
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Identifiability from a Combination of Observations and Experiments

Sanghack Lee, Juan D. Correa, Elias Bareinboim
Causal Artificial Intelligence Laboratory

Department of Computer Science
Columbia University, USA

{sl4712, j.d.correa}@columbia.edu, eb@cs.columbia.edu

Abstract

We study the problem of causal identification from an arbi-
trary collection of observational and experimental distribu-
tions, and substantive knowledge about the phenomenon un-
der investigation, which usually comes in the form of a causal
graph. We call this problem g-identifiability, or gID for short.
In this paper, we introduce a general strategy to prove non-
gID based on thickets and hedgelets, which leads to a neces-
sary and sufficient graphical condition for the corresponding
decision problem. We further develop a procedure for system-
atically computing the target effect, and prove that it is sound
and complete for gID instances. In other words, the failure
of the algorithm in returning an expression implies that the
target effect is not computable from the available distribu-
tions. Finally, as a corollary of these results, we show that
do-calculus is complete for the task of g-identifiability.

1 Introduction

One of the main tasks in the empirical sciences and data-
driven disciplines is to infer cause and effect relationships
from a combination of observations, experiments, and sub-
stantive knowledge about the phenomenon under investiga-
tion. Causal relations are deemed desirable and valuable for
constructing explanations and for contemplating novel in-
terventions that were never experienced before (Pearl 2000;
Spirtes, Glymour, and Scheines 2001; Bareinboim and Pearl
2016; Pearl and Mackenzie 2018).

In one line of investigation, this task is formalized through
the question of whether the effect that an intervention on
a set of variables X will have on another set of outcome
variables Y, denoted by Px(y), can be uniquely computed
from the probability distribution P over the observed vari-
ables V and a causal diagram G. This is known as the prob-
lem of identification (Pearl 1995; 2000; Bareinboim and
Pearl 2016), and has received great attention in the litera-
ture, starting with a number of sufficient conditions (Spirtes,
Glymour, and Scheines 2001; Galles and Pearl 1995; Pearl
and Robins 1995), and culminating in a complete graphi-
cal and algorithmic characterization (Tian and Pearl 2002;
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Figure 1: Px1,x2
(y) can be identified from Px1

(V) and
Px2

(V) in (a) and (b), but not in (c) and (d). Differences
among the causal diagrams are highlighted in red.

Shpitser and Pearl 2006; Huang and Valtorta 2006). De-
spite the generality of such results, it’s the case that in some
real-world applications the quantity Px(y) is not identifiable
from the observational data and the causal diagram. On an
alternative thread in the literature, causal effects (Px(y)) are
obtained directly through controlled experimentation (Fisher
1951). In the biomedical sciences, for instance, considerable
resources are spent every year by the FDA, the NIH, and
others, in supporting large-scale, systematic, and controlled
experimentation, which comes under the rubric of Random-
ized Controlled Trials. Despite all the inferential power en-
tailed by this approach, there are real-world settings where
controlling the variables in X is not feasible.

In this paper, we note that these two approaches can be
seen as extremes in a spectrum of possible research de-
signs, which can be combined to solve natural, albeit non-
trivial, causal inference problems. This generalized setting
has been investigated in the literature under the rubric of z-
identifiability (zID, for short) (Bareinboim and Pearl 2012).
Unlike zID, gID does not assume the availability of an obser-
vational distribution. Furthermore, zID assumed that exper-
iments on every possible subset of Z ⊂ V are available, yet
in many practical situations, however, it may be unfeasible
to intervene simultaneously on some set of variables, while
other set may not be intervened on separately. gID relaxes
this assumption by considering an arbitrary combination of
observational or experimental distributions over V in iden-
tifying an unconditional causal quantities.

Consider the causal graphs in Fig. 1, where Y represents
cardiovascular disease, W blood pressure, X1 taking an an-
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tihypertensive drug, and X2 the use of an anti-diabetic drug.
While it’s currently understood that diabetes and hyperten-
sion do not affect each other (no direct link between them),
it’s common for patients with type 2 diabetes to be suscep-
tible to hypertension, since both conditions share important
confounding factors (graphically encoded through the bidi-
rected arrows) (Ferrannini and Cushman 2012). The goal of
the analysis is to assess the effect of prescribing a treatment
for both conditions on the risk of developing cardiovascular
diseases, Px1,x2(y). There are two RCTs that separately con-
trol for X1 and X2, which means that Px1(V) and Px2(V)
are available. It turns out that for the models in Figs. 1a, b,
Px1,x2

(y) =
∑

w Px2
(y|w)Px1

(w), which means that the
experimental studies suffice to identify the joint effect. The
same effect is not identifiable in Figs. 1c, d.

In this extended abstract, we summarize our approach in
(Lee, Correa, and Bareinboim 2019) where the contributions
in the paper are as follows: (i) We prove a necessary and
sufficient graphical condition for gID, which follows from
two new graphical constructs called hedgelets and thick-
ets. These structures constitute flexible and general building
blocks that are helpful to understand and characterize gen-
eral identification problems; (ii) Leveraging these results, we
develop a sound and complete algorithm that returns any
expression derivable from an arbitrary collection of obser-
vations and experiments. As a corollary, we prove that do-
calculus is complete for g-identification.

2 Preliminaries

We denote variables by capital letters, X , and values by
small letters, x. Bold letters, X or x, represent sets of vari-
ables or values. The domain of a variable X is denoted by
XX . Two values x and z are said to be consistent if they
share the common values for X∩Z. We also denote by x\Z
the value of X\Z consistent with x. We assume that domain
of every variable is finite.

Our analysis heavily relies on causal graphs, which we
often assign a calligraphic letter, e.g., G, F , or H. We de-
note by V(H) the set of vertices (i.e., variables) in a graph
H. A vertex-induced subgraph is denoted by brackets, e.g.,
G[W], which includes W and the edges among its ele-
ments. We define G \ X as G[V(G) \ X]. A root set of
a graph is a set of variables that does not have outgoing
edges. We use kinship notation for graphical relationships
such as parents, descendants, and ancestors of a set of vari-
ables. For example, the set of parents of X in G is denoted
by pa(X)G :=

⋃
X∈X pa(X)G . Similarly, we define de, and

an. Written as Pa, De, and An (i.e., capitalized), the argu-
ment is included as well, e.g., De(X)G := de(X)G ∪X.

We use Structural Causal Models (SCMs) (Pearl 2000)
as our basic semantical framework. A SCMM is a 4-tuple
〈U,V,F, P (U)〉, where U is a set of exogenous variables;
V is a set of endogenous variables; F is a set of functions
{fV }V ∈V, which determines the value of a variable, e.g.,
v ← fV (paV ,u

V ) is a function with PAV ⊆ V \ {V }
and UV ⊆ U; and P (U) is a joint probability distribution
over U. A SCMM induces a causal graph G (also called a
semi-Markovian graph) where V is a set of vertices, directed

edges are formed satisfying PAV = pa(V )G , and each bidi-
rected edge corresponds to an unobserved confounder be-
tween two variables, that is, Vi ↔ Vj if Ui ∩Uj 
= ∅. Inter-
ventions are defined through an operator called do(X = x),
which sets the intervened variables X to specific values
x ∈ XX. Given a model M, an intervention do(X = x)
induces a submodel Mx, where fX of F is replaced by
fX = x for every X ∈ X where x is consistent with x.
This submodelMx induces a causal graph GX, which reads
as G with edges onto any of X removed.

We now revisit some key notions for deciding identifia-
bility developed in the context of non-experimental settings.
First, we define a special type of cluster of variables called
confounded components (Tian and Pearl 2002).

Definition 1 (C-component). Let G be a semi-Markovian
graph such that a subset of its bidirected arcs forms a span-
ning tree over all vertices in G. Then G is a c-component.

Given a semi-Markovian graph G over a set of variables
V, there exists a unique partition such that each subgraph
is a maximal c-component. We denote by C(G) the set of c-
components that partitions the vertices in G. Armed with this
definition, we build towards the hedge with the following
notion adapted from (Shpitser and Pearl 2006).

Definition 2 (C-forest). A semi-Markovian graph G with
root set R is said to be an R-rooted c-forest if G is a c-
component with a minimal number of edges.

The minimality with respect to the number of edges guar-
antees that every vertex not in the root set of a c-forest has
one child and its bidirected edges form exactly a spanning
tree. We are now ready to define a hedge as follows.

Definition 3 (Hedge). A hedge is a pair of R-rooted c-
forests 〈F ,F ′〉 such that F ′ ⊆ F .

To realize the connection between definitions, note that
given disjoint sets X,Y ⊂ V, if R ⊆ An(Y)GX

, F ∩X 
=
∅, and F ′ ∩X = ∅, Def. 3 reduces to the original definition.
The existence of such structure precludes the identifiability
of Px(y) from P (V) (Shpitser and Pearl 2006). In the new
theoretical treatment pursued in (Lee, Correa, and Barein-
boim 2019), a hedge as a graphical structure itself is sepa-
rated from its use as a witness of the non-identifiability of
a specific causal distribution. We say that the a hedge struc-
ture 〈F ,F ′〉 is formed for Px(y) in G whenever referring to
the original semantics, i.e., regarding the non-identifiability
of Px(y). Further, we’ll distinguish two parts of a hedge
〈F ,F ′〉: the ‘top’ part, denoted by F ′′ = F \ V(F ′), and
the ‘bottom’ part, which is F ′. When the top is empty (i.e.,
F = F ′), we will call this hedge degenerate.

3 G-Identifiability

We first introduce a new task that formalizes and generalizes
the identifiability and z-identifiability settings by allowing a
more flexible input consisting of any combination of obser-
vational and experimental distributions.

Definition 4 (g-Identifiability). Let X, Y be disjoint sets
of variables, Z = {Zi}mi=1 be a collection of sets of vari-
ables, and let G be a causal diagram. Px(y) is said to be
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Figure 2: Hedgelet decomposition of hedges and a thicket
(color coded in blue and red with purple for shared ele-
ments). Each of (a) and (b) is a hedge formed for Pr(x) or a
thicket with respect to Z = {{X1}, {X2}} while (c) is not a
hedge but a thicket.

g-identifiable from Z in G, if Px(y) is uniquely computable
from distributions {P (V | do(z))}Z∈Z,z∈XZ

in any causal
model which induces G.

A traditional and pervasive assumption made throughout
the identification literature is that a probability distribution
describing the natural state of the system is available, that is,
P (V). In the setting defined above, such distribution is not
a priori required unless the empty set is explicitly included
in Z. The following statement can be shown based on the
definition of g-identifiability:
Lemma 1. Let X, Y be disjoint sets of variables, Z =
{Zi}mi=1 be a collection of sets of variables, and let G be
a causal diagram. Px(y) is not g-identifiable from Z in G if
there exist two causal modelsM1 andM2 compatible with
G such that P 1

z (v) = P 2
z (v) for all Z ∈ Z, z ∈ XZ, but

P 1
x(y) 
= P 2

x(y).
Even though this statement formally characterizes non-g-

identifiability of a certain data collection, it does not provide
any insight on how to determine if such pair of models ex-
ists, or how to construct them when a given instance is not
g-identifiable.

3.1 Hedgelets and Thickets

When considering multiple experimental distributions as in-
puts, a graphical structure that might be able to witness the
non-g-identifiability has to account for all such experiments.
To deal with the complexity added by a broader input, we
introduce hedgelets, a unique decomposition of a hedge. We
define how to obtain the set of hedgelets associated with any
given hedge.
Definition 5 (hedgelet decomposition). The hedgelet de-
composition of a hedge 〈F ,F ′〉 is the collection of hedgelets
{F(W)}W∈C(F ′′) where each hedgelet F(W) is a sub-
graph ofF made of (i)F [V(F ′)∪W] and (ii)F [De(W)F ]
without bidirected edges.

Let HF = {F(W)}W∈C(F ′′) be the set of hedgelets
of 〈F ,F ′〉. For a degenerate hedge, HF contains a single
hedgelet F(∅) = F , which we call a degenerate hedgelet.
Given a non-degenerate hedge, for every hedgelet H in it,
there exists at least one directed edge, and exactly one bidi-
rected edge between H′ and H′′ by definition. For a simple
example, see Fig. 2a, a hedge 〈F ,F ′〉 for Px(r). This hedge
can be decomposed into two hedgelets F({X1}) in blue

(i.e., G[{X1, R}]) and F({X2}) in red (i.e., G[{X2, R}]).
Fig. 2b is a hedge 〈F ,F ′〉 for Px(r), which can be similarly
decomposed into two hedgelets F({X1}) and F({X2}).

Now, we will describe a graphical structure relative to the
available input distributions entailed by Z, that precludes the
g-identifiability of a causal effect Px(y) in G.
Definition 6 (Thicket). Let R be a non-empty set of vari-
ables and Z be a collection of sets of variables in G. A thicket
T ⊆ G is an R-rooted c-component consisting of a minimal
c-component over R and hedges

FT = {〈FZ, T [R]〉 | FZ ⊆ G \ Z,Z ∩R = ∅}Z∈Z.

Let X, Y be disjoint sets of variables in G. A thicket T is
said to be formed for Px(y) in G with respect to Z if R ⊆
An(Y)GX

and every hedgelet of each hedge 〈FZ, T [R]〉 in-
tersects with X.

If Z ∩ R = ∅ for some Z ∈ Z, a thicket can be viewed
as a superimposition of hedges where each of them comes
from a subgraph of the thicket obtained by excluding an
available experiment that was not performed on any of R.
Otherwise if Z ∩R 
= ∅ for every Z ∈ Z, that is, every ex-
periment disrupts R, T will simply be a spanning tree over
R with bidirected arcs. Whenever this is the case, we call
this thicket degenerate, which consists of a degenerate hedge
with a single degenerate hedgelet. To illustrate see Figs. 2a
to 2c. Each causal diagram is a thicket for Px(r) with re-
spect to Z = {{X1}, {X2}} with two hedges in red and
blue where each hedge itself is a hedgelet. We refer readers
to the original paper for more examples.

3.2 A Graphical Condition for
Non-g-identifiability

We consider constructing two models agreeing in the avail-
able distributions but yielding a different result for the causal
effect (Lemma 1). The key idea is to parametrize the mod-
els such that the distribution of the variables in R remains
the same as long as there is one non-intervened hedgelet.
From the definition of Thicket, it can be inferred that no in-
tervention on Z ∈ Z affects all hedgelets, hence they are
all affected by the intervention on X. Nevertheless, this is
difficult to achieve for each configuration u, since each of
R ∈ R is determined independently (i.e., structural). In-
stead, our models behave differently with respect to a spe-
cific value u but induce the same distribution over R when
averaged over U as long as there exists a non-intervened
hedgelet. We proved the following theorem by implement-
ing the idea to construct two such models:
Theorem 1. If there exists a thicket T for Px(y) in G with
respect to Z, then, Px(y) is not g-identifiable in G.

4 A Sound and Complete Algorithm for

g-Identifiability

Building on the graphical characterization of non-gID, in
this section, we develop an algorithm for g-identifiability
called GID (Alg. 1). For a given causal query, GID deter-
mines whether it’s g-identifiable, and if so, it outputs a for-
mula expressing the target effect in terms of the available
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Algorithm 1 GID: a complete algorithm for g-identifiability
1: function GID(y,x,G,Z)

Input: y, x: value assignments, G: causal diagram, Z: a col-
lection of available experiments
Output: an estimand computing Px(y) with {Pz}Z∈Z,z∈XZ .

2: if ∃Z∈ZX = Z ∩V then
return Pz\V,x(y)

3: if V �= An(Y)G then
return GID(y,x ∩An(Y)G ,G[An(Y)G ],Z)

4: if (W← (V \X) \An(Y)G
X
) �= ∅ then

return GID(y,x ∪w,G,Z)
5: if |C(G \X)| > 1 then

return
∑

v\(y∪x)

∏
S∈C(G\X) GID(s,v \ s,G,Z)

6: for Z ∈ Z such that Z ∩V ⊆ X do
return SUB-ID(y,x\Z, P(z\V),x∩Z,G \(Z∩X)) if not

none

7: throw fail

distributions. The design of GID shares some principles es-
tablished by previous identifiability algorithms. Still, in our
case, the identification process is decomposed into two parts:
pre- and post-activation of an available distribution, where
SUB-ID1 takes care of a (classic) identification task for each
factored query with a fixed distribution treated as observa-
tional, relative to the call-specific graph.

The algorithm takes a query Px(y), the causal graph G,
and available experiments Z as inputs. During the process,
the query and the causal graph may be transformed when
necessary, and broken down into smaller sub-problems. Ac-
cordingly, the parameters y, x, and G are local to each call,
while Z is preserved throughout recursive calls. The given G
is modified only through Line 3, since experiments on vari-
ables that are not ancestors of Y have no effect on it, we
only need to pay attention to experiments on ancestors of
Y. Line 2 utilizes any matching experiment whenever pos-
sible. As mentioned above, Z outside the current scope can
be of any value. Lines 4 and 5 modify and factorize the given
query, respectively. At Line 6, given a factorized query, the
algorithm examines whether an available distribution might
be useful to estimate it, and delegates the identification to a
subroutine. In the original paper, we proved its completeness
for g-identifiability by showing the existence of a thicket
whenever the algorithm fails on a given query. Further, as
a corollary, we showed that do-calculus is complete for the
same problem by translating the algorithm to a series of ap-
plication of do-calculus.

5 Conclusion

We studied the identification of causal effects from arbi-
trary combinations of observational and experimental dis-
tributions. This problem has been called g-identifiability, or
gID for short. We developed a general algorithm for solving
gID and proved its completeness. We introduced new ma-
chinery to better understand and more precisely character-

1It is a shortened ID algorithm (Shpitser and Pearl 2006), which
returns none instead of throwing failure when a delegated query is
not identified.

ize non-trivial forbidden structures that preclude gID, which
can be seen as instances of hedgelets and thickets. Finally,
as a corollary of these results, we proved that do-calculus is
complete for the task of g-identifiability.
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