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Abstract

Neural networks have contributed to tremendous progress
in the domains of computer vision, speech processing, and
other real-world applications. However, recent studies have
shown that these state-of-the-art models can be easily compro-
mised by adding small imperceptible perturbations. My thesis
summary frames the problem of adversarial robustness as an
equivalent problem of learning suitable features that leads
to good generalization in neural networks. This is motivated
from learning in humans which is not trivially fooled by such
perturbations due to robust feature learning which shows good
out-of-sample generalization.

Neural networks have contributed to tremendous progress
in the domains of computer vision, speech processing, and
other real-world applications. However, recent studies have
shown that these state-of-the-art models can be easily com-
promised by adding small imperceptible perturbations. Such
malicious artifacts can be added by an attacker both in the
training data (poisoning attacks) and test data for a trained
model (adversarial attacks), to cause significant loss of per-
formance during inference. My thesis summary frames the
problem of adversarial robustness as an equivalent problem
of learning suitable features that leads to good generalization
in neural networks. This is motivated by learning in humans
which is not trivially fooled by such perturbations due to
robust feature learning which shows good out-of-sample gen-
eralization. My thesis is planned to be divided into three parts.
Firstly, I studied methods to find explainable single-pixel per-
turbations to the training data (poisons) that compromise
the generalization abilities of neural networks. In the second
phase, I plan to study performance to adversarial vulnerabili-
ties by learning robust non-linear feature transformations. In
the third part, I plan to study the effect of different optimiza-
tion techniques towards generalization in neural networks in
the presence of adversarial perturbations.

1) Interpretable Single-pixel Poisons: Data poisoning in-
volves injecting small perturbations to training samples by
an attacker to subvert the model performance on clean test
data. Biggio et al. (Biggio, Nelson, and Laskov 2012) first in-
troduced it in the context of Support Vector Machines (SVM)
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Table 1: Showing testing error (in %) for various methods.
“Clean” is non-poisoned data. Training errors are close to 0%.

Dataset MNIST Fashion-MNIST

Clean 0.8± 0.0 8.3± 0.3
Baseline (random) 56.8± 0.6 52.0± 1.7
Jacobsen et al. 43.0± 13.9 49.6± 2.6
(Jacobsen et al. 2018)
Proposed 88.6 ± 1.2 74.9 ± 0.8

for binary classification problems. Recently, there have been
some works in the field of neural networks (Steinhardt, Koh,
and Liang 2017) as well. Koh et al. (Koh and Liang 2017)
used influence functions to synthesize adversarial training
examples that can flip the predicted labels of a set of testing
images. Shafahi et al. (Shafahi et al. 2018) used a forward-
backward-splitting iterative procedure (Goldstein, Studer,
and Baraniuk 2014) to create targeted data poisoning at-
tacks that performed better than previous methods. GenAt-
tack (Alzantot et al. 2018) proposed a gradient-free adver-
sarial attacks for test time perturbation optimization. Consid-
ering previous single-pixel poisoning attacks, (Jacobsen et
al. 2018) studied the effect of single-pixel perturbations on
MNIST training images on test performance. They showed
that adding one pixel to training images that encodes the class
label, and then testing on the clean test set can yield a high
generalization gap. Tanay et al. (Tanay, Andrews, and Griffin
2018) showed that neural network models can be made al-
most arbitrarily sensitive to a single-pixel while maintaining
identical test performance between models.

However, there is a limited study on explaining why certain
poisons are more effective in fooling the model that others.
In this work, we propose an explainable gradient-free data
poisoning approach that learns single-pixel perturbations on
the training images that forces the neural network to focus on
non-salient spatial locations for the classification task. In this
work, we assume the attacker has access to the clean training
images and labels, which can be used to learn a clean classifi-
cation model (Mc). GradCAM (Selvaraju et al. 2017) distri-
bution corresponding to the true label is obtained from Mc.
The region with high value suggests that the neural network
focuses on those regions to make its classification decision.
Our goal is to inject poisons on the non-salient image loca-
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Table 2: Showing testing error (in %) for various non-NN
learning methods on MNIST dataset

Method Lin-SVM Random Forest RBF-SVM

Clean 8.34 5.50 1.65
Baseline 59.77 12.55 2.30
Jacobsen (Jacobsen et al. 2018) 75.16 15.79 15.79
Proposed 90.3 14.64 2.06

tions to divert the neural networks GradCAM distribution to
the non-discriminative image features. To this end, we use the
complementary Region of Interest (ROI) to sample class-wise
single-pixel locations and perturbation intensities. We use a
gradient-free optimization technique (CMA-ES) to search for
the best performing perturbations based on a fitness score that
encourages a higher generalization gap between clean and
poisoned images. Table 1 shows experimental evaluation on
MNIST and Fashion-MNIST datasets. Our proposed attack
strategy outperforms previous single pixel-based poisoning
methods (Jacobsen et al. 2018) and the baseline of random
perturbations.

2) Can Robust Non-linear Transformations Prevent
Adversarial Vulnerabilities?: We performed experiments to
evaluate how the above single-pixel poison attacks would per-
form on other traditional learning methods like LinearSVM,
Random Forests, and RBF-SVM as shown in Table 2. We
found that Linear SVM was successfully attacked by our
method, while Random Forests and RBF-SVM is resilient
to such attacks. Especially RBF-SVM can defend against
such attacks because it uses non-linear feature transformation
based on the l2 distance. The difference between the origi-
nal and poisoned input is minimal in l2 distance perspective
due to single-pixel perturbations. Thus the decision boundary
learned in the transformed feature space can also general-
ize to the clean test images. In the future, I plan to examine
the effect on adversarial robustness due to non-linear feature
transformations more generally, because l2 distance between
attacked and clean samples are typically very less.

3) Does Adaptivity in Optimization Overfit Easily?:
Wilson et al. (Wilson et al. 2017) showed that adaptive meth-
ods are affected by spurious features that do not contribute
to out-of-sample generalization by crafting a smart artificial
linear regression example. By examining the effect of com-
mon optimization strategies on our single-pixel poisons, we
wish to study if a certain optimization algorithm is more li-
able to memorizing small perturbations while ignoring other
salient statistical patterns in the training data. To this end,
we trained CNN models on single-pixel perturbed data us-
ing ADAM (Kingma and Ba 2014), SGD, RMSProp (Tiele-
man and Hinton 2017), and Adabound (Luo et al. 2019)
optimization as shown in Figure 1. ADAM and RMSProp
show low testing accuracy for all cases while vanilla SGD
is surprisingly resilient to such perturbations showing better
out-of-sample performance consistently for all the datasets.
Adabound uses strategies from both SGD and Adam, thus
showing intermediate performance. In the future, I plan to
study why SGD based methods are more resilient to such poi-
soning attacks and if this property can be used in adversarial
robustness in general for both evasive and poisoning attacks.

(a) MNIST (b) SVHN

Figure 1: Testing accuracy under single pixel perturbation
shows SGD consistently performs better than adaptive opti-
mization techniques.
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