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Abstract

Cardinal scores collected from people are well known to suf-
fer from miscalibrations. A popular approach to address this
issue is to assume simplistic models of miscalibration (such
as linear biases) to de-bias the scores. This approach, how-
ever, often fares poorly because people’s miscalibrations are
typically far more complex and not well understood. It is
widely believed that in the absence of simplifying assump-
tions on the miscalibration, the only useful information in
practice from the cardinal scores is the induced ranking. In
this paper we address the fundamental question of whether
this widespread folklore belief is actually true. We consider
cardinal scores with arbitrary (or even adversarially chosen)
miscalibrations that is only required to be consistent with
the induced ranking. We design rating-based estimators and
prove that despite making no assumptions on the ratings, they
strictly and uniformly outperform all possible estimators that
rely on only the ranking. These estimators can be used as a
plug-in to show the superiority of cardinal scores over ordinal
rankings for a variety of applications, including A/B testing
and ranking. This work thus provides novel fundamental in-
sights in the eternal debate between cardinal and ordinal data:
It ranks the approach of using ratings higher than that of using
rankings, and rates both approaches in terms of their estima-
tion errors.

Introduction

“A raw rating of 7 out of 10 in the absence of any other in-
formation is potentially useless.” (Mitliagkas et al. 2011)
“The rating scale as well as the individual ratings are
often arbitrary and may not be consistent from one user
to another.” (Ammar and Shah 2012)

Consider two items that need to be evaluated (for ex-
ample, papers submitted to a conference) and two review-
ers. Suppose each reviewer is assigned one distinct item for
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evaluation, and this assignment is done uniformly at ran-
dom. The two reviewers provide their evaluations (say, in
the range [0, 1]) for the respective item they evaluate, from
which the better item must be chosen. However, the review-
ers’ rating scales may be miscalibrated. It might be the case
that the first reviewer is lenient and always provides scores
in [0.6, 1] whereas the second reviewer is more stringent and
provides scores in the range [0, 0.4]. Or it might be the case
that one reviewer is moderate whereas the other is extreme –
the first reviewer’s 0.2 is equivalent to the second reviewer’s
0.1 whereas the first reviewer’s 0.3 is equivalent to the sec-
ond reviewer’s 0.8. More generally, the miscalibration of the
reviewers may be arbitrary and unknown. Then is there any
hope of identifying the better of the two items with any non-
trivial degree of certainty?

A variety of applications involve collection and aggrega-
tion of human preferences or judgments in terms of car-
dinal scores (numeric ratings). A perennial problem with
eliciting cardinal scores is that of miscalibration – the sys-
tematic errors introduced due to incomparability of cardi-
nal scores provided by different people (see (Poston 2008;
Griffin and Brenner 2008) and references therein).

This issue of miscalibration is sometimes addressed by
making simplifying assumptions about the form of mis-
calibration, such as linear bias models (Paul 1981; Roos,
Rothe, and Scheuermann 2011; Baba and Kashima 2013;
Ge, Welling, and Ghahramani 2013; MacKay et al. 2017).
However, the calibration issues with human-provided scores
are often significantly more complex causing significant vi-
olations to these simplified assumptions (see (Griffin and
Brenner 2008) and references therein). Moreover, the algo-
rithms for post-hoc correction often try to estimate the in-
dividual parameters which may not be feasible due to low
sample sizes. For instance, John Langford notes from his
experience as the program chair of the ICML 2012 confer-
ence:

“We experimented with reviewer normalization and gen-
erally found it significantly harmful.” (Langford 2012)

It is commonly believed that when unable or unwilling
to make simplifying assumptions on the bias in cardi-
nal scores, the only useful information is the ranking of
the scores (Rokeach 1968; Freund et al. 2003; Harzing et
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al. 2009; Mitliagkas et al. 2011; Ammar and Shah 2012;
Negahban, Oh, and Shah 2012). This perception gives rise
to a second approach towards handling miscalibrations – that
of using only the induced ranking or otherwise directly elic-
iting a ranking and not scores from the use. As noted by
Freund et al.:

“[Using rankings instead of ratings] becomes very impor-
tant when we combine the rankings of many viewers who
often use completely different ranges of scores to express
identical preferences.” (Freund et al. 2003)

These motivations have spurred a long line of literature on
analyzing data that takes the form of partial or total rankings
of items (Cook et al. 2007; Baskin and Krishnamurthi 2009;
Ammar and Shah 2012; Negahban, Oh, and Shah 2012;
Rajkumar et al. 2015; Shah et al. 2016; Shah and Wainwright
2018).

In this paper, we contest this widely held belief by ad-
dressing the following two fundamental questions:

• In the absence of simplifying modeling assumptions on
the miscalibration, is there any estimator (based on the
scores) that can outperform estimators based on the in-
duced rankings?

• If only one evaluation per reviewer is available, and if
each reviewer may have an arbitrary miscalibration, is
there hope of estimation better than random guessing?

Our theory shows that the answer to both questions is “Yes”.
One need not make simplifying assumptions about the mis-
calibration and yet guarantee a performance superior to that
of any estimator that uses only the induced rankings.

In more detail, we consider settings where a number of
people provide cardinal scores for one or more from a collec-
tion of items. The calibration of each reviewer is represented
by an unknown monotonic function that maps the space of
true values to the scores given by this reviewer. These func-
tions are arbitrary and may even be chosen adversarially. We
present a class of estimators based on cardinal scores given
by the reviewers which uniformly outperforms any estimator
that uses only the induced rankings. A compelling feature of
our estimators is that they can be used as a plug-in to im-
prove ranking-based algorithms in a variety of applications,
such as A/B testing and ranking.

The techniques used in our analyses draw inspiration from
Stein’s shrinkage (Stein 1956; James and Stein 1961) and
empirical Bayes (Robbins 1956). Our setting with 2 review-
ers and 2 papers presented subsequently in the paper carries
a close connection to the classic two-envelope problem (for
a survey on the two-envelope problem, see (Gnedin 2016)),
and our estimator in this setting is similar in spirit to the ran-
domized strategy (Cover 1987) proposed by Thomas Cover.

Our work provides a new perspective on the eternal de-
bate between cardinal scores and ordinal rankings. It is often
believed that ordinal rankings are a panacea for the miscali-
bration issues with cardinal scores. Here we show that ordi-
nal estimators are not only statistically inadmissible (that
is, Pareto-inefficient), they are also strictly and uniformly
beaten by our cardinal estimators. Our results thus uncover
a new point on the tradeoff between cardinal and ordinal data

collection. The theoretical results and insights established in
this paper are envisaged to serve as a crucial building block
towards the design of rating-based estimators under more
benign assumptions on miscalibrations, and for more com-
plex settings of data collection, in the future.

Preliminaries

Consider a set of n items denoted as {1, . . . , n} or [n] in
short. Each item i ∈ [n] has an unknown value xi ∈ R.
For ease of exposition, we assume that all items have dis-
tinct values. There are m reviewers {1, . . . ,m} and each re-
viewer evaluates a subset of the items. The calibration of any
reviewer j ∈ [m] is given by an unknown, strictly-increasing
function fj : R → R. When reviewer j evaluates item i, the
reported score is fj(xi). We make no other assumptions on
the calibration functions f1, . . . , fm. We use the notation �
to represent a relative order of any items, for instance, we
use “1 � 2” to say that item 1 has a greater value (ranked
higher) than item 2. We assume that m and n are finite.

Every reviewer is assigned one or more items to eval-
uate. We denote the assignment of items to reviewers as
A = (S1, . . . , Sm), where Sj ⊆ [n] is the set of items as-
signed to reviewer j ∈ [m]. We use the notation Π to repre-
sent the set of all permutations of n items. We let π∗ ∈ Π
denote the ranking of the n items induced by their respec-
tive values (x1, . . . , xn), such that xπ∗(1) > xπ∗(2) > · · · >
xπ∗(n). The goal is to estimate this underlying “true” rank-
ing π∗ from the evaluations of the reviewers. We consider
two types of settings: an ordinal setting where estimation is
performed using the rankings induced by each reviewer’s re-
ported scores, and a cardinal setting where the estimation is
performed using the reviewers’ scores (which can have an
arbitrary miscalibration and only need to be consistent with
the rankings). Formally:
• Ordinal: Each reviewer j reports a total ranking among

the items in Sj , that is, the ranking of the items induced
by the values {fj(xi)}i∈Sj

. An ordinal estimator observes
the assignment A and the rankings reported by all review-
ers.

• Cardinal: Each reviewer j reports the scores for the items
in Sj , that is, the values of {fj(xi)}i∈Sj . A cardinal esti-
mator observes the assignment A and the scores reported
by all reviewers.

In order to compare the performance of different estimators,
we use the notion of strict uniform dominance. Informally,
we say that one estimator strictly uniformly dominates an-
other if it incurs a strictly lower risk for all possible choices
of the miscalibration functions and the item values.

In more detail, suppose that you wish to show that an esti-
mator π̂1 is superior to estimator π̂2 with respect to some
metric for estimating π∗. However, there is a clever ad-
versary who intends to thwart your attempts. The adver-
sary can choose the miscalibration functions of all reviewers
{f1, . . . , fm}, the true ranking π∗ of the items, and the val-
ues of all items {x1, . . . , xn}. The only constraints in this
choice are that the miscalibration functions f1, . . . , fm must
be strictly monotonic and that the item values x1, . . . , xn

should induce the ranking π∗ (such that xπ∗(1) > xπ∗(2) >
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· · · > xπ∗(n)). The items are then assigned to reviewers ac-
cording to the (possibly random) assignment A. The review-
ers now provide their ordinal or cardinal evaluations as de-
scribed earlier, and the two estimators π̂1 and π̂2 use these
evaluations to compute their estimates. We say that estima-
tor π̂1 strictly uniformly dominates π̂2, if π̂1 always incurs a
strictly smaller (expected) error than π̂2. Formally:
Definition 1 (Strict uniform dominance). Let π̂1 and π̂2 be
two estimators for the true ranking π∗. Estimator π̂1 is said
to strictly uniformly dominate estimator π̂2 with respect to a
given loss function L : Π×Π → R if

E[L(π∗, π̂1)] < E[L(π∗, π̂2)],

for all π∗ and all permissible {f1, . . . , fm, x1, . . . , xn}. The
expectation is taken over any randomness in the assignment
A and the estimators.
Note that strict uniform dominance is a stronger notion than
comparing estimators in terms of their minimax (worst-case)
or average-case risks. Moreover, if an estimator π̂2 is strictly
uniformly dominated by some estimator π̂1, then the estima-
tor π̂2 is statistically inadmissible (see (Wasserman 2010,
Definition 12.17) for the definition of statistical inadmissi-
bility). Finally, for ease of exposition, we focus on the 0-1
loss, L(π∗, π) = 1{π∗ �= π}.

A canonical setting

Consider a canonical setting that involves two items and two
reviewers (that is, n = 2, m = 2), where each reviewer
evaluates one of the two items. The ideas in this setting are
directly applicable towards designing uniformly superior es-
timators for other applications.

In this canonical setting, each of the two reviewers evalu-
ates one of the two items chosen uniformly at random with-
out replacement, that is, the assignment A is chosen uni-
formly at random from the two possibilities (S1 = 1, S2 =
2) and (S1 = 2, S2 = 1). Since each reviewer is assigned
only one item, the ordinal data is vacuous. Then the natural
ordinal baseline is an estimator which makes a guess uni-
formly at random:

π̂can(A, {}) =
{
1 � 2 with probability 0.5

2 � 1 with probability 0.5.

In the cardinal setting, let y1 denote the score reported for
item 1 by its respective reviewer, and let y2 denote the score
for item 2 reported by its respective reviewer. Since the cal-
ibration functions are arbitrary (and may be adversarial), it
appears hopeless to obtain information about the relative or-
dering of x1 and x2 from just this data. Indeed, as we show
below, standard estimators such as the sign test — ranking
the items in terms of their reviewer-provided scores — prov-
ably fail to achieve this goal. More generally, the following
theorem holds for all deterministic estimators, that is, esti-
mators given by deterministic mappings from {A, y1, y2} to
the set {1 � 2, 2 � 1}.
Theorem 2. No deterministic (cardinal or ordinal) estima-
tor can strictly uniformly dominate the random-guessing es-
timator π̂can.

This theorem demonstrates the difficulty of this problem by
ruling out all deterministic estimators. Our original ques-
tion still remains: is there any estimator that can strictly uni-
formly outperform the random-guessing ordinal baseline?

We show that the answer is yes, with the construction of
a randomized estimator denoted as π̃our

can. This estimator is
based on a function w : [0,∞) → [0, 1) which may be
chosen as any arbitrary strictly-increasing function. For in-
stance, one could choose w(x) = x

1+x or w as the sigmoid
function. Given the scores y1, y2 reported for the two items,
let î(1) ∈ argmaxi∈{1,2} yi denote the item which receives
the higher score, and let î(2) denote the remaining item (with
ties broken uniformly). Then our randomized estimator out-
puts:

π̃our
can(A, y1, y2) =

{
î(1) � î(2)with probability 1+w(|y1−y2|)

2

î(2) � î(1)otherwise.
(1)

Note that the the output of this estimator is independent of
the assignment A.

As an example, suppose that the values of the two items
are (x1 = 4, x2 = 7). Suppose the calibration function f1 of
reviewer 1 maps the values of these two items to (f1(x1) =
1, f1(x2) = 5), and the calibration function f2 of reviewer
2 maps them to (f2(x1) = 6, f2(x2) = 8). Now we observe
the ratings (y1 = 1, y2 = 8) with probability 0.5, in which
case the estimator reports item 2 as greater with probability
1+w(7)

2 . With probability 0.5, we observe (y1 = 6, y2 = 5),
in which case the estimator reports item 2 as greater with
probability 1 − 1+w(1)

2 = 1−w(1)
2 . Since the function w is

strictly-increasing, we have w(7) > w(1). Using this fact
and averaging the outcomes over these two cases yields a
probability of success strictly greater than 0.5. The following
theorem now proves this result formally.

Theorem 3. The randomized estimator π̃our
can strictly uni-

formly dominates the random-guessing baseline π̂can.

The contrast between deterministic estimators and random-
ized estimators arises from the fact that a deterministic esti-
mator “commits” to an action (deciding which item has a
greater value). It performs well if the situation is aligned
with this action (when the scores under miscalibration are
consistent with the true ordering of the two items). How-
ever, due to its prior commitment it may fail if the situation
is not aligned. In contrast, a randomized estimator balances
out good and bad cases. The probability of the good case
(correct estimation) is greater than the probability of the bad
case (incorrect estimation) for the randomized estimator (1),
because it exploits the monotonic structure of the calibration
functions, whereas this structure is lost in ordinal data.

Additional results in the arXiv version

The analysis for the canonincal setting conveys the key ideas
underlying more general results. We now outline additional
material that is included in the arXiv version of this pa-
per (Wang and Shah 2018):

• Noisy setting: a setting with noisy observations (y =
f(x) + noise).
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• A/B testing and ranking: results on the superiority of
cardinal data over ordinal data by using the proposed esti-
mator (1) in the canonical setting as a plug-in component
in two applications, A/B testing and ranking.

• Simulation: simulation on A/B testing and ranking, and
simulation on the tradeoff between estimation under per-
fect calibration vs. miscalibration.

• Related work: connections between our results and prior
work, in particular the connection to Cover’s estimator for
the two-envelope problem (Cover 1987).

• Proofs: the proofs of all theoretical results.
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