
2011), STR3 (Lecoutre, Likitvivatanavong, and Yap 2012;
2015b), and Mddc (Cheng and Yap 2008; 2010) are faster
than the older GAC-4 (Mohr and Masini 1988), GAC-V,
and GAC-A (Bessière and Régin 1997) but slower than
the even newer algorithms such as STRbit (Wang et al.
2016), CT (Demeulenaere et al. 2016) and HTAC (Wang and
Yap 2019), e.g. on the Crossword-ogd-vg-11-13 instance—
GAC-A timeouts, CT takes 49.78s and HTAC is the fastest
at 21.97s (this problem instance is also in Figure 1).

There has been a large body of work on (generalized)
arc consistency algorithms dating from the AC3 algorithm
(Mackworth 1977) in 1977. Many different ideas in the de-
velopment of (G)AC algorithms shown by the considerable
progress in Figure 1. This paper surveys techniques and
algorithms for (G)AC on table constraints ((G)AC refers
to both GAC and AC). Table 1 gives an overview of the
key techniques and algorithms that we will discuss in this
paper. Our goal is to explain key ideas which have been
historically important as well as review more recent algo-
rithmic ideas over the past decades. While it is not pos-
sible to cover all algorithms and ideas due to space, we

1The benchmarks are intended to illustrate overall differences in
the performance of the selected algorithms rather than being com-
prehensive.
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Techniques Algorithms
GAC-scheme based GAC-scheme, GAC-V, GAC-A, GAC-nextIn, GAC-VA, GAC-nextDiff, Trie

Index GAC-nextIn, GAC-VA, GAC-nextDiff, Trie, AC5TC

STR based STR, STR2, STR2+, STR3, STR-neg, STR2-C, STR3-C, shortSTR2, STR-slice, STR2w, smartSTR, STRbit(-C)
CT, shortCT, CT-neg, smartCT

Residue support AC7, GAC-scheme based, (G)AC3.1/AC2001, AC3.2, AC3.3, AC3rm, AC3bit+r, STR3(-C), AC5TC, STR2w, STRbit(-C), CT, smartCT

Bitwise Representation AC3bit,AC3bit+r, STRbit, STRbit-C, CT, shortCT, CT-neg, smartCT, Compact-MDD, Compact-smartMDD, HTAC

MDD based Mddc, incremental-MDD, MDD4, MDD4R, Compact-MDD, BDDF, Compact-smartMDD

Incrementality AC4, GAC4, AC5, AC6, AC7, GAC-scheme based, (G)AC3.1/AC2001, AC3.2, AC3.3, STR based, MDD based, GAC4R, AC5TC

Reset GAC4R, MDD4R, STRbit-C, CT, smartCT, Compact-MDD, Compact-smartMDD, HTAC

Watched tuple AC6, AC7, GAC-scheme, GAC-nextIn, GAC-nextDiff, Trie, STR3, STR3-C, STR2w

Compact representations GAC-ctuple, MDD-based, STR2-C, STR3-C, shortSTR2, STR-slice, smartSTR, STRbit-C, shortCT, smartCT

Table 1: Overview (G)AC algorithms and techniques. The algorithms are sorted by year left to right. The algorithms proposed
since STR (Ullmann 2007) are marked in bold.
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Figure 1: The runtime distribution of selected GAC algo-
rithms giving the number of instances (x-axis) solved and
total solving time (y-axis). There are 162 instances from
23 diverse benchmark series from the XCSP3 benchmarks
(http://xcsp.org).

will attempt to explain how the development of improve-
ments in (G)AC table algorithms has evolved and the key
ideas. We review how algorithms have dealt with binary
to general constraints and how they have exploited struc-
ture. We remark that some special global constraints such
as regular, grammar and MDD constraints can also be
viewed as a special form of table constraint. While sev-
eral surveys and book chapters have been published on fil-
tering algorithms of global constraints (van Hoeve 2001;
Bessiere 2006; Régin 2011), they do not focus on table con-
straints. In this paper, we aim at providing the reader with a
reasonably timely survey on the filtering algorithms for the
table constraint (and CSPs) focusing on the important ideas
in those algorithms.

2 Preliminaries

A Constraint Satisfaction Problem (CSP) P is a pair of
(X,C) where X is a set of n variables {x1, ..., xn} and
C a set of e constraints {c1, ..., ce}. The variables in con-
straint c is denoted as scope(c) and the allowed values for
a variable x ∈ X is its domain, D(x). A constraint c is a
relation, rel(c), which can be defined as a set of tuples over
the variables in scope(c). The arity of constraint c is r where
r = |scope(c)|. A constraint c is binary if the arity r is 2 and
non-binary if r > 2. A tuple τ is allowed on c iff τ ∈ rel(c).

A tuple is valid on c iff τ [x] ∈ D(x) for each x ∈ scope(c)
where [x] denotes projection onto the variable x. A tuple τ
is a support of (x, a) on c iff τ [x] = a and τ is valid and
allowed by c. A solution to P is a valid tuple over X such
that every constraint is satisfied. A CSP is unsatisfiable is it
doesn’t have a solution.
Definition 2.1. Generalized Arc Consistency (GAC). A
value (x, a) is generalized arc consistent (GAC) (Dechter
2003) iff for any constraint c involving x, there exists at least
one support τ for (x, a) in c. A constraint is GAC iff ∀v ∈
D(x), ∀x ∈ scope(c) is GAC. A CSP P (X,C) is GAC iff
∀c ∈ C is GAC.

Constraint solvers usually use filtering algorithms to re-
move some form of inconsistent information from the CSP.
Only some forms of information can be removed efficiently,
which is usually called local consistency. GAC is perhaps
the most basic non-trivial local consistency. Essentially,
GAC attempts to remove certain values which cannot oc-
cur in a solution of the CSP. GAC is the most widely re-
searched and successful form of local consistency. Arc con-
sistency (AC) is GAC specialized for binary constraints. In
this paper, local consistency/filtering which is stronger than
(G)AC is called stronger consistency.

A table constraint c is defined on a positive (negative)
table T and scope(c), where T lists all the allowed (disal-
lowed) tuples of c. Table constraints can be viewed as a gen-
eral way of defining the constraint (relation). Traditionally
CSPs were viewed as consisting of table constraints. One
can think of the table as a logical definition but the actual
representation need not be a table. One alternative repre-
sentations of a table constraint is as a multi-valued deci-
sion diagram (MDD). Figure 2(a) gives an example of ta-
ble constraint and its equivalent MDD representation in Fig-
ure 2(b). The tuples of table constraint adhere to paths from
the root node x0 to node tt (true terminal) in the MDD.
Thus, a table constraint can be viewed as a table or it’s
equivalent MDD representation. Other alternate represen-
tations for a table are possible, such as the graph based
representations: deterministic finite automata (DFA a.k.a
regular) (Pesant 2004), non-deterministic finite automata
(NFA) (Cheng, Xia, and Yap 2012), context-free grammar
(CFG a.k.a grammar) (Sellmann 2006; Cheng, Xia, and
Yap 2012). For example, a regular constraint is simply a
DFA defining the set of tuples which can be generated by
the automata over the variables in the constraint. Similarly,
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x0 x1 x2

τ0 0 0 0
τ1 0 0 1
τ2 0 1 0
τ3 0 1 1
τ4 1 2 0
τ5 1 2 1
τ6 1 2 2

(a) A table constraint.

x0

x1 x1

x2 x2

tt

0 1

10
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0,1,2

(b) An MDD constraint.

x0 x1 x2

c-τ0 0 {0,1} {0,1}
c-τ1 1 2 {0,1,2}

(c) c-tuple

x0 x1 x2

s-τ0 0 0 0
s-τ1 0 0 1
s-τ2 0 1 0
s-τ3 0 1 1
s-τ4 1 2 *

(d) Short-Supports

Figure 2: Examples of a table constraint and alternate repre-
sentations

there are various representations of table which simplify the
description of the table by “compression”: bitwise encoding,
c-tuple (Katsirelos and Walsh 2007; Xia and Yap 2013) (the
Cartesian product), short-supports (Jefferson and Nightin-
gale 2013), slice-tables (Gharbi et al. 2014), and smart-
tables (Mairy, Deville, and Lecoutre 2015). For example,
Figure 2(c) and Figure 2(d) give the c-tuple and the short-
support representations respectively for the table constraint
in Figure 2(a). Specifically, the c-tuple c-τ1 in Figure 2(c)
and the short-support s-τ4 in Figure 2(d) both represent the
tuples τ4, τ5, τ6 in Figure 2(a).

3 Classical Arc Consistency Algorithms

There has been considerable research in AC/GAC algo-
rithms since the pioneering work of the AC3 algorithm
(Mackworth 1977) in 1977. AC3 enforces AC at the gran-
ularity of a single constraint, i.e. coarse-grained, and prop-
agates domain changes from variables to other constraints
whose scope includes those variables. From the perspec-
tive of binary CSPs, a constraint is an edge in the constraint
graph, thus a coarse-grained AC algorithm works on edges.
A coarse-grained table approach for a G(AC) can be attrac-
tive as the algorithm can be simple with low overheads be-
cause of simple data structures. In contrast to AC3, AC4
(Mohr and Henderson 1986) works by enforcing AC at the
granularity of a single variable’s domain value, i.e. fine-
grained, and was the first optimal AC algorithm in terms
of time complexity. It tries to perform minimum work to
maintain AC when a value is removed from a variable’s do-
main. The tradeoff compared to the coarse grained AC3 is
that AC4 maintains more fine grained information includ-
ing a list of supports and counters for the number of sup-
ports of each variable-value pair. In practice, AC4 was found
to be outperformed by AC3 eventhough AC3 is not an op-
timal algorithm (Wallace 1993) which highlights that it is
not sufficient to consider worst case complexity for efficient

and practical constraint solving. Meanwhile, AC3 and AC4
can be regarded as special cases of AC5 (Van Hentenryck,
Deville, and Teng 1992). AC6 (Lecoutre and Cordier 1993;
Bessière 1994) is also optimal but reduces the space of AC4
by a factor of d (variable’s domain size). AC7 (Bessiere,
Freuder, and Regin 1995) extends AC6 by exploiting bidi-
rectionality, i.e. both values vi and vj of a valid support
(vi, vj) can simultaneously support each other.

In 2001, more than two decades after AC3, an optimal
coarse-grained algorithm AC3.1/AC20012 (Zhang and Yap
2001; Bessière and Régin 2001; Bessière et al. 2005) was
found, which outperforms AC3. AC3.1/AC2001 gained effi-
ciency with residues—residues are the supports found pre-
viously and saved for later use. Ordering supports and us-
ing residues amortizes support checking, reducing it by
a factor of d making AC3.1/AC2001 optimal. AC3.2 and
AC3.3 (Lecoutre, Boussemart, and Hemery 2003) extend
AC3.1/AC2001 by partially and fully involving the bidirec-
tionality of AC7 respectively. AC3bit (Lecoutre and Vion
2008) is the first practical AC algorithm exploiting bitwise
operations. AC3bit+r (Lecoutre and Vion 2008) further ex-
tends AC3bit to residues and multi-directionality, and is still
a state-of-the-art AC algorithm.3

To summarize classical AC algorithms, we highlight that
many can be simply extended to GAC. The older AC algo-
rithms also contribute to the development of modern GAC
algorithms, e.g., design choices such as propagation granu-
larity, and optimizations like residue, bitwise representation,
and multi-directionality.

4 Generalized Arc Consistency Algorithms

We now review the GAC algorithms for table constraints
categorizing them by algorithm design choices, leveraging
from optimization techniques to constraint representations.

GAC schema

GAC-scheme (Bessière and Régin 1997) is a framework en-
forcing GAC on any type of constraint by implementing a
seekingSupports function, it searches supports for each do-
main value. If seekingSupport finds a support for a value,
the value is GAC; otherwise the value is inconsistent. GAC-
V and GAC-A are the two approaches following the GAC-
scheme but with different ways of seeking supports. GAC-V
iterates over valid tuples until one satisfying the constraint,
while GAC-A iterates over the allowed tuples of the con-
straint until a valid one is found. In GAC-VA, it alternates
traversal of the list of valid and allowed tuples. GAC-VA
was shown to be more robust than GAC-A or GAC-V when
constraint tightness is close to the both extremes, i.e. close
to high end 1.0 or low end 0.0. GAC-nextln (Lhomme and
Régin 2005), GAC-nextDiff(Gent et al. 2007) and Trie (Gent
et al. 2007) are also based on the GAC-scheme, but use in-
dexing.

2We use AC3.1/AC2001 to refer to the algorithm, as AC3.1 and
AC2001 were proposed and named by different authors of the re-
spective papers.

3AC3bit+r is named as AC3bit+rm in (Lecoutre and Vion
2008).
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Indexing

Indexing is a classical way of optimizing data search by us-
ing an efficient data structure. It has also been used in GAC
algorithms. GAC-nextln builds an index over a constraint c
such that for each variable-value pair (x, a), the tuple of c
containing (x, a) links to the following tuple also containing
(x, a). GAC-nextDiff also builds indexes between tuples but
links to the following tuple having different values for the
same variable. Another indexing data structure is a trie (Gent
et al. 2007) such that converting tables into trie can speed up
the process of seeking supports. The AC5TC (Mairy, Hen-
tenryck, and Deville 2014) algorithm and its variants also
benefits from indexing on top of the generic AC5 algorithm.
Experiments suggest that AC5TC variants can be more ef-
ficient than STR2+, STR3 and Mddc under low constraint
arity but slower under high arity.

Residue Support

The idea of residue support is to record previously
found supports, called residues, then seek supports from
the residues to skip some checkings. As mentioned,
(G)AC3.1/AC2001 uses residues to get optimality and ef-
ficiency. AC3.2, AC3.3, and AC3rm (Lecoutre, Boussemart,
and Hemery 2003; Lecoutre and Hemery 2007) further re-
vise residues to work in a multi-directional way, i.e. when
a support is found, it can be used as residue for all values
occurring in the support besides the value for which it was
seeking support. Newer GAC algorithms also use the residue
idea, e.g. STRbit (Wang et al. 2016) and CT (Verhaeghe,
Lecoutre, and Schaus 2017). We will review these two algo-
rithms in the following subsections.

Simple Tabular Reduction

Simple Tabular Reduction (STR) (Ullmann 2007) is one of
the most successful techniques for filtering table constraints.
At least 15 STR based algorithms were proposed for table
constraints. The idea of STR is to remove invalid tuples
from tables as search goes deeper, and restore them upon
backtrack. STR reduces the number of tuples of a table as
search goes deeper, saving unnecessary tuple checks. Exper-
iments showed that STR can be very effective on shrinking
tables—the average reduced table size can be smaller than
the original table by 1-3 orders of magnitude (Lecoutre, Lik-
itvivatanavong, and Yap 2012).

STR2 (Lecoutre 2008; 2011) optimises the basic STR
algorithm in two ways. First, the variables whose domain
has not changed since the last invocation are skipped when
checking the validity of a tuple. Second, support checking
is skipped when all domain values are consistent. STR2+
further adds a data structure to maintain the domain size
of variable at the last time a particular constraint is pro-
cessed during search. Experiments in (Lecoutre 2011) show
that STR2+ is about two times faster than STR and even
faster than GAV-VA for the most difficult instances in their
benchmarks. STR2w (Lecoutre, Likitvivatanavong, and Yap
2015a) makes STR2 more efficient by using the watched tu-
ple techniques.

STR3 (Lecoutre, Likitvivatanavong, and Yap 2012;
2015b) is a STR algorithm which uses a different representa-
tion, called dual table. In the dual table, each variable-value
pair is mapped to a set of tuples containing the pair. Fig-
ure 3(a) shows an example of the dual table, which is equiv-
alent to our earlier table constraint in Figure 2(a). For each
table constraint and variable value, the supports of the vari-
able value are recorded in the dual table, e.g., {τ0, τ1, τ2, τ3}
are the supports of (x0, 0). This illustrates a different change
of representation in the data structures used to represent the
table (AC4 also uses a fine grained data structure). Unlike
STR2, this makes STR3 a fine-grained algorithm and it is
designed to maintain GAC on the dual table during search,
making it incremental. STR3 has the property of being path-
optimal, i.e. each element of a table is traversed at most once
along a search path. Their experiments show that the dy-
namic table size has the most significant factor affecting the
performance of STR3, i.e. STR3 is faster than STR2 when
tables remain large (table reduction is less effective) while
STR3 is slower than STR2 if the table size becomes small.
This also explains why STR2 is typically faster than STR3 in
benchmarks since table reduction is often quite effective and
the optimality properties of STR3 may be less significant in
the actual benchmark.

Some variants of STR algorithms work on compressed
table representations. STR2-C and STR3-C (Xia and Yap
2013) works on the Cartesian Product representation (c-
tuple) of tuples to compress tables (the “-C” refers to
a c-tuple version of the algorithm). The shortSTR algo-
rithm (Jefferson and Nightingale 2013) works on short sup-
port which compresses table constraint by hiding the vari-
ables whose domain values are always supported. STR-
slice (Gharbi et al. 2014) compresses tables by first group-
ing tuples of a table (slicing) and then decomposing each
group (a subtable) into two tables with a smaller arity where
the original subtable is obtained from the join of the two
smaller tables. Such algorithms are competitive when there
exists enough compression, e.g. Xia and Yap (Xia and Yap
2013) showed that STR2-C is faster than STR2 when the
Cartesian product compresses tables by more than 75%. The
state-of-the-art GAC algorithms STRbit (Wang et al. 2016)
and CT (Verhaeghe, Lecoutre, and Schaus 2017) also use
STR ideas among others. In addition, STR is also extended
to handle negative tables, such as STR-neg (Li et al. 2013)
and CT-neg (Verhaeghe, Lecoutre, and Schaus 2017).

Bitwise Representation

AC3bit is the first practical AC algorithm using bitwise rep-
resentation as an optimization. Essentially it uses bit vectors
to represent the domain and supports. The speed advantage
is due to the (O(1)) operations available on bit vectors giv-
ing speedups due to the word size.

Wang et al. (Wang et al. 2016) proposes a bitwise en-
coding of the dual table representations together with the
algorithms STRbit and STRbit-C. To get the bitwise repre-
sentation, the original table is first partitioned so that each
subtable have w tuples where w corresponds to the natural
word size of processor with O(1) bit vector operations. Fig-
ure 3(b) gives an example of the bitwise representations of
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x0 x1 x2

0 {τ0, τ1, τ2, τ3} 0 {τ0, τ1} 0 {τ0, τ2, τ4}
1 {τ4, τ5, τ6} 1 {τ2, τ3} 1 {τ1, τ3, τ5}

2 {τ4, τ5, τ6} 2 {τ6}
(a) The table representation for STR3.

x0 x1 x2

0 {(θ0, 1111)} 0 {(θ0, 1100)} 0 {(θ0, 1010), (θ1, 1000)}
1 {(θ1, 1110)} 1 {(θ0, 0011)} 1 {(θ0, 0101), (θ1, 0100)}

2 {(θ1, 1110)} 2 {(θ1, 0010)}
(b) The table representation for STRbit. θ0 is the index of the
bit vector for τ0 to τ3 and θ1 is for τ4 to τ6.

Figure 3: Table Representations for STR3 and STRbit

Figure 3(a). In this example, we assume w = 4 and partition
the table into two parts with θ0 and θ1 as the index. For each
variable value and subtable, a word in a bit vector is used to
record whether the tuples in the subtable are supports of the
variable value, i.e., the ith bit in the word is 1 if the ith tuple
in the subtable is a support, otherwise the ith bit is 0. If there
is no support from the subtable, the word equals 0 and can
be skipped. Experiments showed that STRbit was one of the
state-of-art algorithms, being up to 25X faster than STR3
and 70X faster than STR2.

Compact-table (CT) is another state-of-the-art algorithm,
also based on bitwise representation. Both CT and STRbit(-
C) use bit vectors (sparse sets (Briggs and Torczon 1993))
to record all valid tuples in a table (non-zero words in the
bit vectors) during search. The difference between CT and
STRbit(-C) is that for each table constraint, CT does not skip
the zero words in the bit vectors recording supports of vari-
able values, thus, those bit vectors have the same number
of words and can share the sparse set which records non-
zero words in the bit vector recording valid tuples. In ad-
dition, the STRbit(-C) and CT algorithms also record the
last found support for each variable value, which is similar
to algorithms such as (G)AC3.1/AC2001, AC3r (Lecoutre
and Hemery 2007) and residue-based techniques (Lecoutre
et al. 2008). From Figure 1, we can see the overall perfor-
mance of CT and STRbit is quite close and clearly superior
to the other algorithms. The principles of CT was also ex-
tended to the decision diagram based algorithm Compact-
MDD in (Verhaeghe, Lecoutre, and Schaus 2018). Although
Compact-MDD is still slower than CT, it reduces the gap
between MDD based algorithms and CT. The HTAC (Wang
and Yap 2019) algorithm, discussed in the last part, also uses
bit vectors (sparse sets).

Multi-valued Decision Diagram

Besides the table-based representation, we can convert any
table constraint into an equivalent MDD (Cheng and Yap
2010). In the best case, the MDD can get exponential com-
pression. Like a tree/trie, a MDD can get compression due to
sharing in the tree part of the graph but it also gets sharing of
children. In practice, it was observed that the more compact
the MDD, the faster the MDD based filtering algorithms be-
come. In an analog to table support, a value is GAC if there
exists a path of valid domain values from the root node to

true terminal.
A number of MDD based algorithms have been pro-

posed, including Mddc,incremental-MDD (Gange, Stuckey,
and Szymanek 2011), MDD4 (Perez and Régin 2014),
Compact-MDD (Compact-Diagram) (Verhaeghe, Lecoutre,
and Schaus 2018; 2019), and BDDF (Vion and Piechowiak
2018). The Mddc is the first MDD based filtering algorithm.
It recursively traverses the MDD in a top-bottom manner
and enforces GAC during the process. At each MDD node,
Mddc records the consistency of the node, i.e. whether the
node can reach a true terminal through a path whose values
are all present in variables’ domains. This guarantees that
Mddc explores each MDD node at most once. Another op-
timization technique is the early-cutoff, which remembers
the level at and below of the MDD where all values in the
domains of variables are consistent. As a result, Mddc can
skip the unexplored sub-parts of any consistent node at or
below the level. The MDD data structure also serves as a
natural index. MDD4 (Perez and Régin 2014) adds incre-
mentality by maintaining the validity of MDD edges kept as
the supports of domain values. The reset technique is intro-
duced (see later) which gives two algorithms: GAC4R and
MDD4R.

Incrementality

For the most incrementality techniques, some additional
data structures are maintained during search, in order to
avoid repeatedly accessing invalid supports (tuples). A mo-
tivation is that if a support of a variable value is invalid, then
it is still invalid after shrinking some variable domains.

Incrementality techniques appear in many (G)AC algo-
rithms: (i) In the AC4 algorithm, the number of valid sup-
ports of variable values are recorded during search, corre-
spondingly a variable value is not AC if the number of valid
supports on a constraint is zero; (ii) In the AC6, AC7, GAC-
scheme based, (G)AC2001/3.1/3.2/3.3, STR3, STRbit and
STRbit-C algorithms, the last valid support of each vari-
able value is maintained, thus, we only need to consider
the supports before the last support when the last support
becomes invalid; (iii) In the STR based algorithms, current
tables, i.e., invalid tuples are removed, are maintained by us-
ing sparse (bit-)sets; (iv) In the GAC4 algorithm (Mohr and
Masini 1988), the valid supports of each variable value are
maintained by using linked lists or sparse sets; (v) In the
Mddc, MDD4(R), incremental-MDD (Gange, Stuckey, and
Szymanek 2011) and BDDF (Vion and Piechowiak 2018) al-
gorithms, valid nodes are maintained by using various data
structures, in addition, valid edges are also maintained in
MDD4(R) and incremental-MDD. Note that a valid tuple
corresponds to a path consisting of valid nodes and edges.

Reset

The reset technique is introduced in GAC4R and MDD4R,
and used in many recent GAC algorithms, such as STRbit-
C, CT, smartCT, Compact-MDD, Compact-smartMDD and
HTAC. The idea is to choose whether to incrementally main-
tain deletions or to rebuild the data structures from scratch.
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Watched Tuple

The watched tuple technique, inspired by SAT solvers, is
to associate each watched tuple with a list of values that
depend on this tuple as a proof of support. This simplifies
checking whether a support is no longer correct. Should a
tuple be removed, its watchers must be reattached, if pos-
sible, to another valid tuple. The algorithms applying such
technique include AC6, AC7, GAC-scheme, GAC-nextIn,
GAC-nextDiff, Trie, STR3, STR3-C and STR2w.

Other Representations

The intuition behind employing compact representations is
that significant compression of tables should reduce run-
ning time for enforcing GAC. Thus besides MDD and bit-
wise based algorithms, more compact representations were
proposed to revise existing GAC algorithms, such as the c-
tuples, short-supports, slice-tables, and smart-tables (Mairy,
Deville, and Lecoutre 2015). The corresponding GAC algo-
rithms of different compact representations includes: GAC-
ctuple (Katsirelos and Walsh 2007), STR2-C and STR3-
C (Xia and Yap 2013), and STRbit-C (Wang et al. 2016)
for c-tuples; shortSTR2 (Jefferson and Nightingale 2013)
and shortCT (Verhaeghe, Lecoutre, and Schaus 2017) for
short-supports; STR-slice (Gharbi et al. 2014) for slice-
table; smartSTR (Mairy, Deville, and Lecoutre 2015) and
smartCT (Verhaeghe et al. 2017) for smart-tables.

5 CSP Encodings

A CSP can also be solved by first transforming it into an-
other CSP, which we will call an encoding.

Binary Encodings

There are two ways of solving a non-binary CSP. The first
way, the typical one, is to solve the non-binary CSP in-
stance with a solver employing filtering algorithms usu-
ally based on GAC. An alternative second way is to use
a binary encoding transforming a non-binary CSP into a
“solution equivalent” binary CSP so that binary-only tech-
niques such as AC can be applied to the encoded binary
CSP. Two well known binary encodings are dual encod-
ing (Dechter and Pearl 1989) and hidden variable encod-
ing (HVE) (Rossi, Petrie, and Dhar 1990). Most research
(over the past decade and more) has been on the former as
it was believed that binary encoding is not practical. The
reason for this belief is shown with experiments in Wang
and Yap (Wang and Yap 2019) showing that dual encod-
ing takes too much space and HVE with the best AC al-
gorithms (AC3bit and HAC (Mamoulis and Stergiou 2001;
Samaras and Stergiou 2005)) are considerably outperformed
by CT on the original non-binary CSP. However the HTAC
algorithms in (Wang and Yap 2019) were shown to be com-
petitive with state-of-art CT and STRbit.

HTAC is efficient being a specialized AC algorithm which
exploits properties of binary encoding instances and em-
ploys techniques from modern GAC algorithms, such as CT
and STRbit. At the same time, HTAC takes into account the
effect of the filtering algorithm on the search heuristic. It al-

lows the solver to do search on binary encoded models, and
also the original model.

Stronger Consistency by Encodings

Another way of using encoding is to enforce a stronger con-
sistency. The idea is that the encoded CSP is such that en-
forcing GAC on encoding leads to a stronger consistency on
the original CSP. The benefit is that rather than designing a
new higher-order consistency, existing GAC algorithms and
solvers can be directly used.

The factor encoding (FE) (Likitvivatanavong, Xia, and
Yap 2014) and factor decomposition encoding (FDE) (Likit-
vivatanavong, Xia, and Yap 2015) factor out the commonly
shared variables between each pair of constraints, then cre-
ate new variable for each set of the share variables. In FE,
the new variable in the encoding returns back to the con-
straint where it comes from. One drawback of FE is that
the scope of constraint is enlarged leading to (much) larger
tables. To alleviate space issues, FDE was proposed to de-
compose the constraints by subtracting the created variable
together with its original variables. GAC on FD and FDE is
equivalent to the higher order consistency, full pairwise con-
sistency (Lecoutre, Paparrizou, and Stergiou 2013) on the
original CSP. The advantage of enforcing the stronger con-
sistency with GAC on the encoded problem is that the size
of the search space can be much smaller than with GAC on
the original problem. In some cases, there is no search or a
tiny search space.

6 Conclusion

Advances in (G)AC algorithms have led to orders of mag-
nitude improvements in the efficiency of constraint solvers.
We can see in Table 1 that newer algorithms such as the ones
in bold use combinations of techniques and are more “so-
phisticated” than older ones. Older algorithms focused more
on worst case time complexity while newer algorithms take
advantage of features in CSP instances, e.g. constraint rep-
resentations (e.g. compact representations), internal repre-
sentations (e.g. dual table, bitwise). More sophisticated data
structures are used, e.g. sparse sets, Index. Runtime opti-
mizations which take advantage of making certain opera-
tions more efficient, e.g. STR, residues, efficient bit oper-
ations. The granularity of the processing has mostly shifted
to be more fine-grained. Some forms of higher order con-
sistency can also benefit from the improvements in G(AC)
algorithms. In particular, the stronger consistency encodings
tend to enlarge the arity of the encoded constraint, making
them more suited for GAC algorithms which deal better with
larger arity constraints.

Recent work with the HTAC algorithm (Wang and Yap
2019) suggests that although most research has focused on
GAC algorithms rather than AC algorithms over the past
decades, the binary case may need to be revisited. Indeed,
HTAC uses techniques used in recent GAC algorithms, but
specialised to the binary case and the hidden variable en-
coding. As more results and (stronger) consistencies have
been developed for binary CSPs than for non-binary CSPs,
it opens up possibilities for new consistency algorithms. Fi-

13595



nally, global constraints is outside this survey but are impor-
tant. Some of the constraints we discussed can be viewed as
global constraints but an interesting and little explored di-
rection is to have better ways of combining GAC algorithms
for global constraint with the ones for various forms of table
constraints.
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