
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Abstraction and Refinement in Games with Dynamic Weighted Terrain

Nathan R. Sturtevant
Department of Computing Science

University of Alberta
Edmonton, AB, Canada
nathanst@ualberta.ca

Devon Sigurdson, Bjorn Taylor, Tim Gibson
Improbable Canada Inc.
Edmonton, AB, Canada

{devon, bjorntaylor, timgibson}@improbable.io

Abstract

This abstract looks at one version of the pathfinding problem
in games and discusses how it motived our recent work at the
AIIDE 2019 conference.

Pathfinding in Games

In 2019 Improbable Inc’s Canada studio began to collabo-
rate with the Moving AI Lab at the University of Alberta.
Our first task was to look at the problem of pathfinding in
games to see if we could open up new design possibilities
for character pathfinding in Improbable’s games. The first
result of this collaboration was published at AIIDE 2019
(Sturtevant et al. 2019); in this abstract we give a high-level
overview of the motivations for that work and the general
approach that was adopted for the initial technologies built
into the game.

We begin by looking at some of the properties of pathfind-
ing in games that makes this problem unique from other ap-
plications, such as navigation for cars on roads. However,
the games industry itself is quite broad, so this cannot taken
to be representative of all games. Given this caveat, some
unique features of pathfinding in games include:

• Free space traversal: Characters are able to move
through free space and are not restricted to a finite number
of traversable edges. For instance, the underlying terrain
in the Unreal game engine1 is represented by a NavMesh
(Tozour 2002), which uses the Recast toolset2 to build a
polygonal representation of free space in the world.

• Dynamic terrain: Characters are free to modify the ter-
rain. This could be by building buildings, bridges, or by
harvesting forests to turn them into grassland, but could
also be a result of destruction by enemies or environ-
mental forces. The terrain representation must be able
to be changed at runtime to reflect these changes. Thus,
any techniques used to speed up pathfinding must be
amenable to re-computation at runtime.
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• Different terrain costs: While all terrain may be
traversable, different terrain types can have different
costs. It is preferred that characters follow roads, when
they exist, and use other terrain types when appropriate.
Thus, a pathfinding system should be able to reason about
terrain and return appropriate paths.

• Per-character terrain costs: While human characters
will prefer to travel on roads, other types of creatures
might prefer to stay off the roads to avoid being seen and
travel within forests.

• Dynamic terrain costs: Terrain costs can change dur-
ing gameplay either from casting a spell, or from other
dynamic events such as weather. While taking a boat
across a lake in normal weather may be fine, characters
may dynamically avoid water during inclement weather
or when fighting a creature with lightning abilities. Taken
together with per-character terrain costs, this suggests that
changes in terrain cost should not require significant re-
computation.

• Fast computation: Pathfinding requests typically need to
be satisfied in 1ms or less, meaning that optimality (in
terms of path length) is often sacrificed in return for faster
results.

• No clear definition of optimality: Many pathfinding ap-
plications prefer optimal paths with respect to metrics
such as distance or time. In games there are often addi-
tional artistic constraints on movement that make it diffi-
cult to even define an optimal path, so traditional optimal-
ity metrics are only an approximation of path quality.

Approach: Abstraction and Refinement

The general approach that we took uses abstraction to build
a high-level representation of the world. Paths found in
the high-level representation can then be refined to paths
in the real world. Even optimal approaches such as con-
traction hierarchies (Geisberger et al. 2008) use abstraction
and refinement, but we use a class of approaches that have
been well-studied (Holte et al. 1996; Botea, Müller, and
Schaeffer 2004; Sturtevant and Buro 2005; Bulitko et al.
2007; Sturtevant and Jansen 2007; Harabor and Botea 2008;
Pelechano and Fuentes 2016) and that produce suboptimal
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Figure 1: The dynamic terrain abstraction on a larger map
with five different terrain types.

results. These approaches have also been used in the games
industry (Sturtevant 2007; Alain 2018).

Our particular implementation is a variant of existing ap-
proaches optimized for the problem definition above. In par-
ticular, it has the following features:
• Local changes: When a local change occurs in the world

only a local update is needed in the abstraction.
• Explicit representation of terrain types: Unlike other

approaches, terrain types are explicitly represented in the
abstraction. When the terrain type changes, the abstrac-
tion must be updated, but when the cost of terrain changes
it does not.

• Paths respect terrain costs: It is possible to use Weighted
A* (Pohl 1970) or other recent suboptimal algorithms
(Chen and Sturtevant 2019; Chen et al. 2019) to speed up
pathfinding. But, our experiments show that Weighted A*
generally achieves its speedup by ignoring terrain costs.
Thus, significantly higher quality paths can be found by
explicitly reasoning about terrain costs in the abstraction.

• Small memory overhead: The cost of storing the abstrac-
tion is significantly smaller than the cost of the full map.

• Flexible underlying representation: We implemented
the abstraction approach both using grids and NavMeshes
as the low-level representation. The approach works with
both, but benefits from the structure of how NavMeshes
are built in Recast.

• Faster pathfinding: The speedup achieved depends on
the type of terrain and the underlying representation, but
provides speedup in either cases.
The full approach is called a dynamic terrain abstraction.

An example of the abstraction can be found in Figure 1.
Planning is first performed in the abstract graph, and then
is refined to a walkable path within the world. Additional
details can be found in the full paper (Sturtevant et al. 2019).

Future Work

Although we are happy with the current implementation of
this work, there is still room for improvement. The cur-
rent approach, for instance, doesn’t directly handle dif-
ferent sized agents; a different NavMesh is used for dif-
ferent agent sizes, although some approaches are able to
handle this constraint (Kallmann 2010). The current ap-
proach also does not do any pre-computation to speed a
single pathfinding request. For highly dynamic maps this
could be too expensive, but past work has explored apply-
ing such techniques at the abstract level of the graph (Sturte-
vant and Geisberger 2010), and other work has looked at
re-using pre-computed data after the map changes (Bono
et al. 2019). Finally, this work does not address the issue
of multiple-agents planning through space together. Cur-
rent search-based approaches to this problem are not fea-
sible for most games (Stern et al. 2019) in comparison
to locally reactive approaches (Van Den Berg et al. 2011;
Karamouzas, Skinner, and Guy 2014). As the development
of the game continues, we will continue to work with them
to address challenges that arise.
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