
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Interactive Scene Generation via Scene Graphs with Attributes

Oron Ashual,1 Lior Wolf1,2

1Tel Aviv University
2Facebook AI Research
oron.ashual@gmail.com

wolf@cs.tau.ac.il, wolf@fb.com

Abstract

We introduce a simple yet expressive image generation
method. On the one hand, it does not require the user to paint
the masks or define a bounding box of the various objects,
since the model does it by itself. On the other hand, it supports
defining a coarse location and size of each object. Based on
this, we offer a simple, interactive GUI, that allows a layman
user to generate diverse images effortlessly.
From a technical perspective, we introduce a dual embed-
ding of layout and appearance. In this scheme, the location,
size, and appearance of an object can change independently
of each other. This way, the model is able to generate innu-
merable images per scene graph, to better express the inten-
tion of the user.
In comparison to previous work, we also offer better quality
and higher resolution outputs. This is due to a superior ar-
chitecture, which is based on a novel set of discriminators.
Those discriminators better constrain the shape of the gener-
ated mask, as well as capturing the appearance encoding in a
counterfactual way.
Our code is publicly available at https://www.github.com/
ashual/scene generation.

Introduction
In a recent work published at the sister conference
ICCV (Ashual and Wolf 2019), we introduce an interac-
tive method for generating realistically looking images. Our
method employs scene graphs with per-object location and
appearance attributes as an easy-to-manipulate way for users
to express their intentions, see Fig. 1. The image specifi-
cations consist of various objects, which are defined as be-
longing to a certain class (horse, tree, boat, etc.) and as hav-
ing certain appearance attributes. The attributes are either
archetypal, and obtained by clustering previously seen at-
tributes, or directly imported from a sample image. The rel-
ative locations of the objects are specified by a scene graph,
which is a graph where the scene objects are denoted as
nodes, and their relative position, such as “above” or “left
of”, are represented as edge types.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Each object in the image is encoded inside the neural net-
work by a dual representation. The first part encodes the ob-
ject’s placement and captures a relative position and other
global image features, as they relate to the specific object.
It is generated based on the scene graph, by employing a
graph convolution network, followed by the concatenation
of a random vector z. The second encoding vector captures
the appearance of the object and can be copied from the
same object as it appears in another image, without directly
changing the other objects in the image.

The method is implemented within a convenient user in-
terface, which supports a dynamic placement of objects. The
object locations in the user interface are interpreted as an ap-
proximated placement on a coarse grid and not as an exact
location or a hard constraint. The edge relations in the scene
graph are inferred automatically, given the relative position
of the objects, which eliminates the need for mostly unnec-
essary user intervention. Rendering is done in real-time, sup-
porting the creation of novel scenes in an interactive way.

The neural network that we employ has multiple sub-
parts, as can be seen in Fig. 2: (i) A graph convolutional
network that converts the input scene graph to a per-object
embedding to their location. (ii) A CNN that converts the
location embedding of each object to an object’s mask.
(iii) A parallel network that converts the location embed-
ding to a bounding box location, where the object mask is
placed. (iv) An appearance embedding CNN that converts
image information into an embedding vector. This process
is done off-line and when creating a new image, the vectors
can be imported from other images, or selected from a set
of archetypes. (v) A multiplexer that combines the object
masks and the appearance embedding information, to cre-
ate a one multidimensional tensor, where different groups
of layers denote different objects. (vi) An encoder-decoder
residual network that creates the output image.

Most related to our method is the one by (Johnson, Gupta,
and Fei-Fei 2018). In comparison to this method, our method
separates the layout embedding from the appearance embed-
ding, in order to allow for much more control and freedom
to the object selection mechanism. In addition, the architec-
ture we employ enables better quality and higher resolution
outputs and adds stochasticity before the masks are created,

13651



Figure 1: An example of the image creation process. (top row) the schematic illustration panel of the user interface, in which
the user arranges the desired objects. (2nd row) the scene graph that is inferred automatically based on this layout. (3rd row)
the layout that is created from the scene graph. (bottom row) the generated image. Legend for the GUI colors in the top row:
purple – adding an object, green – resizing it, orange – moving it, red – replacing its appearance. (a) A simple layout with a
sea, clouds and a sand objects. All object appearances are initialized to a random archetype appearance. (b) The sea is moved
to the right. The appearance of the sea is changed to a different archetype in b-e. (c) The sand and the sea are moved, causing
the perspective to change. (d) A mountain object is added. The appearance of the clouds is changed. (e) The mountain object is
enlarged. (f) A person is added (g) The person is moved to the left.

Figure 2: The architecture of our composite network, including the subnetworks G,M,B,A,R, and the process of creating the
layout tensor t. The scene graph is passed to the network G to create the layout embedding ui of each object. The bounding box
bi is created from this embedding, using network B. A random vector zi is concatenated to ui, and the network M computes the
mask mi. The appearance information, as encoded by the network A, is then added to create the tensor t with c+ d5 channels,
c being the number of classes. The autoencoder R generates the final image p from this tensor.

13652



Figure 3: Image generation based on a given scene graph. Each row is a different example. (a) the scene graph, (b) the ground
truth image, from which the layout was extracted, (c) our results when we used the ground truth layout of the image, similar
to (Zhao et al. 2018), (d) our method’s results, where the appearance attributes present a random archetype and the location
attributes coarsely describe the ground truth bounding box, (e) our results when we use the ground truth image to generate the
appearance attributes, and the location attributes are zeroed li = 0, (f) our results where li = 0, and the appearance attributes
are sampled from the archetypes, and (g) the results of (Johnson, Gupta, and Fei-Fei 2018).

Figure 4: The diversity obtained when keeping the location attributes li fixed at zero and sampling different appearance
archetypes. (a) the scene graph, (b) the ground truth image, from which the layout was extracted, (c–g) generated images.

Figure 5: Duplicating an object’s appearance in the generated image. Images are created based on the scene graph, such that the
appearance is taken from one of five unrelated images. In this example, the bus’s appearance is generated from the reference
image, while all other objects use the same random appearance archetype.

13653



leading to the generation of multiple results per scene graph.
We also introduce a mask discriminator, which plays a cru-
cial role in generating plausible masks, as well as another
novel discriminator that captures the appearance encoding
in a counterfactual way. The appearance of the object is bet-
ter captured by introducing feature matching losses based on
the discriminator network as well as a perceptual loss term.

Results

In (Ashual and Wolf 2019), we provide a very detailed em-
pirical comparison to the state of the art methods of (John-
son, Gupta, and Fei-Fei 2018) and (Zhao et al. 2018), pre-
senting a sizable gap in performance in favor of our method.
Here, we focus on sharing the qualitative results obtained.

Sample results of our 256x256 model are shown in Fig. 3,
using test images from the COCO-stuff datasets. Each row
presents the scene layout, the ground truth image from
which the layout was extracted, our method’s results, where
the object attributes present a random archetype and the lo-
cation attributes are zeroed (li = 0), our results when us-
ing the ground truth layout of the image (including masks
and bounding boxes), our results where the appearance at-
tributes of each object are copied from the ground truth im-
age and the location vectors are zero, and our results where
the location attributes coarsely describe the objects’ loca-
tions and the appearance attributes are randomly selected
from the archetypes. In addition, we present the result of
the baseline method of (Johnson, Gupta, and Fei-Fei 2018)
at the 64x64 resolution for which a model was published.

As can be seen, our model produces realistic results
across all settings, which are more pleasing than the base-
line method. Using ground truth location and appearance at-
tributes, the resulting image better matches the test image.

Fig. 4 presents samples obtained when sampling the ap-
pearance attributes. In each case, for all i, li = 0 and the
object’s appearance embedding ai is sampled between the
archetypes. This results in a considerable visual diversity.

The ability of our method to copy the appearance of an
existing image object is demonstrated in Fig. 5. In this ex-
ample, we generate the same test scene graph, while varying
a single object in accordance with five different options ex-
tracted from images unseen during training. Despite the vari-
ability of the appearance that is presented in the five sources,
the generated images mostly maintain their visual quality.

Conclusion

In the presented image generation tool, the input consists
of a scene graph with the addition of location information.
Each object is associated both with a location embedding
as well as with an appearance embedding, which can be
extracted from another image. This allows the duplication
of objects in other images such that their layout drastically
changes. The method also introduces a new architecture and
new loss terms, which improve the quality of the generated
images in comparison to the literature baselines.

Acknowledgements
This project has received funding from the European Re-
search Council (ERC) under the EU Horizon 2020 research
and innovation programme (grant ERC CoG 725974).

References
Ashual, O., and Wolf, L. 2019. Specifying object attributes
and relations in interactive scene generation. In The IEEE
International Conference on Computer Vision (ICCV).
Johnson, J.; Gupta, A.; and Fei-Fei, L. 2018. Image gener-
ation from scene graphs. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Zhao, B.; Meng, L.; Yin, W.; and Sigal, L. 2018. Image
generation from layout. CoRR abs/1811.11389.

13654


