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Abstract

The St. Petersburg paradox is a centuries-old puzzle con-
cerning a lottery with infinite expected payoff on which peo-
ple are only willing to pay a small amount to play. Despite
many attempts and several proposals, no generally-accepted
resolution is yet at hand. In a recent paper, we show that
this paradox can be understood in terms of the mind opti-
mally using its limited computational resources (Nobande-
gani et al. 2019). Specifically, we show that the St. Peters-
burg paradox can be accounted for by a variant of norma-
tive expected-utility valuation which acknowledges cognitive
limitations: sample-based expected utility (Nobandegani et
al. 2018). SbEU provides a unified, algorithmic explanation
of major experimental findings on this paradox. We conclude
by discussing the implications of our work for algorithmically
understanding human cognition and for developing human-
like artificial intelligence.

Originally proposed in 1713 by Nicolas Bernoulli, the
St. Petersburg paradox is a famous economic puzzle con-
cerning a risky gamble on which people are invited to place
a bid. The gamble goes as follows: The house offers to flip a
coin until it comes up heads; the house pays $1 if heads ap-
pears on the first trial (aka initial seed); otherwise the payoff
doubles each time tails appears, with this compounding stop-
ping and payment being given at the first heads. The St. Pe-
tersburg gamble is outlined in Table 1.

Despite the expected value (EV) of the St. Petersburg
gamble being infinite (see Table 1), people are typically will-
ing to place only small bids on this gamble (e.g., Bottom,
Bontempo, and Holtgrave 1989; Rivero, Holtgrave, Bon-
tempo, and Bottom 1990; Kroll and Vogt 2009; Cox, Sadiraj,
and Vogt 2009; Hayden and Platt 2009). Under the norma-
tive stance that people should prefer gambles with higher
EVs, this paradox calls human rationality into question:
Given that the EV of the gamble is infinite, people should
therefore be willing to place arbitrarily large bids on this
gamble, but this is far from what experimental evidence in-
dicates.

In a recent paper, we show that the St. Petersburg paradox
can be understood in terms of the mind optimally using its
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Table 1: The St. Petersburg gamble. A fair coin is flipped
until the first heads appears. On the nth trial of the gamble,
corresponding to the event of having the first heads appear
on the nth coin flip, the house pays $2(n−1) to the bidder
and the game ends. The expected value (EV) of this gamble
is infinite: EV = $1×( 12 )+$2×( 14 )+$4×( 18 )+$8×( 1

16 )+

$16× ( 1
32 ) + . . . = $ 1

2 +$ 1
2 +$ 1

2 +$ 1
2 +$ 1

2 + . . . = +∞.

limited computational resources (Nobandegani et al. 2019).
Specifically, we show that this paradox can be accounted for
by a variant of normative expected-utility valuation which
acknowledges cognitive limitations: sample-based expected
utility (SbEU, Nobandegani et al. 2018). Importantly, SbEU
adheres to a new mode of inquiry for studying cognition at
the algorithmic level of analysis, called Rational Minimal-
ist Program (RMP, Nobandegani 2017). RMP holds that,
in pursuing optimality, the mind strives to use the mini-
mal amounts of resources, i.e., to take the most economi-
cal route to its goal. As such, SbEU has a firm rational ba-
sis, which acknowledges the cognitive limitations people are
faced with.

Our efforts are simultaneously guided by two well-
supported observations about judgment and decision-
making under risk: (1) mounting evidence suggests that peo-
ple often use very few samples in probabilistic judgments
and reasoning (Vul et al. 2014; Battaglia et al. 2013; Lake
et al. 2017; Gershman, Horvitz, and Tenenbaum 2015; Her-
twig and Pleskac 2010; Griffiths et al. 2012; Bonawitz et
al. 2014; Lieder et al. 2018a), and (2) people overestimate
the probability of extreme events in their judgments (Tver-
sky and Kahneman 1973; Ungemach, Chater, and Stewart
2009; Burns, Chiu, and Wu 2010; Barberis 2013; Lieder
et al. 2018b). Unlike SbEU, previous explanations of the
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Figure 1: SbEU (Nobandegani et al. 2018) simulating major experimental findings on the St. Petersburg paradox. (a) Boxplots
of SbEU bid predictions are depicted. SbEU accounts for the experimental finding of Hayden and Platt (2009) showing that
bids are only weakly affected by truncating the game. Hayden and Platt truncated the game at 3 flips (maximum payoff: $8),
5 flips (maximum payoff: $32), 8 flips (maximum payoff: $256), 10 flips (maximum payoff: $1024), and 15 flips (maximum
payoff: $32, 768). Black dots show model mean bid predictions. On each box, the central red mark indicates the median, and
the bottom and top edges of the box indicate the 25th and 75th percentiles of the data, respectively. On each box, the whisker
extends to the most extreme data points not considered outliers. Outliers are not shown. (b) SbEU qualitatively simulates the
experimental finding of Hayden and Platt (2009) showing that people are willing to place higher bids for a larger number of
game repetitions (Pearson r = .9998, Kendall τ = 1, Spearman ρ = 1, Ps < .001). (c) Boxplots of SbEU bid predictions are
depicted. SbEU accounts for the experimental findings of Hayden and Platt (2009) showing that (1) people’s bids are typically
lower than twice the smallest payoff (i.e., initial seed) in the St. Petersburg gamble, and (2) bids depend linearly on the initial
seed of the St. Petersburg gamble. The boldfaced blue solid line depicts y = 2x.

St. Petersburg paradox fail to respect at least one of these
observations.

1 Sample-based Expected Utility Model

SbEU is a rational process model of risky choice that posits
that agents rationally adapt their strategies depending on the
amount of time available for decision-making (Nobandegani
et al. 2018). Concretely, SbEU assumes that an agent esti-
mates expected utility

E[u(o)] =

∫
p(o)u(o)do, (1)

using self-normalized importance sampling (Hammersley
and Handscomb 1964; Geweke 1989), with its importance
distribution q∗ aiming to optimally minimize mean-squared
error (MSE):

Ê =
1∑s

j=1 wj

s∑

i=1

wiu(oi), ∀i : oi ∼ q∗, wi =
p(oi)

q∗(oi)
,

q∗(o) ∝ p(o)|u(o)|
√

1 + |u(o)|√s

|u(o)|√s
. (2)

MSE is a standard normative measure of the quality of an
estimator, and is widely used in machine learning and math-
ematical statistics (Poor 2013). In Eqs. (1-2), o denotes an
outcome of a risky gamble, p(o) the objective probability
of outcome o, u(o) the subjective utility of outcome o, Ê

the importance-sampling estimate of expected utility given
in Eq. (1), q∗ the importance-sampling distribution, oi an
outcome randomly sampled from q∗, and s the number of
samples drawn from q∗.

Recently, Nobandegani et al. (2018) showed that SbEU
simulates availability bias, the tendency to overestimate the
probability of events that easily come to mind (Tversky and
Kahneman 1973), and the well-known fourfold pattern of
risk preferences in outcome probability (Tversky and Kah-
neman 1992) and in outcome magnitude (Markowitz 1952;
Scholten and Read 2014). Notably, SbEU is the first ratio-
nal process model to score near-perfectly in optimality, eco-
nomical use of limited cognitive resources, and robustness,
all at the same time (Nobandegani et al. 2018; Nobandegani
et al. 2019a).

2 Simulation Results

In this section, we show that SbEU provides a unified, al-
gorithmic explanation of four major experimental findings
on the St. Petersburg paradox: (1) Bids are only weakly af-
fected by truncating the game (e.g., Cox et al. 2007; Neuge-
bauer 2010; Hayden and Platt 2009), (2) Bids are strongly
increased by repeating the game (Neugebauer 2010; Hay-
den and Platt 2009), (3) Bids are typically lower than twice
the smallest payoff (Hayden and Platt 2009), and (4) Bids
depend linearly on the initial seed of the game (Hayden and
Platt 2009).

As shown in Fig. 1, SbEU accounts for these four exper-
imental findings. In Fig. 1, we simulate N = 1000 partic-
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ipants, with s = 1 (see Eq. 2), and use the utility function
∀x ∈ R

≥s0 u(x) = (x − s0)
0.35 + s0, with s0 denoting

the initial seed of the St. Petersburg gamble. Among plausi-
ble utility functions, this utility function stands as a rational
choice as it grants that every possible outcome of the St. Pe-
tersburg gamble is worth at least s0 dollars (thus the whole
game is subjectively worth at least s0 dollars), with the util-
ity of higher payoffs of the gamble increasing sublinearly.

3 General Discussion
The St. Petersburg paradox stands among the oldest philo-
sophical puzzles of human decision-making. In this work,
we provide an algorithmic-level account of major experi-
mental findings on this paradox. Specifically, we show that
a single parameterization of Nobandegani et al.’s (2018)
model, SbEU, provides a unified process-level explanation
of why (1) bids are only weakly affected by truncating the
game, (2) people are willing to place higher bids for a larger
number of game repetitions, (3) bids are typically lower that
twice the smallest payoff of the game (aka initial seed), and
(4) bids depend linearly on the initial seed of the game. As
such, Items (1-4) can be understood as optimal behavior sub-
ject to cognitive limitations.

Recent work shows that SbEU provides a resource-
rational mechanistic account of (ostensibly irrational) co-
operation in one-shot Prisoner’s Dilemma games, thus suc-
cessfully bridging between game-theoretic decision-making
and risky decision-making (Nobandegani, da Silva Castan-
heira, Shultz, and Otto 2019b). SbEU also accounts for vio-
lation of betweenness in risky choice (Nobandegani, da Silva
Castanheira, Shultz, and Otto 2019c) and provides a ratio-
nal process-level explanation of several contextual effects
in risky and value-based decision-making (da Silva Castan-
heira, Nobandegani, Shultz, and Otto 2019; Nobandegani
et al. 2019c). There is also experimental confirmation of a
counterintuitive prediction of SbEU: Deliberation leads peo-
ple to move from one well-known bias, framing effect, to
another well-known bias, the fourfold pattern of risk prefer-
ences (da Silva Castanheira, Nobandegani, and Otto 2019).
Importantly, SbEU is the first, and thus far the only, rational
process model that bridges between risky, value-based, and
game-theoretic decision-making.

SbEU adheres to a new mode of inquiry for studying cog-
nition at the algorithmic level of analysis: Rational Mini-
malist Program (RMP, Nobandegani 2017). RMP maintains
that, in pursuing optimality, the mind strives to use the min-
imal amounts of resources, i.e., to take the most econom-
ical route to its goal. In addition to the realm of human
decision-making, recent work has shown that RMP-inspired
models successfully simulate important aspects of a wide
range of cognitive phenomena, e.g., developmental shift in
infant information processing (Nobandegani 2017, Chap. 2;
Nobandegani and Psaromiligkos 2015), causal reasoning
(Nobandegani 2017, Chap. 3), action selection in causal do-
mains (Nobandegani 2017, Chap. 4), probabilistic indepen-
dence judgment (Nobandegani 2017, Chap. 5), and human
discriminative and generative abilities (Nobandegani 2017,
Chap. 6). Relatedly, RMP bridges between computer science
and cognitive science by making contact with a range of core

topics in computer science, e.g., design and analysis of al-
gorithms, data structures, parameterized complexity theory,
and distributed computing (Nobandegani 2017, Chap. 7).

Accordingly, a systematic pursuit of RMP in domains that
are of great importance for both human cognition and AI
would be an effective way toward deepening our understand-
ing of the algorithmic foundation of human cognition and
developing human-like AI systems. Future work should in-
vestigate this possibility.

The median explanation of Hayden and Platt (2009), that
people report the median (and not the mean) of the distribu-
tion associated with the St. Petersburg gamble, is currently
the only model which can simultaneously account for the
four major experimental findings on the St. Petersburg gam-
ble (see Sec. 2). In sharp contrast to the competing median
explanation of Hayden and Platt (2009) that is too specific
to the St. Petersburg paradox, our work provides a ratio-
nal process model of this paradox that additionally accounts
for several well-known effects in risky, value-based, and
game-theoretic decision-making (Nobandegani et al. 2018;
da Silva Castanheira et al. 2019; Nobandegani et al. 2019b;
Nobandegani et al. 2019c), and is fully in line with the much
broader process-level understanding of human probabilistic
judgment and reasoning based on sampling (e.g., Stewart,
Chater, and Brown 2006; Sanborn and Chater 2016).

There have been several recent studies attempting to show
that many well-known (purportedly irrational) behavioral
effects and cognitive biases can be understood as optimal
behavior subject to computational and cognitive limitations
(see Lieder and Griffiths 2018, for a review). Our work con-
tributes to this line of research by showing that SbEU, a ra-
tional model of risky choice that adheres to RMP, provides
a rational process-level account of a centuries-old puzzle
concerning human decision-making. Future work should in-
vestigate whether other long-standing paradoxes of human
decision-making, e.g., the Ellsberg paradox, could be also
understood as optimal behavior subject to cognitive limita-
tions.
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