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Abstract

Learning to predict solutions to real-valued combinatorial
graph problems promises efficient approximations. As demon-
strated based on the NP-hard edge clique cover number, re-
current neural networks (RNNs) are particularly suited for
this task and can even outperform state-of-the-art heuristics.
However, the theoretical framework for estimating real-valued
RNNs is understood only poorly. As our primary contribution,
this is the first work that upper bounds the sample complexity
for learning real-valued RNNs. While such derivations have
been made earlier for feed-forward and convolutional neural
networks, our work presents the first such attempt for recurrent
neural networks. Given a single-layer RNN with a rectified
linear units and input of length b, we show that a population
prediction error of ε can be realized with at most Õ(a4b/ε2)
samples.1 We further derive comparable results for multi-layer
RNNs. Accordingly, a size-adaptive RNN fed with graphs of
at most n vertices can be learned in Õ(n6/ε2), i. e., with only
a polynomial number of samples. For combinatorial graph
problems, this provides a theoretical foundation that renders
RNNs competitive.

Introduction

Combinatorial optimization constitutes a fundamental prob-
lem at the intersection of applied mathematics and computer
science (Bello et al. 2017). Most problems of this type can
be formulated as minimization or maximization tasks over
finite graph structures. These optimization problems arise di-
rectly from real-world applications, such as in transportation,
communication networks, or scheduling. Such problems are
particularly suited for recurrent neural networks (RNNs) as
we will demonstrate on the NP-hard edge clique cover num-
ber problem. The recursive processing inside RNNs allows
them to naturally handle graphs of varying size and, they can
numerically outperform feed-forward architectures as well
as state-of-the-art heuristics.

However the theoretical understanding, especially with re-
spect to generalization bounds for recurrent neural networks
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1The Õ(·) notation indicates that poly-logarithmic factors are
ignored.

over graphs present an active field of research. A widespread
approach to statistical generalization is based on the sam-
ple complexity of learning algorithms, which refers to the
minimum number of samples required in order to learn a
close-to-optimal model configuration. Because of that, con-
siderable effort has been spent on deriving sample complex-
ity bounds for various neural networks. Recent examples of
bounding sample complexities involve, for instance, binary
feed-forward neural networks (FNNs) (Harvey, Liaw, and
Mehrabian 2017) and convolutional neural networks (Du et
al. 2018). However, similar results are lacking for real-valued
recurrent neural networks (RNNs). Hence, this dearth of theo-
retical findings motivates our research questions: What is the
sample complexity of learning recurrent neural networks?
How can upper bounding the sample complexity of RNNs be
applied in practical use cases?

The edge clique cover number

We have specifically chosen the edge clique cover number
(ECCN) problem. The ECCN of a graph refers to the min-
imum number of cliques, i. e., fully connected sub-graphs,
required to cover all edges (see our Appendix for more de-
tails). The reasons are three-fold: (1) ECCN is NP-hard
and thus computationally challenging. (2) It is relevant
to a variety of practical applications, including computa-
tional geometry, compiler optimization, computational statis-
tics, protein interaction networks, and real-world network
analysis. (3) Known heuristics are scarce, with the Keller-
man heuristic being the notable exception (Kellerman 1973;
Kou, Stockmeyer, and Wong 1978).

Performance across training sample size

We numerically evaluate how the number of training samples
affects the out-of-sample performance in predicting solutions
of the combinatorial problem. Results are depicted in Fig. 1.
The findings justify our derivations for RNNs (as opposed
to FNNs) as these appear largely superior. With sufficient
training data, neural learning over graphs is on par with the
Kellerman heuristic and often even outperforms it. Notably,
a reasonable performance can often be achieved with as lit-
tle as 4,000 training samples. This contributes to our claim
of inherent approximation capabilities of the proposed neu-

13745



(a) dense graphs (b) medium dense graphs (c) sparse graphs (d) mixed graphs

random performance

best known heuristic

0.0

0.5

1.0

1.5

2.0

29 212 215

#training samples

m
se

FNN RNN LSTM

random performance

best known heuristic
0.0

2.5

5.0

7.5

29 212 215

#training samples

m
se

FNN RNN LSTM random performance

best known heuristic0

1

2

3

4

29 212 215

#training samples

m
se

FNN RNN LSTM

random performance

best known heuristic0

5

10

15

29 212 215 218

#training samples

m
se

FNN RNN LSTM

Figure 1: Out-of-sample performance in predicting edge clique cover numbers. The mean squared error (mse) is reported as
a function of the number of training samples (log-scale). With sufficient training samples, RNN predictions can successfully
outperform a naı̈ve baseline (i. e., majority vote) and, in some scenarios, even the state-of-the-art heuristic (Kellerman heuristic).

ral network models. In fact, a satisfactory performance in
practical applications seems to require considerably fewer
training samples than the derived upper bound to the sample
complexity suggests.

The upper bound for RNN sample complexity

In the following, we derive an explicit sample complexity
bound for learning real-valued RNNs. The results are based
on a novel upper bound on the pseudo-dimension of such
networks. A multi-layer version of the Theorem as well as
detailed proofs of the results are given in the Appendix.

Theorem 1. A recurrent neural network with (1) a single
recurrent layer of width a, (2) rectified linear units, (3) input
of maximal length b, and (4) one real-valued output unit is
learnable with sample complexity that is bounded by

ML(ε, δ) ≤ 128

ε2

[
ln

(
16

δ

)
+ ln

(
34

ε

)

× 4(a2 + 3a+ 3)(2b(2a2 + 4a) + 4a+ 10 + log2(8e))

]
.

Proof. This first requires a novel bound to Pdim(F); see
supplementary materials for details.

The previous theorem has important implications: (1) A
population prediction error of ε can be obtained with at most
Õ (

a4b/ε2
)

samples. (2) The number of required samples
grows linearly with the maximum length of the input vector.
(3) The sample complexity grows at most polynomially with
the number of recurrent units.

Application to combinatorial graph problems

Combinatorial graph problems are particularly suited for
learning with RNNs: on the one hand, the recursive process-
ing inside RNNs allows them to naturally handle graphs of
varying size and, on the other hand, RNNs can numerically
outperform feed-forward architectures as we demonstrated
in our numerical experiments.

Let Gn denote the set of undirected and unweighted graphs
without self-loops and n vertices, and let G≤n = ∪n

i=1Gi be
the respective set of graphs with up to n vertices. We aim

at learning a graph problem η : G≤n → R with real-valued
output based on a training data sample {(xi, η(xi))}Ni=1.

We consider a RNN architecture with a single hidden layer
and n rectified linear units. A multi-layer version of this Theo-
rem is discussed in the Appendix. Then, based on Theorem 1,
the sample complexity of the model is as follows.
Theorem 2. A size-adaptive RNN with ReLUs in the hidden
layer has at most sample complexity Õ(n6/ε2).

Accordingly, when learning an optimal network configu-
ration , the sample complexity grows polynomially with the
size of the graphs. More precisely, this growth is in O(n6).

Conclusion
Our analysis derive a novel sample complexity bound for
single and multi-layer RNNs with RELUs in the hidden lay-
ers. For application to combinatorial graph problems, we
propose a size-adaptive RNN that obtains a sample complex-
ity bounded by Õ(n6/ε2), i. e. polynomially in the size of
the graph. Our work is accompanied with numerical experi-
ments that study the approximation performance: based on
the example of the NP-hard edge clique cover number prob-
lem, neural learning demonstrates competitive results and
frequently outperforms the best-known heuristic.
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