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Abstract

Machine learning is often used to produce decision-making
rules that classify or evaluate individuals. When these indi-
viduals have incentives to be classified a certain way, they
may behave strategically to influence their outcomes. We de-
velop a model for how strategic agents can invest effort to
change the outcomes they receive, and we give a tight char-
acterization of when such agents can be incentivized to invest
specified forms of effort into improving their outcomes as op-
posed to “gaming” the classifier. We show that whenever any
“reasonable” mechanism can do so, a simple linear mecha-
nism suffices. This work is based on “How Do Classifiers
Induce Agents To Invest Effort Strategically?” published in
Economics and Computation 2019 (Kleinberg and Raghavan
2019).

Introduction

Algorithmic decision-making is becoming increasingly
common in a number of social contexts, including hiring,
education, lending, and criminal risk assessment. Policies in
these domains are often implemented by automated systems,
evaluating individuals based on features, which serve as
proxies to measure a person’s underlying attributes. Accom-
panying the growing prevalence of such automated decision-
making tools has been a push for transparency: algorith-
mic systems should be open to examination, and simple
enough that people affected by them can understand their
decisions. Proponents of transparency argue that it acts as
a safeguard to prevent algorithmic systems from introduc-
ing biases or other undesirable properties, and that “secret”
decision-making rules can create inequalities between in-
siders who know how the system works and outsiders who
don’t.

On the other hand, there are concerns that knowing ex-
actly how decisions are being made will simply lead in-
dividuals to “game” the rule by strategically manipulating
their appearances so as to receive favorable outcomes. Such
concerns are a necessary consequence of the fact that an
evaluator can only observe an individual via features that
serve as imperfect measurements of his or her true quali-
ties. From the evaluator’s perspective, this creates a basic
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tension between effort the agent invests to raise the true un-
derlying attributes that the evaluator cares about, and effort
that may serve to improve the proxy features without ac-
tually improving the underlying attributes. This tension un-
derlies the formulation of Goodhart’s Law, widely known
in the economics literature, which states that once a proxy
measure becomes a goal in itself, it is no longer a useful
measure (Hardt et al. 2016). This principle also underpins
concerns about strategic gaming of evaluations in search en-
gine rankings (Davis 2006), credit scoring (Bambauer and
Zarsky 2018; Foust and Pressman 2008), academic paper
visibility (Beel, Gipp, and Wilde 2009), reputation manage-
ment (Zarsky 2007), and many other domains.

Incentivizing a desired effort investment. Viewing
strategic behavior as completely undesirable, however, im-
plicitly takes the position that the true qualities we wish to
measure cannot be improved. In many settings, this doesn’t
accord with the fact that much of the effort people invest
leads to improvements that in fact benefit both themselves
and the measured evaluation. For example, if a student seeks
to improve their GPA by learning the material, we would
typically view this as a productive form of strategic behav-
ior, both for the student and the evaluation process. But if
the student tried to improve their GPA by learning a set of
highly specific test-taking heuristics, we might instead see
this as changing their feature value (GPA) without improv-
ing their underlying mastery of the material. Thus, different
forms of behavior can modify appearances in many ways,
only some of which a decision-maker may wish to encour-
age.

These considerations are at the heart of the following class
of design problems, illustrated schematically in Figure 1.
An evaluator creates a decision rule to assess an agent in
terms of a set of features, and this leads the agent to make
choices about how to invest effort across their actions to
improve these features. From the evaluator’s point of view,
some forms of agent effort are valuable (like learning edu-
cational material), while others are not (like learning test-
taking heuristics, or cheating). Hence, some decision rules
work better than others in creating appropriate incentives:
the evaluator would like to create a decision rule whose in-
centives lead the agent to invest in forms of effort that the
evaluator considers valuable.
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Figure 1: The basic framework: an agent chooses how to invest effort to improve the values of certain features, and an evaluator
chooses a decision rule that creates indirect incentives favoring certain investments of effort over others.

The present work: Designing evaluation rules. We
model this dynamic as a game between an evaluator who is
performing an assessment, and an agent who wants to score
well on this assessment. An instance of the problem consists
of a set of actions in which the agent can invest effort, and
a set of functions determining how the effort spent on these
actions translates into features that the evaluator observes.
The agent’s goal is to achieve a high score by allocating their
effort across actions. The evaluator’s goal is to find an eval-
uation rule to induce a specific effort profile from the agent,
which specifies a level of effort devoted to each action. Our
main result tightly characterizes when a given effort profile
can be incentivized and shows that a simple class of mecha-
nisms suffices to do so.

Our work has close ties to the principal-agent literature
from economics: an evaluator (the principal) wants to set
a policy (the evaluation rule) that accounts for the agent’s
strategic responses. Our main result has some similarities, as
well as some key differences, relative to a classical economic
formulation in principal-agent models (Grossman and Hart
1983; Hermalin and Katz 1991; Holmstrom and Milgrom
1987; 1991). In particular, many of these results show the
optimality of linear contracts, albeit under a different context
and set of assumptions than the ones studied here.

Model and Motivating Example

In this section, we develop a formal model of an agent’s in-
vestment of effort. There are m actions the agent can take,
and they must decide to allocate an amount of effort xj to
each activity j. We’ll assume the agent has some budget B
of effort to invest, so

∑m
j=1 xj ≤ B, and we’ll call this in-

vestment of effort x = (x1, x2, . . . , xm) an effort profile.
The evaluator cannot directly observe the agent’s effort

profile, but instead observes features F1, . . . , Fn derived
from the agent’s effort profile. The value of each Fi grows
monotonically in the effort the agent invests in certain ac-
tions according to an effort conversion function fi(·):

Fi = fi

⎛
⎝

m∑
j=1

αjixj

⎞
⎠ , (1)

where each fi(·) is nonnegative, smooth, weakly concave,
and strictly increasing.

We represent these parameters of the problem using a bi-
partite graph with the actions x1, x2, . . . , xm on the left, the
features F1, . . . , Fn on the right, and an edge of weight αji

whenever αji > 0, so that effort on action xj contributes to

the value of feature Fi. We call this graph, along with the as-
sociated parameters (the matrix α ∈ R

m×n with entries αji;
functions fi : R → R for i ∈ {1, ..., n}; and a budget B),
the effort graph G. Figure 2 shows some examples of what
G might look like.
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(b) The classroom setting

Figure 2: The conversion of effort to feature values can be
represented using a weighted bipartite graph, where effort
xj spent on action j has an edge of weight αji to feature Fi.

The evaluator combines the features Fi using some mech-
anism M (a function of the n feature values) to produce
an output H , which is the agent’s utility. We assume M is
known to the agents. Because all features are increasing in
the amount of effort invested by the agent — in particular,
including the kinds of effort we want to incentivize — we’ll
restrict our attention to the class of monotone mechanisms,
meaning that if agent X has larger values in all features than
agent Y , then X’s outcome should be at least as good as that
of Y . Formally, we write this as follows:
Definition 1. A monotone mechanism M on features Fi is
a mapping R

n → R such that for F, F ′ ∈ R
n with F ′

i ≥ Fi

for all i ∈ {1, ..., n}, M(F ′) ≥ M(F ). Also, for any F ,
there exists i ∈ {1, ..., n} such that strictly increasing Fi

strictly increases M(F ) (meaning it is strictly optimal for
the agent to invest its entire budget).

The agent’s utility is simply its outcome H . Thus, for a
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mechanism M , the agent’s optimal strategy is given by the
following optimization problem:

x∗ = argmax
x∈Rm

M(F ) s.t.
n∑

i=1

xi ≤ B, x ≥ 0 (2)

where each component Fi of F is defined as in (1). Through-
out this work, we’ll assume that agents behave rationally and
optimally, though it would be an interesting subject for fu-
ture work to consider extensions of this model where agents
suffer from behavioral biases.

An extended example. To make this concrete, we proceed
with an example demonstrating the subtle and somewhat
counterintuitive effects at play here. We consider a class-
room setting, where the strategic investment of effort has
long been considered (Koretz et al. 1991; Koretz 2008). The
effort graph shown in Figure 2b depicts this setting, where
the teacher is the evaluator and the student is the agent.
There are two pieces of graded work for the class (a test
FT and homework FW ), and the student can study the ma-
terial (x2) to improve their scores on both of these. They
can also cheat on the test (x1) and look up homework an-
swers on-line (x3). Their combined effort α1Tx1 + α2Tx2

contributes to their score on the test, and their combined ef-
fort α2Wx2+α3Wx3 contributes to their score on the home-
work. We leave the budget B and effort conversion functions
fT and fW uninstantiated for purposes of this example, as
our main conclusions will not depend on them. From these
scores, the teacher must decide on a student’s final grade H .
For simplicity, we’ll assume the grading scheme is simply a
linear combination, meaning H = βTFT +βWFW for some
real numbers βT , βW ≥ 0.

The teacher’s objective is to incentivize the student to
learn the material; thus, they want induce the student to
invest their entire budget into x2. Of course, this may not
be possible. For example, if α1T and α3W are significantly
larger than α2T and α2W respectively, so that it is much eas-
ier to cheat on the test and copy homework answers than to
study, the student would maximize their utility by investing
all of their effort into these undesirable activities.

In fact, we can make this precise as follows. For any
unit of effort invested in x2, the student could instead in-
vest α2T

α1T
and α2W

α3W
units of effort into x1 and x3 respectively

without changing the values of FT and FW . Moreover, if
α2T

α1T
+ α2W

α3W
< 1, then this substitution strictly reduces the

sum x1 + x2 + x3, leaving additional effort available (rela-
tive to the budget constraint) for raising the values of FT and
FW . It follows that any solution with x2 > 0 can be strictly
improved through this substitution. Thus, under this condi-
tion, the teacher cannot incentivize the student to study.

When α2T

α1T
+ α2W

α3W
≥ 1, on the other hand, a consequence

of our results is that no matter what fT , fW and B are,
there exist some βT , βW that the teacher can choose to in-
centivize the student to invest all their effort into studying.
This may be somewhat surprising – for instance, consider
the case where α1T = α3W = 3 and α2T = α2W = 2,
meaning that the best way for the student to maximize their
score on each piece of graded work individually is to invest

undesirable effort instead of studying. Even so, it turns out
that the student can still be incentivized to put all of their
effort into studying by appropriately balancing the weight
placed on the two pieces of graded work.

Stating the main result. In order to state the main result,
we must formalize the notion of linear mechanisms.

Definition 2. A linear mechanism M : R
n → R is the

mapping M(F ) = β�F =
∑n

i=1 βiFi for some β ∈ R
n

such that βi ≥ 0 for all i ∈ {1, ..., n} and
∑n

i=1 βi > 0.

We rule out the mechanism in which all βi are equal to 0,
as it is not a monotone mechanism.

We will say that a mechanism M incentivizes effort pro-
file x if x is an optimal response to M . Our main result is
the following theorem, characterizing when a given effort
profile can be incentivized.

Theorem 3. For an effort graph G and an effort profile x,
let S(x) = {j | xj > 0}, i.e., the support of x. Then, the
following are equivalent:

1. There exists a linear mechanism that incentivizes x.
2. There exists a monotone mechanism that incentivizes x.
3. For all x′ such that S(x′) ⊆ S(x), there exists a linear

mechanism that incentivizes x.

Furthermore, there is a polynomial time algorithm that de-
cides the incentivizability of x and provides β to incentivize
x whenever such β exists.

When there exists a monotone mechanism incentivizing
x, we’ll call both x and S(x) incentivizable. When x is not
incentivizable, this algorithm finds a succinct “obstacle” to
S(x), meaning no x′ such that S(x′) = S(x) is incentiviz-
able. The following corollary is a direct consequence of The-
orem 3.

Corollary 4. For a set S ⊆ {1, 2, . . . ,m}, some x such that
S(x) = S is incentivizable if and only if all x with S(x) = S
are incentivizable.

As a result, whether or not an effort profile is incentiviz-
able depends only on its support, or the set of actions we
wish to incentivize.

Conclusion

Although Transparency is widely viewed as a desirable
property of automated decision-making systems, one might
worry that transparency makes decision-making suscepti-
ble to strategic behavior. In this work, we have developed
a framework for reasoning about how agents may respond
strategically to a publicly-known evaluation rule, showing
that a simple class of linear mechanisms suffices to incen-
tivize desired behavior.

It is interesting to consider connections between our ap-
proach and existing work on strategic behavior in classifi-
cation. In the computer science literature, concerns about
on-line spam motivated models of adversarial classification
(Dalvi et al. 2004); recent formulations have considered a
broader range of settings in which an evaluator publishes a
rule and an agent then manipulates their features (Hardt et
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al. 2016; Brückner and Scheffer 2011; Dong et al. 2018;
Milli et al. 2019; Hu, Immorlica, and Vaughan 2019). In
contrast with our work, these papers tend to assume that
all strategic effort from the agent are undesirable. Work on
strategyproof linear regression (Dekel, Fischer, and Procac-
cia 2010; Chen et al. 2018; Cummings, Ioannidis, and Ligett
2015) considers a different model, in which strategic agents
submit (x, y) pairs, and an evaluator seeks a regression func-
tion that incentives truthful reporting of y.

There are also interesting potential links to the large litera-
ture on principal-agent problems in economics (Arrow 1963;
Pauly 1968; Arrow 1968; Cheung 1969; Kerr 1975; Stiglitz
1974; Jensen and Meckling 1976; Ross 1973), including the
notion of moral hazard. In these models, a principal wants to
incentive agent actions that they cannot directly observe. In-
surance markets are the canonical examples: agents reduce
their liability by purchasing insurance, leading them to act
more recklessly. As in our model, the agent’s actions are of-
ten formalized as “effort variables” which, at some cost to
the agent, increase the agent’s level of “production” (Laffont
and Martimort 2009). Qualitatively, there are two primary
differences between these models and ours: in the insurance
setting, the agent’s utility is an exogenous function based
on aversion to risk; and the principal and agent generally
have aligned incentives. Despite these differences, it would
be interesting to explore whether there may be insights that
transfer between our model and this body of results in eco-
nomics.
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