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Abstract

Deep reinforcement learning has been successfully applied
in many decision making scenarios. However, the slow train-
ing process and difficulty in explaining limit its application.
In this paper, we attempt to address some of these prob-
lems by proposing a framework of Rule-interposing Learn-
ing (RIL) that embeds knowledge into deep reinforcement
learning. In this framework, the rules dynamically effect the
training progress, and accelerate the learning. The embed-
ded knowledge in form of rule not only improves learning
efficiency, but also prevents unnecessary or disastrous explo-
rations at early stage of training. Moreover, the modularity of
the framework makes it straightforward to transfer high-level
knowledge among similar tasks.

1 Introduction
Deep reinforcement learning (Mnih et al. 2013) has been
successfully applied in many dynamic decision making sce-
narios. However, like deep learning, it suffers from problems
like being brittle and not easily explainable. The training
time is also often very long and suffers from “cold start” -
performing very badly at the beginning. Furthermore, for ap-
plications in robotics and critical decision support systems,
the lack of a guarantee that the system won’t do anything
disastrous is also of concern.

There have been many related approaches proposed. In
(Zahavy, Zrihem, and Mannor 2016), the behaviors of neu-
ral network is visualized to increase the transparency. Some
other combine symbolic methods or high-level knowledge
with deep reinforcement learning, such as Hierarchical Deep
Reinforcement Learning (Kulkarni et al. 2016) and DSRL.
Imitation Learning approaches learn directly from human.
Related works can be found in (Zhang et al. 2019). We omit
many other references due to the space limit.

Different from previous work, we propose a new frame-
work named Rule-Interposing Learning (RIL) to embed hu-
man knowledge into the deep reinforcement learning. We
have implemented our framework and tried it on some well-
known games such as Flappy Bird, Space War, Breakout,
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and Grid World. The results show that good heuristic rules
work as accelerators that make DQN learn faster and safety
rules work as guards that make DQN learn more safely.

To be specific, in RIL, the model randomly gets a sam-
ple from the replay memory for training, and calculates the
predicted Q-value for every valid action:

Q∗(s, a) = Es′∼E
[
r + γmax

a′
Q∗ (s′, a′) |s, a

]
(1)

The agent selects a random action with probability ε, oth-
erwise select the action with maximal Q-value. But unlike
original DQN, before the execution of selected action, RIL
passes the action into rule set. The rule set maintains a pool
of legal actions for each rule in knowledge base R. If the se-
lected action violates the knowledge, RIL rejects the action
and suggest a new one under probability Pt = p0 ·γt, where
p0 is a given initial probability, γ is the decay rate, and t is
the timestamp. After the rejection, a random legal action is
selected to be executed. We demonstrate RIL’s performance
under two rule-interposing schemes:
Acceleration rules: the rules with probability Pt = p0 · γt

where 0 < γ < 1. Given existing knowledge about the task,
some explorations are unnecessary and can be pruned. As a
consequence, under the instruction of these rules as a priori,
a DQN learns faster.
Safety rules: the rules with probability Pt = p0 · γt where
p0 = 1 and γ = 1. In this case, the rule will be always
on, overseeing the training process. Once the decision made
by DQN is considered dangerous by the safety rules, it’ll be
rejected and replaced to a safe one given by knowledge base.

Formally, for a given domain, the knowledge base R con-
sists of rules of form (η, δ) where η is a first-order logic
proposition indicating some environmental condition, and δ
is a set of conditionally recommended actions, which is a
subset of action space. For convenience, the two parts of a
given rule r ∈ R are written as functions in the rest of the
paper, denoted respectively by η(r) and δ(r). Denote activa-
tion set of rule r at timestamp t as

α(r, t) =

{
δ(r) if η(r) is true at timestamp t
∅ otherwise.

The activation set α(r, t) contains all actions suggested by
rule r at time t, and it is obviously also a subset of action
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Figure 1: Screenshots from four games: (left-to-right)
Flappy Bird, Space War, Breakout and Grid World.

space. The activation set of the entire knowledge base at time
t is defined as the intersection of all non-empty activation
sets of rules:

α(R, t) =
⋂

r∈R,α(r,t) �=∅
α(r, t).

Especially, given a time stamp t, if α(r, t) = ∅ for each rule
r ∈ R, it means that none of the rules applies in current sit-
uation. Therefore, DQNs should explore or select an action
autonomously in this case. At each timestamp t, there might
be multiple non-empty activation sets.

2 Experiments
We implement our framework on several games as show
in Figure 1. DQN model is used to compare with. For the
sake of fairness, we use the same hyper-parameter setting
and neural network implemented among the RIL and DQN.
The network consists of three convolution layers, one hidden
layer and the output layer.

In Flappy Bird, we use a rule set to tell the bird
not to fly too high or too low, when it is fly-
ing across a pair of pipes. Formally, knowledge base
in Flappy bird Rfb = {r1, r2}, where η(r1) =
crossing(pu, pl) ∧ less(distance(bird, pu), size(bird)), and
δ(r1) = {flap}, and η(r2) = crossing(pu, pl) ∧
less(distance(bird, pl), size(bird)), and δ(r2) = {null},
where (pu, pl) is the pair of pipes that the bird is flying
across.

In Space War, a greedy strategy is used: always move
to the horizontally nearest enemy jet. Formally, knowledge
base in Space war is Raw = {r3, r4}, where η(r3) =
on left(nearest jet, agent) and δ(r3) = {move left},
and η(r4) = on right(nearest jet, agent) and δ(r4) =
{move left}.

In Breakout, we use following strategy: if the ball is on
the left-hand side of the paddle, then the paddle should move
left, the similar when it is on the right-hand side of the pad-
dle. Formally, the knowledge base for Breakout is Rbo =
{r5, r6}, where η(r5) = on left(ball, paddle) and δ(r5) =
{move left}, and η(r6) = on right(ball, paddle) and
δ(r6) = {move right}.

In Grid World, we use the knowledge base Rgw with a
single safety rule r7, which takes effect when the agent is
in the neighbor of a trap, where η(r7) = near trap ∧
trap in(directions), and δ(r7) = A−{move(dir) : dir ∈

Figure 2: The result compare between RIL and DQN in four
games. With the increase of the reward per episode, we set
a time limit of the training stage. The reward per episode
demonstrates that, within the same training time, RIL gets
better performance with fewer training episodes. Besides,
with safety rule set deployed in Grid World, RIL prevents
the agent from disastrous explorations and gains much bet-
ter performance in very early stage of training.

directions}, where A is the set of all actions. The rule sim-
ply to forbid the agent to move into a trap.

The criterion that we use to evaluate the agent’s perfor-
mance is the average reward the agent gains in training
episodes. The performance is shew in Figure 2. The plot of
average reward of training episodes indicates obvious im-
provement on learning efficiency and exploration safety.

3 Conclusion
In this demonstration, we briefly introduce the RIL frame-
work for integrating high-level rules and deep Q-learning
and demonstrate the corresponding experiment result that
support our idea. We believe that RIL is a general enough
to be used in other deep learning algorithms.
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