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Abstract

The field of artificial intelligence has experienced a dramatic
methodological shift towards large neural networks trained
on plentiful data. This shift has been fueled by recent ad-
vances in hardware and techniques enabling remarkable lev-
els of computation, resulting in impressive advances in AI
across many applications. However, the massive computation
required to obtain these exciting results is costly both finan-
cially, due to the price of specialized hardware and electricity
or cloud compute time, and to the environment, as a result of
non-renewable energy used to fuel modern tensor processing
hardware. In a paper published this year at ACL, we brought
this issue to the attention of NLP researchers by quantifying
the approximate financial and environmental costs of training
and tuning neural network models for NLP (Strubell, Ganesh,
and McCallum 2019). In this extended abstract, we briefly
summarize our findings in NLP, incorporating updated es-
timates and broader information from recent related publi-
cations, and provide actionable recommendations to reduce
costs and improve equity in the machine learning and artifi-
cial intelligence community.

Introduction

Recent advances in methodology and computational hard-
ware have enabled exciting advances across many applica-
tion areas of artificial intelligence, such as game playing
(Silver et al. 2017; OpenAI 2018), natural language process-
ing (Devlin et al. 2019; Aharoni, Johnson, and Firat 2019),
computer vision (Chollet 2017; Brock, Donahue, and Si-
monyan 2019) and robotics (Agostinelli et al. 2019). Many
of these impressive results depend on training large models
on considerable quantities of data, incurring substantial fi-
nancial and environmental costs due to the energy required
to perform this computation. Whereas a decade ago most AI
research could be performed on a commodity desktop com-
puter, modern deep learning research increasingly requires
access to a cluster containing specialized tensor processing
hardware such as GPUs and TPUs, and obtaining state-of-
the-art performance on common benchmarks requires days
or weeks of training on tens or hundreds of these nodes.
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Figure 1: Training time (petaflop/s-day; log scale) of no-
table AI models from 2012–2018. Compute used to train the
largest models continues to grow exponentially, exceeding
the rate of Moore’s Law by a wide margin. Figure and anal-
ysis from Amodei and Hernandez (2018).

In this article, we summarize previous work character-
izing the energy required to train and develop recent deep
learning models for NLP, and share conclusions and recom-
mendations inspired by those results that apply broadly to
artificial intelligence researchers and practitioners.

Case study 1: Training

To quantify the computational and environmental cost of
training deep neural network models for NLP, we first per-
form an analysis of the energy required to train four pop-
ular off-the-shelf NLP models. We do this by training the
models described below using the default settings provided,
and sample power consumption during training using read-
ily available command-line tools. We then estimate the time
to train to convergence using wall-clock training times and
hardware reported in the original papers, and combine train-
ing time with power draw as described under Methods be-
low to estimate total energy consumption and corresponding
carbon footprint during training.
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Consumer Renewable energy consumption
China 22%
Germany 40%
United States 17%
Amazon AWS 50%
Google† 100%
Microsoft 50%

Table 1: Percent renewable energy (e.g. hydroelectric, solar,
wind) for the top 3 cloud compute providers compared to
the United States, China, and Germany. Country percentages
taken from Strubell, Ganesh, and McCallum (2019), while
corporate numbers have been updated to the latest available
information. † indicates that this includes purchases of re-
newable used to offset non-renewable energy used at loca-
tions and times where renewable energy is unavailable.

Models

We analyze four representative models in this case study,
which are described in more detail in (Strubell, Ganesh, and
McCallum 2019), as well as in the original papers.

Tensor2Tensor (T2T) introduced multi-head self-
attention for machine translation (Vaswani et al. 2017). The
T2Tbase model comprises 65M parameters and the T2Tbig

model contains 213M parameters. We also estimate the cost
of training T2T using neural architecture search (NAS; So,
Liang, and Le 2019), a scaled up tuning procedure that
consists of training many model architecture variants to find
one that performs best on held-out data.

ELMo is a large language model based on stacked bidi-
rectional LSTMs (Peters et al. 2018). Replacing context-
independent pre-trained word embeddings with ELMo con-
textualized word representations has been shown to increase
performance on downstream tasks such as named entity
recognition, semantic role labeling, and coreference.

BERT is another large language model, based on multi-
head self-attention and trained with a different objective
(Devlin et al. 2019). BERT contextualized word represen-
tations substantially improve accuracy on tasks requiring
sentence-level representations such as question answering
and natural language inference. BERTbase has 110M pa-
rameters and BERTlarge has 340M parameters. We fo-
cus analysis here on BERTbase as we were encountered
memory limitations with our hardware when trying to train
BERTlarge with the same settings as reported.

GPT-2 is also a large language model using multi-head
self-attention, consisting of more parameters and trained for
longer on more data than ELMo or BERT (Radford et al.
2019). The large GPT-2 model has 1542M parameters.

Method

We calculate the power consumption in kilowatt-hours
(kWh) with the following methodology. Let pc be the av-
erage power draw (watts) from all CPUs during training, let
pr be the average power draw from all DRAM (main mem-
ory), let pg be the average power draw of a GPU during
training, and let g be the number of GPUs used to train.

We estimate total power consumption as the sum of GPU,
CPU and DRAM draw, then multiply this by Power Usage
Effectiveness (PUE), which accounts for the additional en-
ergy required to support the compute infrastructure (mainly
cooling). We use a PUE coefficient of 1.58, the 2018 global
average for data centers1 (Ascierto 2018). It follows that the
total power pt draw at a given instance during training is
given by:

pt =
1.58t(pc + pr + gpg)

1000
(1)

The U.S. Environmental Protection Agency (EPA) reports
the average CO2 produced (in pounds per kilowatt-hour) for
power consumed in the U.S. (EPA 2018) as: 0.954. Strubell,
Ganesh, and McCallum (2019) use this conversion without
modification to convert kilowatt-hours to carbon footprint,
since that article was based on a 2016 source that cited the
renewable energy use by the largest cloud services provider,
Amazon Web Services (AWS), as comparable to that of the
United States overall. To account for updated reports that
AWS sources 50% renewable energy, we cut this number in
half. Thus we convert power to estimated CO2 emissions as
follows:

CO2e = 0.477pt (2)
This conversion makes the assumption that the 50% non-
renewable energy used by cloud providers comes from the
same relative proportions of different energy sources (nat-
ural gas, coal, nuclear) as consumed to produce energy in
the United States. As far as we are aware, none of the cloud
providers considered in this paper report a detailed break-
down of the sources of energy powering their compute, so
we believe this is a reasonable assumption for U.S. work-
loads. Table 1 lists the relative energy sources for China,
Germany and the United States compared to the top three
cloud service providers. Note that although Google pur-
chases enough renewable energy to equal its non-renewable
use, resulting in effectively 100% renewable energy use in
its datacenters, due to technological and geographic limita-
tions, Google still relies on some amount of non-renewable
energy to fuel computation, and thus does leave a tangible
but not publicly available carbon footprint.

Results

Table 2 lists the estimated cost of training NLP models in
terms of kilowatt-hours, carbon emissions, and cloud com-
pute cost. TPUs are more efficient than GPUs for models
that are designed for that hardware (e.g. BERT), resulting in
lower costs. This finding supports the development of spe-
cialized hardware for AI models as one avenue to reduce
consumption. We also see that models emit non-trivial car-
bon emissions. So, Liang, and Le (2019) report that NAS
achieves a new state-of-the-art BLEU score of 29.7 for En-
glish to German machine translation, an increase of just 0.1
BLEU at the cost of at least $150k in on-demand compute
time and potentially substantial carbon emissions.

1Many cloud providers report an average PUE below 1.2, but
specialized hardware such as GPUs generate up to 66% more heat
than standard CPU-based data centers, so we split the difference
and use 1.58.
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Model Hardware Power (W) Hours kWh·PUE CO2e Cloud compute cost
T2Tbase P100x8 1415.78 12 27 13 $41–$140
T2Tbig P100x8 1515.43 84 201 96 $289–$981
ELMo P100x3 517.66 336 275 131 $433–$1472
BERTbase V100x64 12,041.51 79 1507 719 $3751–$12,571
BERTbase TPUv2x16 — 96 — — $2074–$6912
NAS P100x8 1515.43 274,120 656,347 313,078 $942,973–$3,201,722
NAS TPUv2x1 — 32,623 — — $44,055–$146,848
GPT-2 TPUv3x32 — 168 — — $12,902–$43,008

Table 2: Estimated cost of training a model in terms of CO2 emissions (lbs) and cloud compute cost (USD) (Strubell, Ganesh,
and McCallum 2019). Power and carbon footprint are omitted for TPUs due to lack of public information on power draw.

Case study 2: Hyperparameter tuning

A substantial but often under-reported aspect of the compu-
tation required for training is due to hyperparameter tuning.
To quantify the computational requirements of developing
a new model, in this case study we analyze the logs of all
training required to develop Linguistically-Informed Self-
Attention (Strubell et al. 2018), a multi-task model that per-
forms four related natural language tasks. This model makes
for an interesting case study as the four tasks represent a
typical NLP pipeline, and the paper was awarded Best Long
Paper at EMNLP 2018.

Results

The project required a total of 9998 days (27 years) of GPU
time, or about 60 GPUs running throughout the duration of
the 6 month project. Table 3 lists upper and lower bounds
of the estimated cost in terms of Google Cloud compute and
raw electricity required to develop and deploy this model.2
Though training a single model is relatively inexpensive, the
cost of tuning a model for a new dataset, which we conser-
vatively estimate here as 24 jobs, or performing the full re-
search and development cycle to develop this model, quickly
becomes prohibitively expensive.

Estimated cost (USD)
Models Hours Cloud Electric
1 120 $52–$175 $5
24 2880 $1238–$4205 $118
4789 239,942 $103k–$350k $9870

Table 3: Estimated cost of training: (1) a single model (2) a
single tune and (3) all models trained during R&D (Strubell,
Ganesh, and McCallum 2019).

Conclusions

We conclude by providing actionable recommendations to
the community based on our analysis. See Strubell, Ganesh,
and McCallum (2019) for a more detailed discussion of the
first three conclusions summarized below.

2Based on average U.S cost of electricity of $0.12/kWh.

Authors should report training time and sensitivity
to hyperparameters.

Our experiments suggest that it would be beneficial to di-
rectly compare models not just in terms of accuracy on
benchmark data, but also in terms of efficiency using a stan-
dard metric. See Schwartz et al. (2019) for more discussion
of standard metrics for reporting efficiency, and Dodge et
al. (2019) for further analysis and concrete methods for re-
porting tuning and hyperparameter sensitivity.

Academic researchers need equitable access to
computation resources.

Recent advances in available compute come at a high price
not attainable to all who desire access. Limiting this style
of research to the wealthiest labs hurts the AI research com-
munity by stifling creativity and prohibiting certain types of
research on the basis of access to financial resources. The
prohibitive start-up cost of building in-house infrastructure
forces resource-poor groups to rely on cloud compute ser-
vices, though in-house compute is less expensive in the long
term. All of the above serves to further entrench the already
problematic “rich get richer” cycle of research funding.

Researchers should prioritize computationally
efficient hardware and algorithms.

We recommend a concerted effort by industry and academia
to promote research and development of more computation-
ally efficient algorithms, as well as hardware that requires
less energy. Making efficient algorithms readily available
in popular software should also be a priority. Figure 2 de-
picts the number of papers focusing on accuracy or effi-
ciency at four top AI conferences, labeled from a random
sample of 20 papers from each conference. There is a clear
bias towards research focused on obtaining higher accuracy.
AAAI also follows this trend: a quick search for ”efficien”
in AAAI 2019 accepted technical track paper titles yields 40
out of 1149 total papers, or about 3.5%. AAAI 2019 also
held a computational sustainability track last year, compris-
ing 0.4% of technical track papers.

AI researchers and practitioners should be mindful
of energy sources powering their compute.

Do you know whether your flops are fuelled by coal or hy-
droelectric power? As we see in Table 1, not all cloud ser-
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Figure 2: Distribution of papers targeting accuracy, effi-
ciency, both, or neither labeled from a sample of 80 papers
at four top AI conferences. Current trends focus on accuracy
over efficiency. Figure based on (Schwartz et al. 2019).

vices provide equally sustainable compute, and the exact
breakdown of energy source and thus carbon footprint varies
widely based on geographic location. The same is true of
in-house resources; with today’s renewable resources and
grid technology, it is simply not possible for all regions to
source renewable energy all of the time. See Google’s re-
cent whitepaper (Google 2018) for a deeper discussion of
some of the challenges in attaining 100% renewable energy
in datacenters across the globe, and (Kim and Pierce 2018)
for further reading on the nuances of purchasing carbon off-
sets. Lacoste et al. (2019) recently published an online cal-
culator3 that provides geographically-aware estimates of ef-
fective carbon emissions for users of Google, Amazon and
Microsoft cloud resources. We strongly encourage ML re-
searchers to analyze, audit and report the carbon footprint of
their research using this valuable tool.
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